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Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits multiple strategies to
ensure its establishment and persistence in the host. Although this parasite has the ability
to infect different organs, heart impairment is the most frequent clinical manifestation of the
disease. Advances in knowledge of T. cruzi–cardiomyocyte interactions have contributed
to a better understanding of the biological events involved in the pathogenesis of Chagas
disease. This brief review focuses on the current understanding of molecules involved
in T. cruzi–cardiomyocyte recognition, the mechanism of invasion, and on the effect of
intracellular development of T. cruzi on the structural organization and molecular response
of the target cell.
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INTRODUCTION
Chagas disease, caused by Trypanosoma cruzi infection, has
emerged as an important global public health problem due to
the many Latin American T. cruzi-infected immigrants in non-
endemic countries (Pérez-Molina et al., 2012). Although public
health programs in the Southern Cone countries have reduced
transmission by 70% (Moncayo and Silveira, 2009), blood and
organ transplant transmissions in non-endemic countries (Rassi
et al., 2009) and outbreaks of foodborne transmission (Pereira
et al., 2009; Ríos et al., 2011) have drawn attention to Chagas
disease. An estimated 8–15 million individuals in 18 endemic
countries in Central and South America are infected, with approx-
imately 30 million people at risk (WHO, 2010; Rassi et al., 2012).
Chronic chagasic cardiomyopathy, the most relevant clinical man-
ifestation, is the leading cause of death from heart failure in
endemic countries, and accounts for a significant burden of
ischemic and inflammatory heart disease in the USA and Europe
due to “globalization” of Chagas disease (Moncayo and Silveira,
2009; Moolani et al., 2012). In this review, we summarize current
knowledge of the biology of the T. cruzi–host cell interaction, high-
lighting molecular aspects of T. cruzi–cardiomyocyte interplay,
with a focus on early infection events and the effect of intracel-
lular parasite development on the structure and function of the
target cell.

CELL RECOGNITION AND INVASION PROCESS
T. cruzi–CARDIOMYOCYTE RECOGNITION
Interplay between parasite and host cell is essential for T. cruzi to
successfully adjust to the different microenvironments it occu-
pies in its vertebrate and invertebrate hosts. In the obligatory
intracellular phase of its life cycle in the mammalian host, infec-
tion is driven by adhesion and internalization events involving

a large variety of ligands and/or receptors on the surface of
both the parasite and host cell interacting with one another
to achieve recognition and invasion. Several different surface
molecules in the cardiomyocyte have been implicated in adhe-
sion and internalization by the parasite (Figure 1). Carbohydrate
residues of membrane glycoconjugates in cardiomyocytes, includ-
ing galactosyl, mannosyl, and sialyl residues, participate in
T. cruzi cytoadherence (Barbosa and Meirelles, 1992, 1993), while
mannose receptors at the surface of cardiomyocytes modulate
parasite entry and are down-regulated by T. cruzi infection (Soeiro
et al., 1999).

Extracellular matrix (ECM) components are also important
in parasite–host cell recognition. Fibronectin, a high molecular
weight glycoprotein present at the host cell surface, is recognized
by fibronectin receptors of the parasite (Ouaissi et al., 1984), which
interact with the RGDS (Arg-Gly-Asp-Ser) sequence of fibronectin
and mediate parasite entry (Calvet et al., 2004). Immunization
with RGDS peptide induced protection in an experimental murine
model of acute T. cruzi infection (Ouaissi et al., 1986). Heparan
sulfate proteoglycans (HSPG), another class of ECM component
widely distributed in mammalian tissues, are also involved in
T. cruzi attachment and invasion (Ortega-Barria and Pereira, 1991;
Calvet et al., 2003). Treatment of trypomastigotes and amastig-
otes, the infective forms of T. cruzi, or cardiomyocytes with
soluble heparan sulfate (HS) and heparitinase II, respectively, effi-
ciently inhibited parasite invasion (Calvet et al., 2003; Oliveira
Jr. et al., 2008; Bambino-Medeiros et al., 2011). The binding of
T. cruzi to HSPG involves the recognition of the N-acetylated/N-
sulfated domain of the HS chain by heparin-binding proteins
(HBPs) present at the surface of the parasite (Oliveira Jr. et al.,
2008). Although T. cruzi HBPs are capable of binding HS and
chondroitin sulfate (CS), only the HS–HBPs interaction triggers
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FIGURE 1 | Model ofT. cruzi invasion in cardiomyocyte. (A) Schematic
model representing the recognition step involving cell surface molecules
of cardiomyocyte during T. cruzi invasion. Two distinct mechanism
of invasion are represented: actin-dependent and lysosome-dependent

mechanisms. (B) Effect of T. cruzi infection on cardiomyocyte structure.
Disturbance on the cardiomyocyte cytoarchitecture is evidenced after T. cruzi
infection, showing breakdown of myofibrillar and disruption of adherent and
gap junctions.

parasite invasion in cardiomyocytes (Calvet et al., 2003; Oliveira
Jr. et al., 2008), while HS and CS are involved in vector–T. cruzi
interactions (Oliveira Jr. et al., 2012).

Lipids also play an important role in T. cruzi–host cell inter-
play. Membrane rafts, enriched in cholesterol and sphingolipids,
appear to participate in the invasion process (Barrias et al., 2007;

Fernandes et al., 2007; Priotto et al., 2009). Recently, cholesterol
has been demonstrated to modulate invasion of cardiomyocytes by
T. cruzi (Hissa et al., 2012). Depletion of cholesterol from cardiac
cell membrane induced an 85–90% reduction of parasite invasion
by inhibiting parasites’ association with lysosomes. Additionally,
the low-density lipoprotein receptor, which is up-regulated in
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myocardium of infected mice, also coordinates parasite entry
and fusion of the parasitophorous vacuole (PV) with lysosomes
(Nagajyothi et al., 2011).

MECHANISMS OF T.cruzi INVASION
The large number of molecules involved in recognition of target
cells by T. cruzi increases the parasite’s capacity to explore mul-
tiple strategies to ensure propagation in the mammalian host.
A number of different mechanisms of T. cruzi invasion have
been described, involving distinct host cell type, parasite geno-
type, and developmental stage. At least five models of invasion
have been elucidated. (i) An actin-dependent mechanism leads
to the rearrangement of microfilaments, inducing the host cell
membrane to enclose the parasite (Barbosa and Meirelles, 1995;
Procópio et al., 1999; Rosestolato et al., 2002; Ferreira et al., 2006).
(ii) Lysosome-dependent mechanisms, involving an increase of
transient cytosolic Ca2+ levels induced by the parasite, gener-
ate cortical actin depolymerization and lysosome recruitment
to the parasite binding site (Rodríguez et al., 1999; Hissa et al.,
2012). (iii) Activated signaling pathways also participate, includ-
ing tyrosine kinase receptors (TrKA and TrKC; de Melo-Jorge and
PereiraPerrin, 2007; Weinkauf et al., 2011) and phosphatidylinos-
itol 3-kinase (PI3-K; Todorov et al., 2000; Chuenkova et al., 2001;
Wilkowsky et al., 2001; Vieira et al., 2002; Woolsey et al., 2003),
bradykinin receptors (Scharfstein et al., 2000; Todorov et al., 2003),
and transforming growth factor β (TGF-β; Ming et al., 1995;
Waghabi et al., 2007). (iv) More recently, sphingomyelinase-
mediated plasma membrane repair has been proposed to par-
ticipate in this process (Fernandes et al., 2011; Fernandes and
Andrews, 2012), as has (v) the host cell autophagy pathway
(Romano et al., 2009, 2012). Finally, the combination of differ-
ent mechanisms has been described as coordinating the T. cruzi
invasion process (Butler and Tyler, 2012).

Elevation of transient intracellular Ca2+ levels, an invasion-
related effect provoked by T. cruzi binding to the host cell
membrane (Figure 1), has also been demonstrated in cardiac cells
(Barr et al., 1996; Garzoni et al., 2003). The increase of cytosolic
[Ca2+] has been reported to be brought about in two different
ways: (i) by sarcoplasmic reticulum stores, which are sensitive
to leupeptin, suggesting a cortical actin depolymerization and
lysosome-dependent mechanism of invasion (Barr et al., 1996),
and by (ii) extracellular Ca2+ influx through membrane Ca2+
channels, which are insensitive to leupeptin (Garzoni et al., 2003).
Recently, it has been suggested that Ca2+ influx may also occur as
a result of lesions on the plasma membrane, suggesting that the
membrane repair pathway frequently observed in muscle cells may
also be involved in cardiac cell invasion by T. cruzi (Fernandes and
Andrews, 2012).

Transforming growth factor β, a multifunctional family of pro-
teins that controls a range of biological events in most cells, includ-
ing proliferation and cellular differentiation (Moustakas et al.,
2002), has also been shown to participate in T. cruzi invasion of car-
diomyocytes (Waghabi et al., 2005). T. cruzi directly activates latent
TGF-β and modulates TGF-β signaling (Waghabi et al., 2005).
Inhibition of T. cruzi infection in cardiomyocyte was achieved
by blockage of the TGF-β receptor type I (TGFβRI)/Smad2
signaling pathway by SB-431542, a TGF-β signaling inhibitor

(Waghabi et al., 2007). Besides impairment of parasite invasion,
the inhibitor treatment also reduced T. cruzi intracellular multipli-
cation and differentiation. Recently, the therapeutic effectiveness
of GW788388, an oral inhibitor of TGF-β signaling, has been
demonstrated experimentally in acute phase T. cruzi infection,
leading to a reduction of parasitemia and mortality, and also
preventing cardiac fibrosis (de Oliveira et al., 2012).

Bradykinin receptors (B2R/B1R) have also been reported to
be involved in cardiomyocyte infection by T. cruzi (Todorov
et al., 2003). This mechanism of invasion is regulated by coop-
eration between HSPG, kininogen, and cruzipain-1, the major
cysteine protease isoform of T. cruzi, resulting in the release
of kinin. Invasion through the kinin transduction pathway,
activated by G protein-coupled bradykinin receptors, induces
intracellular Ca2+ mobilization from stores in the endoplasmic
reticulum (Scharfstein et al., 2000). The B2R agonist captopril
stimulates the invasion of T. cruzi while B2R and B1R antagonists,
present inhibitory effects on cardiomyocytes, suggesting that these
receptors interdependently drive invasion of the parasite (Todorov
et al., 2003).

As evidenced in other non-professional phagocytic cells (Roses-
tolato et al., 2002; Ferreira et al., 2006), T. cruzi entry is also
mediated by an endocytic process in cardiac muscle. A protrusion
of cardiomyocyte plasma membrane, orchestrated by cytoskeleton
rearrangement, is observed during T. cruzi–cardiomyocyte inter-
play. A dense actin-based membrane skeleton meshwork projects
from the sarcolemma and encloses the entering parasite (Barbosa
and Meirelles, 1995). This event was drastically inhibited (75%)
when cardiac cells were treated with cytochalasin D, an agent
that depolymerizes actin filaments, prior to T. cruzi infection; no
parasite invasion was observed in fixed cardiomyocytes (Barbosa
and Meirelles, 1995). Once inside the cells, the parasite is located
within a PV that lacks Ca2+–Mg2+-ATPase, adenylate cyclase, and
anionic sites (Meirelles et al., 1986) but has carbohydrate residues
such as N-acetylglucosamine and N-acetylgalactosamine (Bar-
bosa and Meirelles, 1992, 1993). Ultrastructural cytochemistry
for the lysosomal enzymes aryl sulfatase and acid phosphatase
has revealed the fusion of the parasite-containing vacuole with
lysosomes (Meirelles et al., 1987). The acidification of the PV by
lysosomal fusion, leading to the activation of TC-TOX and dis-
ruption of the PV membrane (Andrews et al., 1990; Hall, 1993),
is a prerequisite for the trypomastigote to exit the phagosome,
also allowing the parasite to be retained intracellularly and com-
plete its life cycle (Andrade and Andrews, 2004, 2005; Mott and
Burleigh, 2008).

EFFECT OF T. cruzi INFECTION IN CARDIOMYOCYTE
PHYSIOLOGY
During the T. cruzi–cardiomyocyte interaction the parasite gains
control of overall host cell gene expression, including expression
of genes related to immune response, inflammation, cytoskele-
tal organization, cell–cell and cell–matrix interactions, apoptosis,
cell cycle, and oxidative stress (Goldenberg et al., 2009; Manque
et al., 2011). The intense trypanocidal immune response gener-
ated in cardiomyocytes in response to infection by T. cruzi results
in the production of cytokines, chemokines, and nitric oxide that,
while essential elements of the defensive reaction in cardiac tissue
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(Machado et al., 2000, 2008; Manque et al., 2011), can also result
in cardiac hypertrophy (Petersen and Burleigh, 2003; Waghabi
et al., 2009). Several studies report that T. cruzi infection stimulates
production of nitric oxide synthase 2, matrix metalloproteinase-2
(MMP-2) and MMP-9 in cardiomyocytes, as well as interleukin-6
(IL-6), IL-1β, tumor necrosis factor-alpha and TGF-β (Petersen
and Burleigh, 2003; Petersen et al., 2005; Gutierrez et al., 2008;
Waghabi et al., 2009; Nogueira de Melo et al., 2010). Peroxisome
proliferator-activated receptor γ is also implicated in regulat-
ing the inflammatory process (Hovsepian et al., 2011). Moreover,
IL-1β-mediated development of cardiomyocyte hypertrophy is
orchestrated by Toll-like receptor 2 (Petersen et al., 2005). Proin-
flammatory cytokines also modulate production of mitochondrial
reactive oxygen species, impairing the efficiency of the respira-
tory chain (Gupta et al., 2009). Mitochondrial disturbance has
been identified as an important effect of chagasic cardiomyopathy
(Garg et al., 2003; Báez et al., 2011). Inflammatory mediators have
also been reported to regulate Rabs expression (Stein et al., 2003)
thereby interfering with host cell trafficking. Down-regulation of
Rab GTPase proteins, including the effector molecule of Rab5
(EEA1), Rab7, and Rab11, has been demonstrated in T. cruzi-
infected cardiomyocytes, and it has been proposed that a delayed
endocytic pathway may favor microbicidal activity and increase
antigen processing (Batista et al., 2006).

Changes in cytoskeletal proteins have also been shown during
parasite intracellular development (Figures 1 and 2). The com-
plex cytoskeleton organization of cardiomyocytes involved in the
contraction–relaxation process of the heart is affected by T. cruzi
infection (Pereira et al., 1993; Taniwaki et al., 2006). Breakdown
of myofibrils has been seen in areas of amastigote nests (Pereira
et al., 1993; Taniwaki et al., 2006) and disturbance of intermediate
filaments (desmin) and microtubules was also induced by parasite
proliferation (Pereira et al., 1993). Interestingly, the actin isoform
mRNAs, α-cardiac and β-actin mRNAs, are altered during the
parasite intracellular cycle (Pereira et al., 2000). Down-regulation
of α-cardiac actin mRNA concomitant with up-regulation of
β-actin mRNA suggested the reactivation of non-differentiated
cell program. Also within the context of cytoskeletal changes,
actin-binding proteins have been demonstrated to be altered
in T. cruzi-infected cardiomyocytes. Alpha-actinin, an F-actin
crosslinker protein that anchors actin to the Z line, and costameres,
repeating adhesion structures consisting of vinculin involved in
the lateral transmission of contractility force to the sarcolemma,
are disrupted and down-regulated in T. cruzi-infected cells, reduc-
ing strength and force transduction (Melo et al., 2004, 2006).
These cytoskeletal disorders are accompanied by deregulation of
Ca2+ influx, affecting cardiac cell contractility (Taniwaki et al.,
2006). One striking feature of trypanocidal drugs is their effect on
the recovery of cardiomyocyte cytoskeleton (Garzoni et al., 2004;
Silva et al., 2006; Adesse et al., 2011a). Posaconazole, an ergosterol
biosynthesis inhibitor with potent trypanocidal activity currently
in clinical trials, has been demonstrated to promote the reassembly
of the contractile apparatus and microtubule network in T. cruzi-
infected cardiomyocytes (Silva et al., 2006). The reorganization
of myofibrils leads to recovery of cardiomyocyte functional-
ity. Similarly, treatment of T. cruzi-infected cardiomyocyte cul-
tures with bisphosphonate risedronate, a farnesyl pyrophosphate

synthase inhibitor, and amiodarona, an anti-arrhythmic drug,
also fostered the recovery of myofibrils (Garzoni et al., 2004;
Adesse et al., 2011a) and may represent interesting alternatives for
Chagas therapy.

In addition to disruption of the cytoskeletal architecture by
the parasite, cell–cell adhesion (adherens junctions) and inter-
cellular communication (gap junctions), which play important
physiological roles in cardiac tissue, are also been disrupted by
T. cruzi infection (Adesse et al., 2008, 2011b; Melo et al., 2008).
Alteration in spatial distribution and down-regulation of the
adherence junction proteins N-cadherin and β-catenin in T. cruzi-
infected cardiomyocytes (Melo et al., 2008) may interfere with
tissue integrity and perturb the function of the cardiac conduc-
tion system, as has been proposed to be the case in arrhythmogenic
cardiomyopathies (Mezzano and Sheikh, 2012). Additionally, elec-
trical conduction disturbance, frequently seen in both acute and
chronic phases of Chagas diseases, seems to be related to altered
gap junction (connexin-43) coupling of cardiomyocytes induced
by T. cruzi (de Carvalho et al., 1992, 1994; Adesse et al., 2008,
2011b). Connexin-43 dysregulation has also been attributed to
increased levels of TGF-β (Waghabi et al., 2009). Following treat-
ment of T. cruzi-infected cardiomyocyte cultures with amiodarone
and SB-431542 causes reversal of the disorganization of gap junc-
tions and return to their normal distribution (Waghabi et al.,
2009; Adesse et al., 2011a), making these compounds potential
therapeutic candidates for treatment of Chagas disease.

Besides their involvement in the early steps of T. cruzi–
cardiomyocyte recognition, ECM components also present a
striking role in chagasic cardiomyopathy pathogenesis since their
accumulation leads to fibrosis, disposing patients to heart failure
and ventricular arrhythmias (Rassi et al., 2010, 2012). In experi-
mental systems, ECM accumulation begins during the late acute
phase of infection (Andrade et al., 1989; Calvet et al., 2004), con-
comitantly with the onset of inflammatory infiltrates, indicating
that the process of fibrogenesis is triggered in the early stages
of T. cruzi infection. A general increase in ECM transcripts and
expression was detected by microarray analysis in acute infection
(Garg et al., 2003). Cardiac hypertrophy and ECM remodeling
were also seen in a T. cruzi-infected 3D cardiomyocyte model (Gar-
zoni et al., 2008; Figure 2). Surprisingly, reduction of ECM in T.
cruzi-infected cardiomyocytes was detected by silver staining in
acute infection in mice (Factor et al., 1993). Additionally, T. cruzi-
mediated down-regulated ECM gene expression in cardiomyocyte
cultures (Goldenberg et al., 2009; Manque et al., 2011) and a reduc-
tion in the synthesis and spatial distribution of fibronectin were
detected in heavily infected cardiomyocytes (Calvet et al., 2004;
Figure 2) even after TGF-β stimulation (Calvet et al., 2009), sug-
gesting that despite the general enhancement of ECM in the
heart, the cells harboring the parasites display low ECM expres-
sion. The anti-fibrogenic effect of T. cruzi has also been seen in
human dermal fibroblasts, with repression of transcription fac-
tors that regulate expression of fibroblast genes involved in wound
repair and tissue remodeling, including ctgf/ccn2 connective tissue
growth factor gene, followed by down-regulation of ECM proteins
such as fibronectin and collagen I, suggesting another route of par-
asite dissemination and infection (Unnikrishnan and Burleigh,
2004; Mott et al., 2011).
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FIGURE 2 | Effect ofT. cruzi infection on cardiomyocyte cytoarchitecture

and extracellular matrix remodeling (A–E). T. cruzi -infected cardiomyocyte
3D-culture revealed fibrosis and hypertrophy. Note an increase in spheroid
size and the spatial distribution of fibronectin (FN; green) in T. cruzi -
infected (B) compared with the uninfected (A) 3D-culture system.
However, the FN labeling fainted in highly T. cruzi -infected cells. In
contrast, the analysis of FN (red) distribution in cardiomyocyte 2D-culture
(C) demonstrates a reduction of this extracellular matrix component in

T. cruzi -infected cardiomyocyte culture (D). The low expression of FN
in the cells harboring the parasites and the factors involved in the
enhancement of FN in 3D-culture are unclear and focus of future
investigation. (E) Cytoskeletal changes were also evidenced in
T. cruzi -infected cardiomyocytes, showing complete disorganization of
myofibrils. Cardiomyocytes were stained with Evans-blue (red; A and B)
and DAPI (blue; A–E), a DNA dye. Arrows indicate intracellular parasites.
Bar = 20 μm.

Another point worth discussing relates to the ability of T.
cruzi to modulate host cell apoptosis, or programed cell death,
a physiological process of cell replacement to maintain tis-
sue homeostasis (Mondello and Scovassi, 2010). Pathogens can
hijack the host cell apoptotic machinery as an offensive strat-
egy to eliminate the host’s immune response (Lamkanfi and

Dixit, 2010). Both anti- and pro-apoptotic gene expression are
differentially modulated during T. cruzi–cardiomyocyte infec-
tion, leading to a balance between cell death and survival at
different stages of infection (Manque et al., 2011). Induction of
apoptosis by T. cruzi infection is controversial and seems to be
dependent on host cell and parasite genotype (de Souza et al., 2003;
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Aoki et al., 2006; Petersen et al., 2006). While fibroblasts are
refractory to apoptosis, cardiomyocytes and macrophages dif-
ferentially undergo apoptosis after T. cruzi infection, the latter
cell type being highly susceptible. Still, cardiomyocytes infected
with T. cruzi clone Dm28c have higher levels of apoptosis com-
pared to infection with strains Y and CL (de Souza et al., 2003).
Furthermore, the intracellular parasites themselves also undergo
apoptosis, hinting at a host attempt to control parasite burden
(de Souza et al., 2003, 2010). Interestingly, it has been shown
that α2-macroglobulin, a plasma proteinase inhibitor, regulates
apoptosis in T. cruzi-infected cardiomyocytes and macrophages,
impairing the cell death process (de Souza et al., 2008). In contrast,
an anti-apoptotic effect has also been demonstrated in cardiac cells
(Petersen et al., 2006). The prevention of apoptosis appears to be
related to NF-κB activation by inhibiting the signaling of caspases,
thus avoiding cell death. Thus, avoidance of apoptosis reduces car-
diac damage and may be responsible for the persistence of T. cruzi
infection.

While our knowledge of T. cruzi–host cell interactions has
greatly improved, many questions remain open. There are still
gaps in our understanding of the molecular interactions involved
in cellular recognition and/or signaling pathway in most of the
mechanisms of invasion. What are the critical links between
these processes? And little is still known about the cooperative
role played by the host cell in parasite intracellular growth and
differentiation. These questions demand deeper investigation.
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