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The lymphatic vasculature provides routes for dendritic cell and lymphocyte migration into
and out of lymph nodes. Lymphatic endothelial cells (LEC) control these processes by
expression of CCL21, sphingosine-1-phosphate, and adhesion molecules. LEC express
MHC-I and MHC-II, but not costimulatory molecules, and present antigen on MHC-I via both
direct and cross-presentation. Whether LEC present to CD4T cells on MHC-II is unknown.
Interestingly, LEC express antigens otherwise restricted to a small number of peripheral
tissues in an autoimmune regulatory element-independent manner. Direct presentation of
peripheral tissue antigens (PTA) to CD8T cells results in abortive proliferation and deletion,
due to both a lack of costimulation and active PD-L1 engagement. Autoimmunity develops
when deletion is subverted, suggesting that LEC presentation of PTA could lead to human
disease if PD-1 signaling were impaired by genetic polymorphisms, or aberrant costim-
ulation occurred during inflammation. The expression of additional inhibitory molecules,
which are not involved in LEC-mediated deletion, suggests that LEC may have additional
immunoregulatory roles. LEC express receptors for several immunomodulatory molecules
whose engagement alters their phenotype and function. In this review we describe the
role of LEC in distinct anatomical locations in controlling immune cell trafficking, as well as
their emerging role in the regulation of T cell tolerance and immunity.
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LYMPHATIC ENDOTHELIAL CELLS REGULATE THE
TRAFFICKING OF DENDRITIC CELLS AND LYMPHOCYTES
BETWEEN TISSUES AND SECONDARY LYMPHOID ORGANS
Lymphatic endothelial cells (LEC) compose the lymphatic vascu-
lature, which maintains tissue fluid balance and transports antigen
and dendritic cells (DC) to the lymph node (LN). Lymphatic
vasculature in tissues is composed of blind-ended capillary-like
structures, termed initial lymphatics (Leak, 1976), which join
to form larger collecting lymphatic vessels (Schmid-Schönbein,
1990) and ultimately feed into the LN subcapsular sinus. Within
the LN, LEC are localized to the subcapsular, cortical, and
medullary sinuses, where they interact with incoming and exiting
leukocytes (Grigorova et al., 2010).

Whereas the blood vasculature in peripheral tissues attracts
leukocytes to inflamed sites to exert effector functions, the lym-
phatic vasculature facilitates the induction of immunity and
tolerance. DC enter the initial lymphatics through portals in the
basement membrane (Lämmermann et al., 2008; Pflicke and Sixt,
2009). T cells are likely to enter in a similar manner. LEC of the
initial lymphatics express CCL21-Leu, one of two CCL21 isoforms
in mice, in punctate clusters on the abluminal surface (Vassileva
et al., 1999; Tal et al., 2011). CCL21-Leu is the primary determi-
nant for DC entry through engagement of CCR7, but it is not
expressed by LEC in LN and does not mediate migration to the
node itself (Vassileva et al., 1999; Luther et al., 2000; Nakano and
Gunn, 2001). Humans express a single CCL21 isoform, which

encompasses the functions of both murine isoforms. LEC that
form dermal lymphatics also express CXCL12, which mediates
DC entry via CXCR4 (Kabashima et al., 2007).

Extravasation of lymphocytes from blood vasculature is highly
integrin dependent; however, the requirement for integrin-
mediated entry into the initial lymphatics is controversial.
Although LEC in the initial lymphatics express ICAM-1, and
engagement of immobilized CCL21 promotes DC integrin acti-
vation and adhesion to ICAM-1 in vitro (Schumann et al., 2010),
steady-state migration of DC into LN in vivo does not require
integrin engagement (Lämmermann et al., 2008). This suggested
other adhesion molecules may be involved. Recently, it was dis-
covered that DC migration into lymphatic vessels and into the
T cell zone of the LN requires CLEC-2 binding to podoplanin, a
glycoprotein expressed by lymphatic vessel and LN-LEC as well as
fibroblastic reticular cells (FRC; Acton et al., 2012). Other potential
candidates include the scavenger receptor CLEVER-1, which has
been implicated in the transmigration of T cells into the lumen of
initial lymphatic vessels (Salmi et al., 2004). Thus, LEC-mediated
entry into the afferent lymphatics is distinct from blood vascular
endothelium-mediated entry of leukocytes into tissues.

Lymphatic endothelial cells also mediate the migration of DC
into the LN. Once inside the collecting vessels, DC, and presum-
ably T cells, detach from LEC and rhythmic vessel contractions
propel DC toward the LN (Randolph et al., 2005). LN-LEC as well
as FRC make CCL19 and CCL21-Ser, which mediate direct entry
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into the LN (Vassileva et al., 1999; Luther et al., 2000; Nakano and
Gunn, 2001). It has been hypothesized that LEC in the collecting
lymphatics also make these chemokines (Randolph et al., 2005).
Additionally, LEC in the subcapsular sinus express CCL1, which
can facilitate cell entry into LN (Qu et al., 2004; Kabashima et al.,
2007). Once in the subcapsular sinus, DC enter the LN cortex
immediately, while T cells enter the LN paracortex via medullary
lymphatic sinuses (Braun et al., 2011). It is unclear how these dif-
ferent routes of entry are regulated. We have found that medullary
and subcapsular LEC differentially express MAdCAM-1 (unpub-
lished). These results suggest that cellular trafficking into and
through the lymphatics is based on anatomically and molecu-
larly distinct subpopulations of LEC that have different functional
properties.

Lymphatic endothelial cells also control egress of lymphocytes
from the LN. Upon LN entry, lymphocytes downregulate CCR7
and exit the LN through cortical and/or medullary lymphatic
sinuses (Britschgi et al., 2008; Pham et al., 2008). Lymphocytes
adhere to LEC and probe the sinus lumen prior to exit. Candidate
molecules for adherence include CLCA1 (Furuya et al., 2010) and
mannose receptor (MR; Irjala et al., 2001). Both of these molecules
are more highly expressed on LN-LEC than tissue LEC (Irjala et al.,
2001; unpublished). The binding partners for CLCA1 include
LFA-1 and MAC-1, and in vitro studies demonstrated a greater
role for CLCA1–LFA-1 interactions than ICAM-1–LFA-1 inter-
actions in lymphocyte adhesion to LEC cell lines (Furuya et al.,
2010). Also, MR binds CD62L, and blockade of MR on frozen
LN-sections decreased lymphocyte adherence to LEC (Irjala et al.,
2001). LEC are also the sole producers of sphingosine-1-phosphate
(S1P) in the LN which promotes lymphocyte egress by binding to
S1P1 (Pham et al., 2008; Cyster and Schwab, 2012). Lymphocyte
migration and adherence to LEC, as well as probing of the cor-
tical sinus lumen, is S1P independent. Instead, S1P is necessary
for commitment to lumen entry (Grigorova et al., 2009). Thus,
although the role for LEC S1P in mediating lymphocyte egress is
well established, the importance of CLCA1 and MR in mediating
lymphocyte egress in vivo remains to be examined. Collectively,
these results establish the importance of chemokine and sphin-
golipid ligands released by LEC in controlling all phases of DC
and/or lymphocyte migration in and around LN. However, the
involvement of integrins or other molecules that could mediate
additional adhesive interactions remains to be clarified.

LN-LEC FUNCTION AS SPECIALIZED ANTIGEN
PRESENTING CELLS
Lymphatic endothelial cells share a number of characteristics
with professional antigen presenting cells (APC). LEC in LN, but
not those in tissue lymphatics, constitutively express MHC-II
molecules (Amatschek et al., 2007; Tripp et al., 2008; unpub-
lished), suggesting there is a functional immunological difference
between LEC in these two locations. LEC also endocytose and
cross-present MHC-I antigens, although they do so less effi-
ciently than professional APC (Lund et al., 2012). However, LEC
do not express costimulatory molecules CD80, CD86, 4-1BBL,
or OX40L extracellularly or intracellularly (Tewalt et al., 2012).
LEC express CD70 intracellularly but it is unknown whether
this is functional. LEC also express ICAM-1 and LFA-3, and

LFA-3 can provide costimulation to enhance IL-2 secretion from
activated T cells in vitro (Nörder et al., 2012). The lack of cos-
timulatory molecule expression on LEC predisposes them to
induce tolerance (see below). While professional APC upregulate
costimulatory molecules upon toll-like receptor (TLR) stimula-
tion, TLR3 ligation does not substantially upregulate CD80 or
CD86 expression on LEC (Fletcher et al., 2010). It is unknown
whether LEC can upregulate costimulatory molecules under other
inflammatory conditions, enabling them to induce immunogenic
responses. Thus, steady-state LN-LEC are semi-professional APC:
they express MHC-II, activate naïve T cells and cross-present anti-
gen, but do not constitutively express costimulatory molecules and
are not known to induce outcomes other than tolerance.

Although LN-LEC express MHC-II molecules, there is limited
information about the functionality of the class II processing path-
way and antigen presentation to CD4 T cells. Peptide-pulsed LEC
induce proliferation of naïve CD4 cells, indicating the MHC-II
molecules are functional (unpublished). LEC endocytose and pro-
cess exogenous antigens leading to cross-presentation on MHC-I
(Lund et al., 2012), but it is not known whether this also leads
to presentation on MHC-II. However, cultured human LEC do
not induce allogeneic proliferation of CD4 T cells (Nörder et al.,
2012). In mice that selectively express β-galactosidase (β-gal) in
LEC and FRC, adoptively transferred β-gal specific CD4 T cells
proliferate (Onder et al., 2011), but it was not determined whether
this was due to direct antigen presentation by LEC and/or FRC,
or to antigen endocytosis and presentation by hematopoietic
cells. We have found that in mice expressing β-gal under con-
trol of the LEC-specific Lyve-1 promoter, proliferation of β-gal
specific CD4 cells is due to presentation by hematopoietic cells
(unpublished). Thus, LEC can provide antigens to DC for MHC-
II presentation, analogous to medullary thymic epithelial cell
(mTEC) handoff of antigens to thymic DCs (Koble and Kyewski,
2009). Further work will elucidate whether the failure of LEC to
induce CD4 proliferation is due to a defect in MHC-II process-
ing and presentation, active suppression by regulatory T cells or
by molecules such as IDO or nitric oxide (NO), or induction of
anergy.

LEC AND PTA EXPRESSION
Recently, we and others have shown that multiple subsets of
LN stromal cells (LNSC), including LEC, express peripheral tis-
sue antigens (PTA) that are otherwise restricted to one or a few
tissues such as skin, pancreas, gut, and central nervous system
(Lee et al., 2007; Nichols et al., 2007; Gardner et al., 2008; Cohen
et al., 2010; Fletcher et al., 2010). Microarray analysis comparing
LN-LEC and LN blood endothelial cells (BEC) identified sev-
eral additional candidates for LEC-expressed PTA (unpublished).
The majority of these PTA were overexpressed in LN-LEC com-
pared to tissue LEC, suggesting the LN microenvironment plays
a role in determining PTA expression. Presentation of epitopes
derived from PTA by LEC, FRC, and extrathymic autoimmune
regulatory element (Aire) expressing cells (eTAC) leads to CD8
T cell abortive proliferation and deletion (Lee et al., 2007; Nichols
et al., 2007; Gardner et al., 2008; Cohen et al., 2010; Fletcher
et al., 2010). Collectively, these findings suggest that LN-LEC and
other PTA-expressing LNSC perform a function in the periphery
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analogous to that of mTEC in the thymus in promoting systemic
tolerance.

The molecular mechanisms controlling PTA expression by LEC
have not yet been established. PTA expression by LEC is not
dependent on the Aire, which controls PTA in mTEC and eTAC
(Anderson et al., 2002; Gardner et al., 2008; Cohen et al., 2010).
One LEC-expressed PTA, Ppy, is regulated by Deaf-1, a mem-
ber of the SAND transcription factor family that includes Sp100,
Aire, and NucP41/75 (Yip et al., 2009). However, Deaf1 has not
been shown to regulate other LEC-expressed PTA. Deaf1 and other
SAND family members are expressed at comparable levels in all
LNSC subsets (Fletcher et al., 2010; unpublished), so it is unclear
how Deaf1 would regulate the expression of non-overlapping PTA
in different LNSC populations. However, it is also unknown how
Aire controls distinct PTA repertoires in mTEC and eTAC. It
is possible that the control of non-overlapping PTA repertoires
in different cells by the same transcriptional regulator is due to
differences in chromosomal positioning and/or epigenetic modi-
fications. Another possibility is that multiple transcription factors
play a role in LNSC PTA expression.

CONSEQUENCES OF CD8 ANTIGEN PRESENTATION BY LEC
As mentioned above, despite sharing some characteristics with
professional APC, antigen presentation by LEC leads to tolerance.
Direct presentation of tyrosinase by LN-LEC induces abortive
proliferation and deletion of tyrosinase-specific T cells in vivo
(Nichols et al., 2007; Cohen et al., 2010; Figure 1). Utilizing β-
gal driven under control of the LEC specific Lyve-1 promoter, LEC
also induce abortive proliferation and deletion of β-gal specific
CD8 T cells (unpublished). Presentation of exogenous antigen
by LEC was also shown to induce CD8 apoptosis in vitro (Lund
et al., 2012). In other models, antigen level determines whether
CD8 T cells undergo anergy or deletion (Redmond et al., 2005). It
remains to be clarified whether LEC can induce outcomes other
than deletion.

We have recently elucidated the mechanism by which LEC
induce abortive proliferation and deletion of PTA-specific CD8
T cells (Tewalt et al., 2012). LEC-mediated deletion requires both
a lack of costimulation and signaling through the PD-L1:PD-1
pathway (Figure 1). Lack of costimulation leads to rapid and
elevated expression of PD-1 on T cells. Signaling through PD-1
blocks upregulation of IL-2R, which is at least in part responsible
for apoptotic death (Tewalt et al., 2012). PD-1 signaling had pre-
viously only been associated with downregulation of IL-2 itself
(Carter et al., 2002; Chikuma et al., 2009). These results inte-
grate previous demonstrations that tolerance is due either to a
lack of costimulation (Harding et al., 1992; Hawiger et al., 2001;
Hernandez et al., 2002) or to engagement of inhibitory molecules
(Martin-Orozco et al., 2006; Nurieva et al., 2006; Goldberg et al.,
2007; Tsushima et al., 2007; Liu et al., 2009; Reynoso et al., 2009),
and shows that they are actually interdependent pathways. Impor-
tantly, antigen presentation by LEC leads to the development of
autoimmune disease when PD-L1 is blocked or exogenous costim-
ulation is provided (Tewalt et al., 2012). Based on previous findings
that LEC express multiple PTA (Cohen et al., 2010; Fletcher et al.,
2010), this opens the possibility that dysregulation of their toler-
ance inducing capability might influence the development of some

human autoimmune diseases. Finally, LEC express ligands for
additional inhibitory pathways, including HVEM:BTLA/CD160,
MHC-II:LAG-3, and CD48:2B4. These pathways are known to
induce additional forms of tolerance, including anergy and Treg
formation (Huang et al., 2004; Grosso et al., 2007; Liu et al.,
2009). They are not involved in LEC-mediated abortive pro-
liferation and deletion, but their expression suggests that LEC
may have additional immunoregulatory roles under steady-state
conditions.

We have also investigated the anatomical basis of CD8 abortive
proliferation and deletion. LN-LEC express higher levels of PD-
L1 than other LNSC populations or tissue lymphatic LEC (Tewalt
et al., 2012; unpublished). The low level of PD-L1 and PTA expres-
sion by tissue LEC suggests that they are unlikely to induce
tolerance. In addition, medullary and subcapsular sinus LEC
express higher levels of PD-L1 than those in the cortical sinus.

Subcapsular Sinus

Naive CD8+ T cell

B cell Follicle
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HVEM

CD48

MHC-II

PD-L1:PD-1

Tyrosinase
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specific CD8+ T cells

TCR
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FIGURE 1 | Peripheral tolerance induction by anatomically distinct

subsets of lymphatic endothelial cells duringT cell trafficking through

lymph nodes. Naïve T cells enter the LN through high endothelial venules,
and exit via cortical and/or medullary sinuses. Tyrosinase presentation
occurs on medullary but not cortical sinus LEC, leading to proliferation
and PD-L1 mediated deletion of tyrosinase-specific T cells. Deletion may
occur based on engagement of PD-L1hi medullary sinus LEC in the same
LN as activation occurs, and/or on PD-L1hi subcapsular sinus LEC in
downstream LN.
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Importantly, tyrosinase epitope presentation to CD8 T cells is
confined to medullary sinus LEC, consistent with their higher
expression of tyrosinase message (unpublished; Figure 1). This
suggests that abortive proliferation and deletion occurs as T cells
attempt to exit the LN. Whether the lower level of PD-L1
expressed by cortical sinus LEC is also capable of inducing
tolerance to antigens expressed at a higher level than that of
tyrosinase remains to be examined. However, the high-level
expression of PD-L1 by medullary sinus LEC suggests they may
also induce the deletion of egressing T cells activated by other LN-
resident tolerogenic APC that express low levels of PD-L1, such
as FRC.

OTHER FACETS OF IMMUNE CROSS-TALK BETWEEN LEC
AND LEUKOCYTES
Lymphatic endothelial cells express multiple TLR, as well as recep-
tors for inflammatory cytokines (Link et al., 2007; Pegu et al., 2008;
Kataru et al., 2011), which enable them to respond to changes in
tissue and LN microenvironments. Stimulation of cultured tis-
sue or LN-LEC with TLR agonists, TNFα, IL-1, or infection with
cytomegalovirus induces the expression of numerous chemokines
(Pegu et al., 2008; Sawa et al., 2008a,b; Fiorentini et al., 2011;
Garrafa et al., 2011), but the role of this enhanced expression in
vivo has not been established. In contrast to the steady-state, DC
entry into LN under inflammatory conditions is dependent upon
ICAM-1 and VCAM-1, which are also upregulated on LEC by
proinflammatory agents (Johnson et al., 2006; Pegu et al., 2008;
Sawa et al., 2008a,b; Fiorentini et al., 2011; Garrafa et al., 2011).
Inflammation also leads to proliferation and sprouting of LEC,
a process known as lymphangiogenesis, by inducing the pro-
duction of ligands for VegfR2, VegfR3, and the lymphotoxin
β receptor (LtβR; Angeli et al., 2006; Furtado et al., 2007; Kim
et al., 2009; Flister et al., 2010; Mounzer et al., 2010). Lymphan-
giogenesis following skin inflammation aids in the resolution of
inflammation by increasing lymph flow and cell migration to the
draining LN, but lymphangiogenesis following peritoneal inflam-
mation reduces lymphatic drainage (Kataru et al., 2009; Kim et al.,
2009). LN lymphangiogenesis has been shown to promote lym-
phocyte egress during prolonged inflammation (Tan et al., 2012).
This suggests that one of the primary functions of LEC exposed
to inflammatory agents is to attract a range of innate and adap-
tive immune cells into lymphatics to broaden and sustain ongoing
immune responses.

In addition to enhancing leukocyte migration during inflam-
mation, LEC attenuate T cell responses. TNFα activated LEC
downregulate CD86 on DC, impairing their ability to induce T
cell proliferation (Podgrabinska et al., 2009). LEC also limit T
cell proliferation (Khan et al., 2011; Lukacs-Kornek et al., 2011)
through release of NO in response to IFNγ and TNFα (Lukacs-
Kornek et al., 2011). However, T cells undergoing LEC-mediated

abortive proliferation and deletion produce little to no IFNγ

and TNFα (unpublished). Thus, NO is unlikely to participate in
LEC-mediated peripheral tolerance, but may limit the size of an
immune response. Cortical sinus LEC, which express an inter-
mediate level of PD-L1, upregulate PD-L1 in response to TLR3
ligation and IFNγ to match the high levels seen on medullary and
subcapsular sinus LEC (unpublished). This could broaden the
anatomical locations in the LN in which T cell tolerance occurs, or
provide a means to protect cortical sinus LEC from being destroyed
by emigrating effector T cells.

Inflammation modulates the expression of PTA in LEC, but not
in a consistent manner. TLR3 ligation causes LEC, as well as FRC,
to downregulate proteolipid protein but upregulate α-fetoprotein
(Fletcher et al., 2010). However, double-negative LNSC upregu-
lated both PTA, while BEC upregulated only one. The effect of
inflammatory signals on other PTA expressed in LEC has not
been examined. Downregulation of PTA could provide a means to
avoid the induction of autoimmunity resulting from the increased
availability of costimulation in an inflamed LN. Conversely, upreg-
ulation of PTA, particularly in the context of enhanced expression
of PD-L1, could provide a means to enforce tolerance more
stringently.

CONCLUDING REMARKS
Recent work has conclusively demonstrated that LEC play a
variety of active roles in shaping immune responses and toler-
ance. LEC guide lymphocyte and DC trafficking into and out of
the LN, and inflammation increases their ability to attract cells.
LEC also actively enforce CD8 T cell tolerance to PTA through
their high-level expression of PD-L1 and lack of costimulatory
molecules. It will be immensely interesting to determine the
ways in which other inhibitory molecules expressed by LEC con-
trol T cell fate. In addition, the general immunoregulatory role
of LEC will be more definitively established by understanding
their ability to directly induce CD4 tolerance or to serve as
a reservoir of PTA for presentation by DC. Furthermore, the
identification of a second transcriptional control mechanism, in
addition to Aire, will provide the possibility to understand the
basis for additional human autoimmune diseases. Finally, LEC
represent attractive therapeutic targets to control autoimmunity
and prevent transplant rejection or to enhance tumor immuno-
therapy.
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