
Sepsis, or “blood poisoning” in lay termi-
nology, is a common and serious clinical 
problem. While fewer than 100 cases were 
reported prior to 1920 (Felty and Keefer, 
1924), it is now the 13th leading cause of 
overall mortality (Gelfand and Shapiro, 
1993) and the number one cause of deaths 
in the intensive care unit accounting for 
some 200,000 fatalities in the US annu-
ally. The incidence continues to rise in 
the US (Martin et al., 2003; Figure 1) and 
worldwide (Moss and Martin, 2004), per-
haps due to increased invasive procedures, 
immunosuppression, and cytotoxic chem-
otherapy. Mortality associated with sepsis, 
unfortunately, has essentially remained 
unchanged at about 45% (Cross and Opal, 
1994), despite tremendous strides in anti-
microbial chemotherapy, pointing to the 
absence of therapeutic strategies aimed 
specifically at the pathophysiology of sep-
sis. The pathophysiology of the disease is 
characterized by a systemic inflammatory 
response syndrome (SIRS), culminating in 
its frequently fatal sequel, multiple organ 
dysfunction syndrome (MODS). The sys-
temic inflammatory response is a conse-
quence of dysregulated activation of innate 
immune effector mechanisms (Castellheim 
et al., 2009). Counterregulatory mecha-
nisms that are subsequently deployed to 
dampen the initial overexuberant systemic 
inflammatory responses are also thought 
to contribute to the pathophysiology due 
to late-stage immunosuppressive (hypoin-
flammatory) phenomena, which render the 
host unable to eradicate the offending path-
ogen (Hotchkiss and Karl, 2003; Hotchkiss 
et al., 2009).

The primary trigger of SIRS in the Gram-
negative septic shock syndrome is thought 
to be endotoxin, a constituent of the outer 
membrane of all Gram-negative bacteria. 
Endotoxins consist of a  polysaccharide 

portion and a lipid called lipid A, and are 
therefore also called lipopolysaccharides 
(LPS). The polysaccharide portion con-
sists of an O-antigen-specific polymer of 
repeating oligosaccharide units, the com-
position of which is highly varied among 
Gram-negative bacteria. A relatively well-
conserved core hetero-oligosaccharide 
covalently bridges the O-antigen-specific 
chain with lipid A (Rietschel et al., 1994). 
Total synthesis of the structurally highly 
conserved lipid A has been shown to be the 
active moiety of LPS (Rietschel et al., 1987).

Whereas LPS itself is chemically inert, 
the presence of LPS in blood (endotox-
emia), often a consequence of antibiotic 
therapy of preexisting bacterial infections 
(Holzheimer, 2001), is recognized by Toll-
like receptor 4 (TLR4; Beutler and Poltorak, 
2001; Palsson-McDermott and O’Neill, 
2004; Hennessy et al., 2010), a member of 
a large super-family of pattern recognition 
receptors (Jounai et al., 2012; Newton and 
Dixit, 2012; Olive, 2012). Endotoxemia and 
its sequelae may arise even in the absence of 
Gram-negative bacterial infections, condi-
tions such as trauma (Saadia et al., 1990), 
burns (Jones II et al., 1991), and splanch-
nic ischemia during cardiac surgery (Rocke 
et al., 1987) increase intestinal permeabil-
ity, resulting in the spill-over into the portal 
circulation of LPS from the colon which is 
abundantly colonized by Gram-negative 
bacteria. The sensing of LPS, “read by 
our tissues as the very worst of bad news” 
(Thomas, 1975), results in a cascade of 
exaggerated host responses, manifesting 
in the clinical syndrome characterized by 
endothelial damage, coagulopathy, loss of 
vascular tone, myocardial dysfunction, tis-
sue hypoperfusion, and multiple-system 
organ failure (Balk and Bone, 1989; Bone 
et al., 1992; Bone, 1993). LPS activates 
almost every component of the cellular 

and humoral (plasma protein) limbs of 
the immune system, resulting in the pro-
duction of a plethora of proinflammatory 
mediators, important among which are not 
only early-phase cytokines such as tumor 
necrosis factor-α (TNF-α), interleukin-1β 
(IL-1β), and IL-6 (Dinarello, 1991, 1996) 
but also late-phase endogenous mediators 
such as high mobility group box 1 protein 
(HMGB1; (Wang et al., 1999; Andersson 
and Tracey, 2011). These cytokines and 
other mediators act in concert, amplify-
ing the resultant generalized inflammatory 
processes.

Our understanding of basic mechanisms 
underlying the cellular response to LPS 
has increased vastly in recent years. These 
advances will likely offer novel therapeutic 
possibilities in the future. However, after 
more than two decades of intensive effort 
at evaluating more than 30 investigational 
compounds, specific therapeutic options for 
sepsis have remained elusive. Drotrecogin 
alfa (Xigris™, recombinant human acti-
vated protein C), an anticoagulant that 
ameliorates disseminated intravascular 
coagulation was approved in November 
2001 by the FDA, but recently withdrawn 
due to lack of efficacy (Ranieri et al., 2012; 
Wenzel and Edmond, 2012). Clinical trials 
aimed at blocking various proinflamma-
tory mediators including TNF-α, IL-1β, 
platelet-activating factor, and prostaglan-
dins produced by the activated cellular 
components have all been disappointing 
(Zeni et al., 1997), suggesting that target-
ing downstream cellular inflammatory pro-
cesses once immune activation has already 
progressed is unlikely to be of benefit.

It follows, therefore, that the paradigm 
of proximal, upstream intervention using 
molecules that specifically block the recog-
nition of LPS by TLR4 would offer attrac-
tive therapeutic targets. As mentioned 
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Peterson et al., 1985; Rocque et al., 1988). 
Polymyxin B (PMB), a cationic amphiphilic 
cyclic decapeptide antibiotic isolated from 
Bacillus polymyxa (Storm and Rosenthal, 
1977), has long been recognized to bind 
lipid A (Morrison and Jacobs, 1976), and 
neutralize its toxicity in animal models of 
endotoxemia (Stokes et al., 1989; Durando 
et al., 1994; Yao et al., 1995). Although PMB 
is a commonly used topical antibiotic, it is 
nephro- and oto-toxic, which, while hith-
erto precluding its use as an LPS-neutralizer 
in patients with sepsis, has stimulated the 
search for non-toxic PMB analogs (Rustici 
et al., 1993; Porro et al., 1998), PMB deriva-
tives (Vaara, 1983; Viljanen et al., 1991), as 
well as other structurally diverse cationic 
amphiphilic peptides (Rustici et al., 1993; 
Porro, 1994; Iwagaki et al., 2000; Scott et al., 
2000; Jerala and Porro, 2004) as candidate 
LPS-binding agents. Notably, a hemoper-
fusion cartridge based on PMB covalently 
immobilized via one of its NH

2
 groups to 

a polystyrene based fiber became avail-
able in Japan in late 2000 for clinical use 
(“Toraymyxin™,” Toray Industries Inc., 
Tokyo; (Nakamura et al., 1999, 2002, 2003). 
In the EUPHAS randomized clinical trial, 
PMB hemoperfusion alongside conven-
tional therapy was found to improve organ 
dysfunction and reduce 28-days mortal-
ity in subsets of patients with sepsis aris-
ing from intra-abdominal Gram-negative 
infections (Cruz et al., 2009). Whilst the 
utility of Toraymyxin provides a clinically 
validated proof-of-principle for the value 
of sequestering circulating LPS (Rimmele 
and Kellum, 2011), opportunities for extra-
corporeal hemoperfusion may be infre-
quent due to unfavorable hemodynamic 
parameters.

Given that the only encouraging lead for 
the management of sepsis to date appears to 
be PMB hemofiltration, it is perhaps useful 
to re-examine PMB itself, as well as its struc-
turally closely related congener, polymyxin 
E (or colistin). PMB and polymyxin E dif-
fer one from the other by a single amino 
acid (D-Phe in PMB; D-Leu in PME; (Kwa 
et al., 2007), and are similar in their in vitro 
antimicrobial activity, clinical efficacy, and 
toxicity (Oliveira et al., 2009). Although 
banished to a topical-use-only status on 
account of its systemic toxicity, the poly-
myxins are rapidly re-emerging as last-resort 
parenteral antibiotics for the management 
of infections with extensive drug resistant 

with lipid antigens: poor immunogenicity, 
inaccessibility of neutralizing epitopes, the 
generation of non-specific cross-reactive 
antibodies against irrelevant hydrophobic 
epitopes (Vaarala et al., 1988), and poten-
tial problems with the antibody molecule 
itself: predominant intravascular compart-
mentalization, and possible tissue damage 
induced by activation of complement. 
Non-immunological blockade of LPS rec-
ognition using TLR4 “blockers” is there-
fore an alternative strategy, a premise that 
has indeed been explored with molecules 
structurally related to lipid A, but acting 
as TLR4-specific antagonists (Christ et al., 
1995; Kawata et al., 1999; Wittebole et al., 
2010; Ehrentraut et al., 2011; Tidswell and 
Larosa, 2011), but unfortunately, do not 
appear promising (Williams, 2012). It is 
not known whether the lack of efficacy is 
attributable to its physicochemical proper-
ties (high lipophilicity; (Christ et al., 1995) 
and consequent partitioning into plasma 
lipoproteins, with loss of activity (Rose 
et al., 2000).

As mentioned earlier, the structurally 
invariant and biologically active center of 
LPS, lipid A, is a logical therapeutic target 
for neutralization. Lipid A is composed of 
a hydrophilic, negatively charged bis-phos-
phorylated di-glucosamine backbone, and 
a hydrophobic domain of six (E. coli) or 
seven (Salmonella) acyl chains. The anionic 
amphiphilic nature of lipid A enables it to 
interact with a variety of cationic hydro-
phobic ligands (Vaara and Vaara, 1983; 

earlier, the polysaccharide portion of LPS 
is highly variable and serologically dis-
tinct for each strain of the same species of 
Gram-negative organisms. Although anti-
O-polysaccharide antibodies afford protec-
tion in experimental models where animals 
are challenged with homologous bacteria 
(Kim et al., 1988; Siegel, 1995), these are 
not likely to be of significant clinical value 
since sepsis runs an acute course before 
the pathogen is identified and appropriate 
specific immunotherapy is instituted. The 
biologically active part of LPS, lipid A, as 
well as the core oligosaccharide portion are 
structurally highly conserved across Gram-
negative genera, and thus are attractive tar-
gets for sequestration, and elimination of 
circulating LPS would, in principle, prevent 
the activation of inflammatory cascades 
(Ziegler et al., 1982; Ziegler, 1988; Ziegler 
and Smith, 1992). Experimental studies 
as early as 1968 suggested that antibodies 
directed toward epitopes in the core region 
of LPS may be broadly cross-protective 
against a range of Gram-negative organ-
isms (Chedid et al., 1968). However, nei-
ther human (HA-1A; (Ziegler et al., 1991) 
nor murine (E5; (Bone et al., 1995) anti-
lipid A monoclonal antibodies afforded 
significant protection in large, multiple, 
placebo-controlled clinical trials (Cross 
and Opal, 1994). Similarly disappointing 
results were obtained with core region-
directed antibodies (Di Padova et al., 1993; 
Le Roy et al., 1999). Taken together, these 
failures could point to intrinsic problems 

Figure 1 | incidence of sepsis in the uS Data provided by greg Martin.
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