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Understanding the mechanisms that regulate the differentiation and maintenance of CD8+
memory T cells is fundamental to the development of effective T cell-based vaccines.
Memory cell differentiation is influenced by the cytokines that accompany T cell priming,
the history of previous antigen encounters, and the tissue sites into which memory cells
migrate. These cues combine to influence the developing CD8+ memory pool, and recent
work has revealed the importance of multiple transcription factors, metabolic molecules,
and surface receptors in revealing the type of memory cell that is generated. Paired with
increasingly meticulous subsetting and sorting of memory populations, we now know the
CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This
includes both recirculating and tissue-resident memory populations, and cells with varying
degrees of inherent longevity and protective function. These data point to the importance
of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell
pool challenges the notion that “one size fits all” for pathogen control, and how distinct
memory subsets may be suited for distinct aspects of protective immunity.
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INTRODUCTION
Memory CD8+ T cells form a unique population, which are
able to confer protection against many diverse pathogens. During
acute infection, rare, naïve, antigen-specific T cell clones inhabit-
ing secondary lymphoid tissue scan incoming pathogen-derived
peptide–MHC I complexes. Once recognition of cognate pep-
tide occurs, in conjunction with appropriate costimulatory and
cytokine signals, CD8 T cells undergo massive proliferation and
differentiation to form an effector cell population. Effector cells
then utilize multiple mechanisms (predominantly cytolysis, IFN-
γ, and TNF production) to destroy pathogen-infected cells. After
the clearance of infection, a dramatic contraction phase ensues,
leaving behind a small, extremely heterogeneous population of
long-lived cells that compose the CD8 memory T cell pool (Harty
and Badovinac, 2008; Jameson and Masopust, 2009). These cells
remain at stable numbers, which are much higher than the start-
ing, naïve population, in the absence of antigen or MHC class I,
relying instead on survival cues from homeostatic cytokines IL-7
and IL-15 (Schluns and Lefrancois, 2003; Antia et al., 2005; Surh
and Sprent, 2008). In addition to quantitative increases, memory
T cells are qualitatively changed from their naïve counterparts,
enabling them to respond to reinfection with faster, more robust
activity. Recent evidence has revealed the extreme heterogeneity
of the memory T cell pool contains, the cues that influence their
formation, and the unique challenges which complex pathogens
present. Here, we review recent advances, with special emphasis
on identification of memory T cells capable of prompt control of
acute pathogen infections, and the relevance for vaccine design.

FACTORS INFLUENCING MEMORY T CELL FORMATION
CD8 memory T cell formation is influenced by multiple environ-
mental cues that occur during priming. The combination of these

factors regulates the size of the CD8 T cell response and the bal-
ance between memory and short-lived effector cell differentiation.
Since this has been discussed in several reviews (Ahmed et al., 2009;
Jameson and Masopust, 2009; Cui and Kaech, 2010; Rutishauser
and Kaech, 2010), we will briefly review key factors that influence
generation of CD8 memory cells, highlighting newer findings.

INFLAMMATORY CUES
In addition to encounter with specific peptide/MHC molecules
and costimulation (in the form of B7 or other ligands), the inflam-
matory environment surrounding the cell also has a large impact
on the development of memory populations. IL-12 and IFN-α/β
are well-defined for providing a “Signal 3,” and promote opti-
mal development of both effector and memory cell populations
(Mescher et al., 2006; Curtsinger and Mescher, 2010), although the
specific cytokine may impact the characteristics of the resulting
effector and memory pool. Signal 3 cytokines regulate an impres-
sive number of gene expression changes (including those encoding
factors that regulate survival, effector function, and trafficking)
and chromatin remodeling may also be an important action of
Signal 3 cytokines in CD8 T cells (Agarwal et al., 2009). Stimula-
tory signals generated during acute bacterial or viral infections
can increase the number of effector cells generated during an
immune response, but can also delay the onset of memory devel-
opment (Badovinac et al., 2004, 2005). Cytokines TNF-α, IL-2,
and IFN-γ have all been shown to impact the CD8 T cell response
as naïve cells differentiate into memory, and limiting early inflam-
mation favors the generation of memory cells (Badovinac et al.,
2004, 2005; Harty and Badovinac, 2008). Overall, the data to
date show that inflammation and the ensuing cytokine milieu
can have a remarkably strong influence on the developing CD8
memory pool.
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These effects of inflammation operate, at least in part, though
changes in several key transcription factors. Multiple transcription
factors (including T-bet, Eomesodermin, Blimp-1, Bcl-6, Id-2, Id-
3, TCF, and Stat3) have been shown to modulate the development
of short-lived effector versus memory cells, and the expression of
several of these factors is influenced by the cytokine milieu (Joshi
and Kaech, 2008; D’Cruz et al., 2009; Rutishauser and Kaech, 2010;
Ji et al., 2011; Olson and Jameson, 2011; Yang et al., 2011; Xue
and Zhao, 2012). These transcriptional regulators often operate
in antagonist pairs (perhaps best defined for Blimp-1 and Bcl-
6; Nutt et al., 2008; Crotty et al., 2010). A comprehensive picture
of how transcription factors and epigenetic changes (Weng et al.,
2012) coordinate with each other and additional signals to mold
CD8 memory differentiation has yet to emerge – but manipulation
of the cytokine environment offers a promising opportunity to
regulate the balance between effector and memory CD8 T cell
differentiation.

Recent data suggest an interesting twist in the impact of
inflammatory cues on effector and memory differentiation. The
chemokines CXCL9, CXCL10, and CXCL11 are effectively induced
by IFN-γ, and strongly influence migration of CXCR3-expressing
immune cells. Hence CXCR3 expression is important for T cell
control of various pathogens. However, the ability of CXCR3 sig-
nals to retain activated T cells in sites of antigen presentation
appears to promote their terminal differentiation toward short-
lived effector cells: CXCR3 deficient CD8 T cells form greatly
increased numbers of long-lived memory cells, with reduced con-
traction from the effector phase of the response (Hu et al., 2011;
Kohlmeier et al., 2011; Kurachi et al., 2011). Hence, not only the
direct response to inflammatory cytokines, but also the response
to secondary cues (in this case CXCR3 ligands) may promote
effector differentiation, potentially at the expense of memory cell
generation.

METABOLIC CONTROL
It is also possible to manipulate the number and type of memory
cells formed through metabolic agents. Interestingly, mammalian
target of rapamycin (mTOR), a metabolic kinase, has been shown
to be a key regulator of CD8 T cells as well as other immune cells
(Pearce et al., 2009; Araki et al., 2011). Treatment with rapamycin,
an inhibitor of mTOR, has been known for some time to inhibit
cellular proliferation and has been used in clinical settings. Recent
evidence has shown that inhibiting mTOR will also increase the
number of central memory T cells formed, enhancing trafficking
to secondary lymphoid organs (Sinclair et al., 2008; Araki et al.,
2011). Additionally, either treatment with rapamycin or knocking
down components of mTOR during the early phase of the immune
response, increases the quantity of memory cells that survive long-
term, supporting the concept that mTOR is a component of CD8
memory T cell differentiation (Araki et al., 2009). Although the
exact mechanism through which disruption of mTOR signaling
enhances lymphoid CD8 T cell memory generation is currently
unclear, the concept of capitalizing on differences between the
metabolic states of effector versus memory (and naïve) T cells
offers an interesting opportunity for therapeutic manipulation of
CD8 T cell differentiation (Prlic and Bevan, 2009; van der Windt
and Pearce, 2012).

ANTIGEN RESTIMULATION
Repeated acute exposure to foreign antigen has a dramatic effect on
the memory CD8+ T cell pool. Characteristics of the memory pool
differ between the primary pool (generated by one round of anti-
gen exposure) compared to“secondary”(or tertiary) memory cells
induced by boosting. The differentiation of TCM is considerably
delayed, and cells bearing effector-like traits (including expres-
sion of KLRG1 and granzyme B) are maintained for considerably
longer periods (Jabbari and Harty, 2006; Masopust et al., 2006).
These differences alter the functional and trafficking characteris-
tics of the memory pool – for example, the relative paucity of TCM

in the secondary memory pool limits their ability to traffic through
lymph nodes (while the abundance of TEM may enhance survey of
peripheral tissues). Depending on the context of reinfection, such
changes in localization could be either a benefit or detriment to the
host – indeed Nolz and Harty (2011) propose that boosting may
impair the ability of CD8 T cells to mount protective responses
against certain pathogens (due at least in part to altered traffick-
ing), while control of other pathogens is improved by boosting.
Similarly, the number of antigen-specific cells is increased with
boosting, and this can allow achievement of a threshold for pro-
tective immunity (perhaps most dramatically illustrated for the
response to malaria; Schmidt et al., 2008) but this may come at the
cost of the boosted memory cells’ capacity for proliferation after
antigen re-exposure (Masopust et al., 2006; Wirth et al., 2010).
Again, depending on the context of the response required, this
trait may become a limitation for the immune response. Analy-
sis of boosted memory T cells is important, partly for evaluating
optimal vaccination strategies, and partly because pathogen reen-
counter is likely to occur in natural situations (unlike the artificially
controlled exposure used in experimental studies or vaccination),
and hence may be a better indication of normal immune function.

Furthermore persistent infections that periodically reactivate
from a latent state (such as occur with several herpes viruses) can
promote memory CD8 T cell “inflation,” producing T cells with
the characteristics of boosted memory CD8 T cells (Snyder et al.,
2008), and such features have been exploited for induction of
protective immunity in models of HIV (Hansen et al., 2011). On
the other hand, excessive or sustained antigen exposure (as occur
during some chronic infections), can lead to the decline of CD8 T
cell function – this has been reviewed extensively by others (Kaech
et al., 2002; Virgin et al., 2009; Wherry, 2011), and hence will not
be further explored here. However, this raises the important point
that considerably more information is needed to understand the
conditions that dictate whether multiple antigen encounters leads
to enhancement versus impairment of the CD8 T cell response.

HETEROGENEITY AMONG MEMORY CD8 T CELLS
The memory pool contains many distinct subsets of CD8 T cells
with differing proliferative, survival, trafficking, and functional
qualities (Seder et al., 2008; Jameson and Masopust, 2009). Ele-
gant single cell transfer and bar-coding experiments show that an
individual naïve TCR transgenic CD8 T cells is capable of form-
ing diverse effector and memory populations (Stemberger et al.,
2007; Gerlach et al., 2010), arguing against the model that distinct
memory subsets are occupied by different clones, or cells receiving
distinct initial activation cues.
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Considerable work has gone into defining cell surface markers
to subset the memory pool into functionally distinct populations,
in both mice and humans (Seder and Ahmed, 2003; Seder et al.,
2008; Masopust and Picker, 2012). Major classifications are dis-
cussed below. However, in contrast to the depth of information
on the factors regulating effector versus memory differentiation,
much less is known about the signals that drive appearance of
distinct memory subsets.

EFFECTOR AND CENTRAL MEMORY
The most widely characterized subset division is that of central and
effector memory cells (Sallusto et al., 1999; Wherry et al., 2003),
which are defined based on the coordinate expression of CCR7 and
CD62L. Both molecules interact with components displayed on
the high endothelial venules of lymph nodes – CD62L interacting
with carbohydrate moieties termed lymph node addressins while
CCR7 binds the “homeostatic” chemokines CCL19 and CCL21.
Memory cells that express these two molecules are termed central
memory (TCM), and efficiently traffic into lymph nodes, but are
not predominant in peripheral tissues. In contrast, effector mem-
ory (TEM) cells do not express CCR7 or CD62L and are excluded
from lymph nodes, but can be found in the spleen (especially in
the red pulp; Jung et al., 2010) and are prevalent in non-lymphoid
tissues (Masopust et al., 2001). In addition to these trafficking
differences, the TCM pool exhibits improved long-term survival
and enhanced proliferation upon antigen restimulation, com-
pared to the TEM population, while the TEM subset, especially cells
isolated from tissues, show more rapid deployment of effector
functions compared to TCM (Kaech and Wherry, 2007; Jameson
and Masopust, 2009).

The “TEM” subset is heterogeneous and can be further dis-
sected. First, some CD62Llow CCR7high cells have been defined
(Unsoeld and Pircher, 2005): given that CCR7 supports T cell
migration from some non-lymphoid tissues (Debes et al., 2005),
this phenotype may be indicative of a specialized trafficking pat-
tern. Furthermore, the general TEM phenotype includes both a
recirculating pool (with special predilection to migration through
non-lymphoid tissues) as well as non-recirculating cells, termed
resident memory cells, discussed next.

RESIDENT MEMORY
More than a decade ago, seminal studies documented the exis-
tence of CD8 memory cells in diverse non-lymphoid tissues, in
addition to their counterparts in lymphoid sites (Masopust et al.,
2001; Masopust and Lefrancois, 2003). Memory CD8 T cells per-
sist long-term in peripheral tissues, and were noted as having
increased granzyme B expression and more potent killing capac-
ity than central memory cells (Masopust et al., 2001; Marzo et al.,
2007). Such cells were originally thought to be part of the recir-
culating TEM pool (with which they share some key phenotypic
traits), but more recent studies indicate that there is a distinct
non-recirculating population of memory CD8 T cells, termed res-
ident memory (TRM), in many tissues, including the IEL, skin,
lung, brain, and salivary gland (Gebhardt et al., 2009; Masopust
et al., 2010; Wakim et al., 2010; Jiang et al., 2012; Masopust and
Picker, 2012).

TRM cells have been identified at barrier surfaces in mice
and non-human primates (Bevan, 2011; Sheridan and Lefrancois,
2011; Masopust and Picker, 2012), with similar cells character-
ized in human skin (Clark et al., 2012) and this pool is of interest
as a critical first line of defense against infection. While there
are numerous questions about the pathways involved in establish-
ment and maintenance of TRM, the pool found in the mouse small
intestine IEL pool is especially well-characterized. Although phe-
notypically related to TEM, the SI-IEL pool displays some distinct
markers, including upregulated CD103 (the αE integrin chain,
which, when paired with the β7 chain, is a receptor for E-cadherin)
and CD69 (Sheridan and Lefrancois, 2011; Masopust and Picker,
2012). Surprisingly, despite the common association of CD69 with
TCR stimulation, foreign antigen exposure is not required for gen-
eration of the SI-IEL pool, which can be induced by homeostatic
mechanisms (Casey et al., 2012), arguing against an obligatory role
for an antigen depot in sites occupied by TRM. Cytokines, includ-
ing TGF-β, are important for induction of CD103 on SI-IEL TRM

cells, and CD103 itself is important for sustained residency of this
population (Casey et al., 2012). It is not yet clear whether these
requirements will apply to TRM in all tissues, and whether addi-
tional cues are needed to initiate or sustain tissue residency, but
these data highlight the sophisticated mechanisms which allow
segregation of recirculating from tissue-resident cells.

EFFECTOR-LIKE MEMORY CELLS
Another CD8 memory T cell division scheme was defined by
Woodland and colleagues, based on CXCR3, CD27, and a gly-
cosylated form of CD43 (Hikono et al., 2007). These markers
further fragment the TCM and TEM pools, offering refinement of
functional properties within the memory-stage pool, for example
showing that CD27hiCD43lo cells were superior over other sub-
sets in their ability to proliferate after rechallenge (Hikono et al.,
2007). CD27loCD43lo cells on the other hand, showed markers
associated with the effector phase, including expression of KLRG-
1 and granzyme B, and showed impaired proliferative responses.
This “effector-like” population is maintained for many months
following the response to respiratory infections (Hikono et al.,
2007) as well as system infection with diverse pathogens (Olson
et al., unpublished data). Such cells decline over time in the pri-
mary immune response: however, cells with this phenotype are
maintained long-term and at high frequency following antigen-
specific boosting (Olson et al., unpublished data) and, as will
be discussed below, show optimal immediate protective control
against acute bacterial and viral infections (Olson et al., unpub-
lished data). Notably, this effector-like phenotype (characterized
in lymphoid tissues) overlaps with the resident memory pool – for
example, cells from the small intestinal IEL are CD27low, CD43low,
granzyme Bhigh – although some other markers are distinct (e.g.,
SI-IEL cells are KLRG-1low and CD69+ while effector-like cells
in lymphoid tissues are KLRG-1high, CD69−). Hence the poten-
tial relationship between effector-like and TRM cells needs to be
investigated further.

MEMORY STEM CELLS
Recent evidence has suggested that some memory T cells may
have the ability to produce a specialized self-renewing population,
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sharing signaling pathways with hematopoietic stem cells. Gat-
tinoni et al. (2009) proposed that induction of Wnt signaling
suppresses Eomesodermin, and generates T cells of an unusual
phenotype: CD44low, but high in expression of Sca-1, CD122,
CD62L, and Bcl-2, which bears features of proposed “Memory
Stem Cells” (first identified in a transplant setting; Zhang et al.,
2005). This change allowed T cells to go through many more cell
divisions than normal, as well as proliferate and differentiate in
response to antigen. This property was shown to be beneficial in
a tumor model, suggesting the possibility that antigen-specific
memory stem cells (even in small numbers) may be a useful
immunotherapy tool (Gattinoni et al., 2009; Koehn and Schoen-
berger, 2009). However, other studies, using similar approaches,
concluded that activation of the Wnt signaling pathway in mouse
CD8 T cells did not promote production of a memory stem cell
pool, but rather may attenuate initial naïve response (Driessens
et al., 2010; Prlic and Bevan, 2011). Hence, considerable contro-
versy currently surrounds the definition of this memory subset.
Nevertheless, the concept of a specialized memory stem cell, paired
with the finding that humans possess a similar CD8 memory T cell
subset with the ability to survive and reconstitute the T cell pool
after depletion events like chemotherapy (Turtle et al., 2009; Gat-
tinoni et al., 2011), will certainly provoke continued research and
interest.

WHICH SUBSET(S) OF MEMORY CD8 T CELLS OFFER
OPTIMAL PROTECTION AGAINST PATHOGENS?
A fundamental feature of the adaptive immune system (and the
primary goal of vaccines) is that immune memory results in
improved protection against pathogen reinfection. While this can,
in part, be ascribed to the numerical increase in antigen-specific
T cells that follows immunization, heterogeneity within the mem-
ory T cell pool naturally leads to the question of whether some
populations of memory cells are better than others at protective
immunity against a given pathogen (Figure 1).

Some years ago, the answer seemed relatively clear: TCM had
numerous features suggesting these were the critical memory
population for long-term protective immunity. First, TCM show
very effective long-term maintenance, becoming the predominant
memory subset over time following a primary antigen encounter.
In addition, TCM exhibit optimal recall proliferative capacity and
the ability to quickly differentiate into potent effector cells upon
antigen re-encounter. Finally, direct comparisons between TEM

and TCM following infection with various pathogens (acute and
chronic LCMV, vaccinia virus) suggested the TCM pool was, over-
all, the superior subset for pathogen elimination (Wherry et al.,
2003; Laouar et al., 2008). As discussed earlier, the representation
of TCM changes with antigen-specific boosting, which decreases
the frequency of TCM and delays their appearance: indeed, with
heterologous prime/boost strategies, the frequency of TCM can
become quite low, with the antigen-specific memory CD8 T cell
population dominated by TEM and effector-like cells (Jabbari
and Harty, 2006; Masopust et al., 2006; Wirth et al., 2010). This
might lead to the conclusion that boosting the immune response,
though clearly of benefit for high affinity B cell responses, could
degrade the protective capacity of the CD8 memory pool. In fact,
recent studies argued that boosted (or secondary memory cells)

are indeed compromised for control of chronic LCMV and MHV
infection, although responses to some other pathogens (Listeria,
vaccinia, and acute LCMV infection) were unchanged or improved
by boosting (Nolz and Harty, 2011).

On the other hand, additional studies suggested that cells of
TEM phenotype exhibited optimal pathogen control against some
of the same pathogens (e.g., vaccinia virus; Bachmann et al., 2005)
and against other systemic infections (e.g., Listeria; Huster et al.,
2006). Furthermore, TEM phenotype cells induced by heterolo-
gous prime/boosting were associated with improved protection
against mucosal SIV challenge, with important implications for
vaccination against HIV infection (Hansen et al., 2009, 2011).

Furthermore, in recent studies we examined the protective
capacity of “effector-like” CD8 T cells that persist into the memory
phase during primary responses and are the predominant antigen-
specific pool following certain prime-boost strategies (Olson et al.,
unpublished data). These cells, bearing the phenotype of CD27low,
CD43low, KLRG-1high, and CD127int were poor at recall prolifer-
ation compared to subsets containing the classic TEM and TCM

populations (Hikono et al., 2007; Olson et al., unpublished data):
yet these effector-like cells mediated optimal protective immu-
nity against Listeria and vaccinia infection at least in part due
to preferential utilization of cytotoxic mechanisms (Olson et al.,
unpublished data). Since this effector-like subset shares some
phenotypic traits with typical TEM cells, care must be taken in
evaluating data on the protective capacity of the TEM subset. It is
interesting to note that the rapid prime-boost strategy described
by Harty and colleagues, which leads to highly efficient pro-
tection against various viral, bacterial, and parasitic infections
(Pham et al., 2010), predominantly induces a CD27lo, CD43lo,
KLRG1hi, CD127int, effector-like population, which persist long-
term (Olson et al., unpublished data). Hence, this population
– which might also be termed “long-lived effectors” to contrast
with their short-lived counterparts found in the early immune
response – represents an appealing goal for vaccination against
certain diseases.

However, a limitation on many studies testing the protective
capacity of distinct memory subsets is that they typically involves
isolation of cells from lymphoid tissues followed by adoptive
transfer into the blood. This approach neglects the TRM pop-
ulations existing in non-lymphoid sites, which (by definition)
are not part of the recirculating pool found in lymphoid tis-
sues. Experimentally, this issue is compounded by the finding
that TRM are inefficient at homing back to non-lymphoid tissues
in the absence of restimulation (Masopust et al., 2010; Masopust
and Picker, 2012). However elegant approaches, including para-
biosis and selective depletion strategies have been used to test the
capacity of TRM to mediate protective immunity in non-lymphoid
tissues. For example, Jiang et al. (2012) examined a parabiotic
mice mouse model in the context of vaccinia infection in the skin:
mice that contained both antigen-specific TRM and recirculating
memory cells rapidly cleared the infection, while mice with recir-
culating memory CD8 T cells alone showed impaired clearance of
the virus. Other studies limited the capacity of recirculating mem-
ory cells to contribute to pathogen control, and again saw efficient
protection mediated through TRM (Hofmann and Pircher, 2011;
Mackay et al., 2012). These data highlighted that in the context of
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FIGURE 1 | Schematic of memoryT cell distribution and reactivation

during systemic and local infection. The model depicts the response to
infection of animals with pre-existing memory CD8 T cell populations.
Different populations of memory cells occupy distinct niches: TCM are
restricted to lymphoid tissues, recirculating TEM and long-lived effector-like
cells traffic through tissues and certain lymphoid sites (such as the splenic
red pulp – red triangles) while TRM are strictly limited to tissue parenchyma.
Upon infection via the blood (such as bacterial sepsis), pathogens may initially

be controlled by effector-like and TEM populations at entry sites (e.g., the
splenic red pulp and marginal zone). Subsequently, activation and clonal
expansion of TCM increases the frequency of secondary effector cells. In this
scenario, TRM are not engaged in the response. However, during a peripheral
infection (for example, viral infection in the skin), initial pathogen control is
mediated by the TRM pool. This inflammatory response may recruit circulating
TEM (and, potentially TCM) to the site of infection. Subsequent responses
initiated in draining lymphoid tissues would control systemic spread.

a pathogen invasion at an epithelial surface, resident memory cells
are superior to central memory or naïve CD8 T cells. Likewise,
it is likely (although not proven) that the mucosal TEM-like CD8
T cells that offer optimal control of SIV infection (Hansen et al.,
2011) are in fact TRM (Masopust and Picker, 2012). Such data
suggest that the TRM pool is critical for first-line defense against
infection at barrier surfaces, but presumably play a more minor
role in responses to blood-borne infections (Figure 1).

CONCLUDING REMARKS
The goal of vaccination is to rapidly control infection to prevent or
minimize the occurrence of disease. Determining the CD8 mem-
ory T cell(s) best able to achieve that goal is critical for future
development of effective vaccines as we move to apply bench work
to the clinic. Defining a “protective” memory cell is always con-
text dependent. Is the infection acute or chronic? What is the
inflammatory environment created? What is the life style of the

pathogen and its location in the host? These factors and oth-
ers impact the developing CD8 T cell response and should be
at the forefront of our attempt to create the most useful mem-
ory T cell pool by vaccination. Thus, while it is tempting to try
to define “The” optimal subset of memory CD8 T cells for pro-
tective immunity, the very fact of memory heterogeneity suggests
that this diversity is useful for the immune system in different
contexts: so, while rapid recall proliferation of a small TCM mem-
ory subset may be suitable for control of chronic LCMV infection
(Wherry et al., 2003; Nolz and Harty, 2011), very high numbers
of TEM and effector-like cells may be important for rapid control
of liver-stage malaria infection (Schmidt et al., 2008; Pham et al.,
2010) and establishment of a mucosal pool of TRM may be essen-
tial for control of SIV (Hansen et al., 2011; Masopust and Picker,
2012). This discussion also raises the question of how quantity
versus quality of antigen-specific memory CD8 T cells relates to
protective immunity: while ideal immunity may produce a high
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frequency of diverse memory subsets, practical limitations force
consideration of how many memory cells, of what type and in what
locations, are sufficient for protection against a given pathogen.
Careful analysis of the protective function mediated by various
memory CD8 T cell subsets in distinct locations may provide
suggest more streamlined vaccine approaches. Lastly, this review
focuses on responses to infectious disease, but there may be quite
different criteria for protective immune responses against tumors –
indeed there is suggestive evidence that the self-renewing“memory
stem cell” pool has key features for sustained responses against the
self-antigens often targeted for cancer immunotherapy (Gattinoni
et al., 2009; Koehn and Schoenberger, 2009).

Thus we propose two central challenges for optimizing protec-
tive CD8 T cell vaccination – first, defining the traits (including
function and localization) which characterize protective CD8 T
cell subsets (i.e., the correlates of protection); second, devel-
oping refined vaccination techniques to optimize production of
the relevant subsets. As usual, the natural characteristics of the
immune response (for example, the changes in memory popula-
tions induced by primary versus boosted immune responses) form
a useful guide as to what can be achieved – but the pressing need is
for vaccines against pathogens (such as HIV, malaria, tuberculosis)
that elicit inefficient protective responses, hence radical strategies
may be needed to achieve radical results.
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