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Understanding of ocular diseases and the search for their cure have been based on the
common assumption that the eye is an immune privileged site, and the consequent con-
clusion that entry of immune cells to this organ is forbidden. Accordingly, it was assumed
that when immune cell entry does occur, this reflects an undesired outcome of breached
barriers. However, studies spanning more than a decade have demonstrated that acute
insults to the retina, or chronic conditions resulting in retinal ganglion cell loss, such as in
glaucoma, result in an inferior outcome in immunocompromised mice; likewise, steroidal
treatment was found to be detrimental under these conditions. Moreover, even conditions
that are associated with inflammation, such as age-related macular degeneration, are not
currently believed to require immune suppression for treatment, but rather, are thought
to benefit from immune modulation. Here, we propose that the immune privilege of the
eye is its ability to enable, upon need, the entry of selected immune cells for its repair
and healing, rather than to altogether prevent immune cell entry.The implications for acute
and chronic degenerative diseases, as well as for infection and inflammatory diseases, are
discussed.
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INTRODUCTION
Over the past decades, the mammalian central nervous system
(CNS), including the eye, brain, and spinal cord, were believed
to be sealed from the circulation. Thus, immune activity at these
sites was considered forbidden, and was collectively assumed to
be consistently detrimental. As a consequence, the inflammatory
response in the eye or the brain was assessed solely based on
counting the number of immune cells, without regard to their
phenotype or function. Thus, the poor ability of the optic nerve
to regenerate following injury, as well as the poor recovery fol-
lowing acute injury to any other parts of the CNS, were assumed
to be an outcome of local detrimental immune activity seen at
the lesion site (Fitch et al., 1999; Popovich et al., 1999; Ghirnikar
et al., 2001). Such a view was almost universally accepted from
the early 1980s and supported the use of anti-inflammatory drugs
to treat victims of CNS injuries (Constantini and Young, 1994;
Carlson et al., 1998).

With time and the advance of technologies, there was an
increase in the understanding of the heterogeneity of innate and
adaptive immunity in general, and in the CNS in particular, with
respect to both functional cell subsets (Korn et al., 2007; Gee et al.,
2008; O’Shea et al., 2008; Auffray et al., 2009; Prinz et al., 2011;
Zhu et al., 2011) and origin (Geissmann et al., 2010; Ginhoux et al.,
2010; Prinz et al., 2011). As a corollary, it became clear that some
of the blanket assumptions regarding the eye and the brain were
not accurate, and, accordingly, that some experimental findings
had not been properly interpreted. Thus, it became evident that
the response to CNS injury, similar to that in other tissues in the
body, is a multi-step process that requires a set sequence, and
synchrony of events in time and space; many of the steps that

take place in the healing process following “sterile” injuries are
similar if not identical to processes occurring outside the CNS with
respect to the immune response (Dusart and Schwab, 1994; Frank
and Wolburg, 1996; Arnold et al., 2007; Nahrendorf et al., 2007;
Rolls et al., 2009; Shechter et al., 2009; Stirling et al., 2009; London
et al., 2011). The early innate immune response involves cells that
are needed for cleaning the lesion site, yet the activity of these
cells must be followed by immune cells that terminate this initial
response and subsequently contribute to the repair. Both stages
involve innate immune cells of distinct phenotypes; the cells that
contribute to the termination of the local early response are largely
monocyte-derived macrophages that acquire and exert a local anti-
inflammatory function (Kigerl et al., 2009; Shechter et al., 2009;
London et al., 2011; Zhu et al., 2011). The obvious question is
how such a response can be reconciled with the traditional view
of the eye as an immune privileged site; do these findings change
our understanding of the privilege, or do they require breaking of
privilege under severe conditions? Here, focusing on the eye, we
will discuss a different view of the physiological meaning of the
CNS as an immune privileged site, and its manifestations under
pathological conditions.

THE EYE AS AN IMMUNE PRIVILEGED ORGAN
Immune privileged organs were operationally defined as sites in
the body where foreign tissue grafts can survive for extended, often
indefinite periods of time, whereas similar grafts placed at regular
sites in the body are acutely rejected (Medawar, 1948). These
organs include the eye and the brain, as well as the pregnant uterus,
testis, and several others (Streilein, 2003b; Niederkorn, 2006). Such
immune privilege is thought to be an evolutionary adaptation to
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protect tissues that are indispensable, yet have limited regeneration
capacity, like the brain and the eye, from the potentially damag-
ing effects of an uncontrolled inflammatory immune response.
Thus, immune privileged organs were considered as ones to which
immune cell entry is forbidden; leukocytes were believed to be
excluded from these vital organs by the presence of specialized
physical barriers, the blood–tissue barriers.

In contrast to the previous view that immune privilege is
maintained by immune cell exclusion, it is now increasingly
accepted that the privileged status is preserved by local active
mechanisms that suppress responses to antigens within the privi-
leged tissues (Niederkorn and Stein-Streilein, 2010). In the eye,
one such mechanism is anterior chamber-associated immune
deviation (ACAID), referring to a phenomenon in which antigenic
material introduced into the anterior chamber of the eye elicits
a systemic immune response that results in immune deviation,
characterized by the suppression of T cell-mediated immunity,
while enabling the production of non-complement-fixing anti-
bodies (Kaplan et al., 1975; Streilein, 2003b; Niederkorn, 2006).
ACAID involves the migration of specialized antigen presenting
cells from the eye to the thymus and spleen, and is associated with
an elevation in regulatory, γδ, and natural killer T cells (Streilein,
2003b; Niederkorn, 2006). Other mechanisms aimed at maintain-
ing the immune privileged state of the eye include the reduced
expression of MHC molecules on ocular cells, and the existence
of an intraocular anti-inflammatory environment, mediated by
resident cells, and various molecules, both surface-bound and
soluble, all of which serve to modulate the activity of infiltrat-
ing immune cells, in situ (Streilein, 2003b; Schewitz-Bowers et al.,
2010; Zhou et al., 2012). These well-orchestrated, multifaceted
mechanisms, known to involve numerous pathways, were long
thought to be designed to ensure limited infiltration of circulating
immune cells to the eye, leaving behind a tissue that was consid-
ered autonomous in terms of repair. It is puzzling, however, why
a fragile and precious organ such as the eye would evolve such
complex tolerance mechanisms, if their sole purpose were to guar-
antee immune ignorance. Moreover, several studies have shown
that immunocompromised mice exhibit worse recovery from optic
nerve and retinal insult than do their immunocompetent counter-
parts (Kipnis et al., 2001; Schori et al., 2001; Yoles et al., 2001),
similar to the case in peripheral nerve injury (Serpe et al., 1999).
Similarly, recent studies have demonstrated that well-regulated
immune responses in the CNS, rather than immune ignorance, are
optimal for the recovery of the tissue after insult, whether sterile
or immune-induced (Kerr et al., 2008; Shechter et al., 2009; Caspi
et al., 2011; London et al., 2011; London et al., under revision).
Thus, it is becoming increasingly clear that immune privilege is
not aimed at entirely suppressing immune responses in the target
organ, but rather at maintaining a specialized, tightly regulated
immunological niche to preserve the integrity of especially vul-
nerable organs, such as the brain and the eye (Streilein, 2003b;
Niederkorn, 2006).

REGULATED IMMUNE RESPONSES ARE BENEFICIAL IN
MITIGATING EYE PATHOLOGIES
Inflammation is the body’s adaptive response to any insult,
be it mechanical, biochemical, or immune-mediated. However,

inflammation is beneficial only on the condition that it ends in
active resolution (Gronert, 2010). Studies on wound healing out-
side the CNS have characterized distinct subsets of macrophages
that infiltrate the site of injury and display different functions cor-
responding to the changing needs of the tissue along the course
of healing; these include the clearing of dead cells and tissue
debris at the first stage, and the secretion of anti-inflammatory
cytokines and growth factors at the later stage, to aid tissue
regrowth and restoration of immune homeostasis (Arnold et al.,
2007; Nahrendorf et al., 2007). Recently, our team demonstrated
that a subset of monocyte-derived macrophages, which manifests
an immune-resolving phenotype, is essential for the resolution
of inflammation after sterile insults, in models of spinal cord
injury and retinal glutamate intoxication (Shechter et al., 2009;
London et al., 2011). In both of these cases, such macrophages
were found to be crucial for recovery, as was measured by a
functional motor scale after spinal cord injury, and directly in
terms of cell survival in the retina. Thus, despite the classifi-
cation of these organs as immune privileged, they nevertheless
derive benefit from the controlled recruitment of innate immune
cells from the circulation, to assist in their healing. Notably,
while the CNS contains its own population of immune cells,
the resident microglia, we have shown that infiltrating blood-
derived macrophages are nonetheless crucial for neuroprotective
and anti-inflammatory activities at the injury site; we have there-
fore proposed that the infiltrating cells fulfill specialized functions
in the recovery process, which the resident immune cells either
fail to display, or at least do not manifest at the right time
or at sufficient levels (Shechter et al., 2009). In animal mod-
els of optic nerve injury, it was found that macrophages can
modify the non-permissive nature of the optic nerve for regen-
eration in vitro (David et al., 1990), and that transplantation of
activated macrophages into the injured optic nerve can facili-
tate regrowth in vivo (Lazarov-Spiegler et al., 1996). In line with
these observations, the important contribution of a macrophage-
derived molecule, oncomodulin, to the regeneration of the optic
nerve, was identified by Benowitz and colleagues (Yin et al., 2006,
2009; Cui et al., 2009), who coined the term “inflammation-
induced regeneration.” Collectively, these results attribute to
innate immunity an important role in eye repair, and reveal the
ability of macrophages to orchestrate neuroprotection and axonal
regeneration.

The beneficial role of adaptive immunity in neuroprotec-
tion was initially observed in animal models simulating different
aspects of glaucoma, where it was found that the extent of retinal
ganglion cell loss is increased in immunocompromised animals
relative to immunocompetent ones (Kipnis et al., 2001; Schori
et al., 2001; Yoles et al., 2001; Bakalash et al., 2002). Moreover, T
cell-based vaccinations, both passive and active, promote neu-
roprotection after optic nerve crush (Moalem et al., 1999; Fisher
et al., 2001). Importantly, the potential benefit derived from T cells
in these systems relies, at least in part, on a delicate balance between
effector and regulatory subsets of these cells (Kipnis et al., 2002,
2004). More recently, results obtained in different models of CNS
insult suggested that the beneficial effects of T cells might be medi-
ated in part by controlling the recruitment of monocyte-derived
macrophages from the circulation (Butovsky et al., 2007; Schwartz
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FIGURE 1 | An evolving view of immune involvement in the eye.

Ocular pathologies are initiated by multiple factors, and take on various
manifestations. Glaucoma, a slowly progressing neurodegenerative
disease, is characterized by loss of retinal ganglion cells and damage
to the optic nerve. In posterior uveitis, retinal atrophy, and neuronal death
are commonly induced by autoimmune inflammation, and age-related
macular degeneration presents with drusen (“dry” AMD) and choroidal

neovascularization (“wet” AMD). While the traditional dogma stated
that immune privilege implies the exclusion of immune activity from
the eye under any circumstances, our evolving understanding of immune
privilege proposes that boosting beneficial immunity in the eye, in a
well-regulated manner, rather than general immune suppression, is most
favorable for coping with ocular pathologies, regardless of their initiating
factors.

et al., 2009; Shechter et al., 2009). Thus, the well-orchestrated col-
laboration between the innate and adaptive arms of the immune
system appears to be optimal for achieving neuroprotection.

The beneficial involvement of immune cells in the eye is
also observed in diseases that are immune-induced, such as
autoimmune posterior uveitis, a potentially blinding inflamma-
tory condition affecting the retina and the choroid of the eye.
Studies in experimental autoimmune uveitis (EAU), an animal
model of human posterior uveitis, demonstrate the heterogeneity
of immune cells along this disease. Beside the well-characterized
pro-inflammatory cells known to initiate EAU, the uveitic eye is
also endowed with regulatory immune populations (Robertson
et al., 2002; Kerr et al., 2008; Caspi et al., 2011; London et al., under
revision). These cells, including subsets of macrophages and T
cells, act to limit inflammation, presumably bringing the disease
to a state of equilibrium and remission.

An additional pathology in which the immune system has
been shown to fulfill various, perhaps opposing functions, is
age-related macular degeneration (AMD), the leading cause of
blindness in the elderly. Naturally, the etiology of AMD is very
diverse; the disease is associated with numerous immune-related
factors. Here too, the role of macrophages has been a matter
of debate; on the one hand, it was found that aging is accom-
panied by a pathological shift to M2 macrophages, which are
known to promote angiogenesis, and would therefore seem likely
candidates for promoting choroidal neovascularization (CNV),
the process by which abnormal blood vessels develop beneath
the retina (Espinosa-Heidmann et al., 2003; Sakurai et al., 2003;
Cao et al., 2011). On the other hand, studies have also shown
that prevention of macrophage entry into the eye promotes CNV,
whereas injection of macrophages inhibits it (Apte et al., 2006).
Patel and Chan (2008) reviewed the seemingly contradictory
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functions of macrophages in AMD, and proposed that these con-
flicting findings reflect a dual role of macrophages in this pathol-
ogy, where the uncontrolled pro-inflammatory M1 macrophages
induce tissue damage, and the M2 macrophages, which are
recruited to terminate the M1 response and to clear drusen
and other age-related deposits, could also adversely affect dis-
ease progression by displaying pro-angiogenic activity. Among
the additional factors associated with AMD pathogenesis and pro-
gression, a pivotal role has been attributed over the past several
years to the complement system and its dysregulation (Klein et al.,
2005; Patel and Chan, 2008; Anderson et al., 2010). These findings
emphasize the need for a regulated immune response, in terms of
timing, duration, and phenotype, and further support the argu-
ment that there are no “good” or “bad” immune cells; it is all
a matter of their control and coordination. Moreover, the accu-
mulating evidence on beneficial immune involvement in AMD
and in the other ocular pathologies mentioned above give further
reinforcement to the current contention that although the eye is
an immune privileged site, it can enjoy the benefits of immune
support, and thus immune regulation, rather than immune
suppression, is the key to disease resolution, as in other parts
of the body (Figure 1).

A DIFFERENT VIEW OF IMMUNE PRIVILEGE
Immune privilege is an evolutionary adaptation aimed at protect-
ing especially vulnerable organs from overwhelming inflammation
that could abolish their functions and jeopardize the well-being
of the individual. As vision is crucial for survival, it is under-
standable why the eye would be particularly protected from
these risks (Streilein, 2003a). However, we propose that the
immune privileged designation of the eye means that it has the
privilege to enable selective immune responses most suitable
and effective for its proper function in health and pathology.
We contend that this is true for all other parts of the CNS,
as well.

As many CNS pathologies are associated with local inflam-
mation, they are generally treated with anti-inflammatory and
immunosuppressive drugs. However, this treatment approach has
shown limited success in animal models of ocular pathologies
and other neurodegenerative disorders, as well as in the clinic,
and in some cases was even found to exacerbate disease (Levin
et al., 1999; Solberg et al., 1999; Bakalash et al., 2003; Ohlsson
et al., 2004; Dimitriu et al., 2008; Schwartz and Shechter, 2010).
The benefits of those drugs, if any, are often temporary, as they
help relieve some of the symptoms but do not address the under-
lying pathological processes (Gronert, 2010). Bearing in mind
the heterogeneity of immune cells and their changing functions
along the course of disease, together with the delicate balance
of counter-regulatory signals required for effective resolution of
inflammation (Gronert, 2010), we suggest that a more efficient
approach to treating such disorders would be to manipulate spe-
cific immune subsets in a timely manner, rather than to globally
inhibit the immune response (Figure 1).

Finally, our interpretation of the privilege of immunity in
immune privileged sites does not negate the possibility that under
certain conditions, immune privilege is breached in order to pre-
serve the life of the individual, at the expense of local loss of
function; this is the case in certain microbial infections, or in the
presence of highly immunogenic tumors (Morrison et al., 1989;
Niederkorn, 1991; Li and Niederkorn, 1997; Streilein et al., 1997;
Saint Andre et al., 2002; Niederkorn and Stein-Streilein, 2010),
in which a powerful immune response is essential, and the risk
of blindness is accepted for the sake of survival (Niederkorn and
Stein-Streilein, 2010).
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