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The activity of natural killer (NK) cells is regulated by various processes including edu-
cation/licensing, priming, integration of positive and negative signals through an array
of activating and inhibitory receptors, and the development of memory-like functionality.
These processes are often very complex due to the large number of different receptors
and signaling pathways involved. Understanding these complex mechanisms is therefore
a challenge, but is critical for understanding NK cell regulation. Mathematical approaches
can facilitate the analysis and understanding of complex systems. Therefore, they may
be instrumental for studies in NK cell biology. Here we provide a review of the different
mathematical approaches to the analysis of NK cell signal integration, activation, prolifer-
ation, and the acquisition of inhibitory receptors. These studies show how mathematical
methods can aid the analysis of NK cell regulation.
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INTRODUCTION
Natural killer (NK) cells are innate lymphocytes that are impor-
tant for early immune responses against viral pathogens and
transformed cells (Vivier et al., 2008). They can be stimulated by
cytokines or by direct contact with infected or transformed cells,
resulting in cytolysis of the recognized cell and the production of
immune-modulatory cytokines. Target cell recognition is medi-
ated by an array of stimulatory and inhibitory NK cell receptors
(Lanier, 2008). The opposing signals induced by these receptors
regulate NK cell activities (Watzl and Long, 2010). Inhibitory
receptors are necessary to ensure NK cell self-tolerance in two
ways. During NK cell development inhibitory receptors specific
for self-MHC class I are necessary for the generation of functional
competent NK cells in a process termed “education” (Elliott and
Yokoyama, 2011). In mature NK cells the presence of inhibitory
receptors prevents the attack of healthy autologous cells (Kärre,
2008). To study the acquisition of inhibitory receptors, their
exact role during NK cell education and their interference with
activating signaling is essential for the understanding of NK cell
regulation.

The immune system is one of the most complex biological sys-
tems known. It involves various cell types including lymphocytes,
each of which can exhibit a diverse repertoire of individual cells:
T and B cells express clonally distributed somatically rearranged
antigen receptors, whereas each NK cell can express different
inhibitory and activating receptors. These cells do not act as
individuals, but interact with other immune cells in a com-
plex inter-cellular network. Furthermore, lymphocyte activation
is regulated by a complicated intra-cellular signaling machin-
ery. As a result, the immune system and its functionality are
highly complex and non-linear. The analysis of immune system
data is thus non-trivial and calls for the use of systems biology

methods, including mathematical and computational models
(Walzer et al., 2007).

MATHEMATICAL METHODS TO ANALYZE AND MODEL
IMMUNE SYSTEM DATA
Obtaining, analyzing, and comparing data on lymphocyte reper-
toires yields many new insights (reviewed in Mehr et al., 2012).
However, the formidable challenge is to formulate a description
of the system in question on several levels: genetic, molecular, cel-
lular, and systemic. Of course, no model can include all aspects
of the real system – nor should it attempt to, because models
must be simple enough to enable an exact analysis. It is up to the
researcher to decide which aspects of the system to focus on, and
which aspects to neglect (Mehr, 2001, 2005).

Before performing any multi-scale modeling, one should know
how to model events on a single scale. These methods can be
combined in multi-scale modeling in various ways, using for
each scale the most appropriate method (Shannon and Mehr,
1999; Kirschner et al., 2007; Materi and Wishart, 2007). The
main modeling techniques used so far in immunology are: mod-
els of population dynamics using ordinary differential equations
(ODEs), including delay differential equations (DDE), or – in
case the numbers of objects (e.g., cells or molecules) is not very
large and stochastic effects are important – stochastic differential
equations (SDEs). The latter (and other so-called “Monte Carlo”
modeling methods, such as stochastic agent-based models – see
below) have been developed to better account for intrinsic cel-
lular and molecular fluctuations. For example, see our (mostly
ODE) models of lymphocyte development – T cell development
in the thymus (Mehr et al., 1993, 1994, 1995, 1996a,b, 1997, 1998)
and homeostasis in peripheral blood (Mehr and Perelson, 1997),
and ODE or hybrid models of B cell development and responses
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(Mehr et al., 2003; Shahaf et al., 2004, 2006, 2010). Stochastic mod-
eling has also been extensively used by several groups, e.g., the
Hodgkin group’s “Cyton” model (Lee et al., 2009; Markham et al.,
2010; Duffy and Hodgkin, 2012; Duffy et al., 2012). In case spa-
tial effects are important, one can either divide the space into
compartments and still use ODE modeling for each compart-
ment, or use partial differential equations (PDE), which explicitly
model the dependence of the model’s entity on space. A differ-
ent method which has become popular with the availability of
high-speed computation, and is also more intuitive and accessible
for biologists, is agent-based modeling (ABM) – where individ-
ual entities (agents) such as molecules, cells or individuals are
explicitly modeled as program objects, which move, respond to
their environment and/or change their internal state based on
pre-defined rules (Chavali et al., 2008). Stochasticity is easy to
build into ABM, as are different levels of description. One can
also create hybrid models where different levels of description
are modeled using different model types (Shahaf et al., 2008).
Many such models of lymphocyte migration or molecular pro-
cessed were published (e.g., Beltman et al., 2011; Kaplan et al.,
2011). A review of ODE, DDE, PDE, stochastic, and ABM mod-
els in immunology, including a comparison of their relative
advantages and disadvantages, has recently been published (Kim
et al., 2009).

MODELING NK CELL SIGNALING PATHWAYS AND THE
DYNAMICS OF NK CELL ACTIVATION
The understanding of T cell receptor signaling has been greatly
aided by mathematical approaches (for examples, see Feinerman
et al., 2008; Das et al., 2009). NK cells rely on similar signaling path-
ways for their activation. However, NK cell activation is mediated
by several different activating receptors, which can synergize with
each other (Bryceson et al., 2006). Additionally, inhibitory recep-
tors can counteract NK cell activation (Watzl and Long, 2010).
This makes NK cell regulation even more complex. Analyzing and
predicting the behavior of NK cell repertoires necessitates models
that take into account the complexity of whole NK cell reper-
toires (Johansson et al., 2009), as well as the functional differences
between NK cell repertoire subsets (Brodin et al., 2010, 2012) and
the molecular processes underlying these differences. Mathemati-
cal modeling may therefore help to understand the integration of
these opposing signals. However, the lack of detailed knowledge
about the complex topology of NK cell signaling pathways presents
a challenge for modeling approaches.

In a purely theoretical approach using stochastic agent-based
simulation one study has developed a detailed molecular model of
NK cell activation, incorporating membrane-proximal signals and
affinities of receptor–ligand interactions (Das, 2010). The engage-
ment of activating receptors results in the activation of the Vav
and Erk signaling pathways. Interestingly, the study showed that
on a single cell level the responses can be digital in nature so that
the latter signaling pathways are either active or not. Such digi-
tal behavior of Erk phosphorylation matches previous results in
T cells (Altan-Bonnet and Germain, 2005), where opposing feed-
back loops of positive (Erk) and negative (SHP-1) signals created a
digital response. However, the model showed that in NK cells such
a digital response is possible even in the absence of any feedback

loop (Das, 2010), because of the presence of inhibitory receptors
in the NK cell synapse.

Another study used an ODE-based “ensemble modeling”
approach (Kuepfer et al., 2007) combined with experimental veri-
fication to investigate the interplay of activating and inhibitory sig-
nals in NK cells (Mesecke et al., 2011). This study experimentally
confirmed a digital Vav phosphorylation and de-phosphorylation
induced by activating and inhibitory signaling, respectively. The
latter result suggests that Vav phosphorylation is an integration
point at which activating and inhibitory signaling converge (Steb-
bins et al., 2003). The digital nature of Vav phosphorylation (Das,
2010; Mesecke et al., 2011) could explain how these opposing sig-
nals are integrated to yield a yes or no decision about NK cell
activity, resulting in the survival or the death of a conjugated
target cell.

The inhibition of NK cells depends on the amount of MHC
class I expressed by the target cell. It has been shown that there is
a clear threshold in the amount of surface MHC class I required
for inhibition of NK cell cytotoxicity. A study by Almeida et al.
modeled the dependence of the activation/inhibition threshold
on MHC class I and inhibitory receptor expression levels at the
single cell level using ODEs (Almeida et al., 2011). They fitted their
model to data on NK cell killing of target cells with various MHC
levels, obtained in experiments from many different human NK
cell clones, in order to see whether clones differ in their activation
threshold, maximal killing capacity, or both. The results showed
that NK cells differ mostly in their intrinsic activation threshold,
which may be set during the process of NK cell education.

An agent-based modeling study by Kaplan et al. (2011)
addressed the question how signals from activating and inhibitory
receptors are spatially integrated within the NK cell immunologi-
cal synapse. The study constructed a computer simulation of the
assembly of the NK cell-target cell synapse, which was based on
many experimental findings. The NK cell immune synapse was
modeled as two parallel two-dimensional grids, representing the
contact areas on the membranes of the two interacting cells – the
NK and the target cell grids. The simulation suggested that the
NK cell does not simply sum up all activating and inhibitory sig-
nals over the entire synapse. Instead, a model considering that
the inhibitory signal is locally confined to a radius of 3–10 recep-
tor molecules was closer to the experimentally observed behavior.
This is in line with the fact that inhibitory receptors mediate their
negative signal through direct recruitment of a protein tyrosine
phosphatase such as SHP-1, and suggests that the active phos-
phatase cannot diffuse very fast. Therefore, inhibitory receptors
have a locally limited inhibition radius.

The simulation by Kaplan et al. (2011) further showed that the
concerted motion of receptors in clusters – such as those formed by
molecule aggregation on certain membrane microdomains – sig-
nificantly accelerates the maturation of the NK cell immunological
synapse. Membrane microdomains have also been implicated by
the study of Mesecke et al. The mathematical modeling showed
that the association of Src-family kinases with activating but not
with inhibitory receptors was essential for the experimentally
observed Vav activation (Mesecke et al., 2011). While this might
suggest a direct association between activating NK cell receptors
and Src-family kinases, it could also support the known role of
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membrane microdomains in NK cell activation (Lou et al., 2000;
Fassett et al., 2001; Watzl and Long, 2003; Endt et al., 2007; Guia
et al., 2011). As these domains are enriched in Src-family kinases,
the recruitment of activating receptors to these domains might
be the event that brings kinases and receptors in close proximity.
Additionally, clustering of activating receptors would make them
more resistant to the locally restricted negative signal of inhibitory
receptors (Kaplan et al., 2011).

A modeling study by Burroughs et al. (2011) addressed the
question of receptor segregation at the NK cell immunological
synapse. They specifically asked the question of whether the seg-
regation of different receptors at the immunological synapse is
simply a result of the different sizes of the proteins. They used
a novel energy model that can analyze protein redistribution
and developed a methodology for analyzing and quantifying data
from two color fluorescence images. Using these methods, they
showed that the observed protein segregation patterns in actual
synapses can be explained by differences in protein size alone.
This was independent of the actin cytoskeleton and could explain
how certain receptor patterns form within the immunological
synapse.

Once a NK cell has been sufficiently stimulated by a locally
attached target cell, a cytotoxic process is initiated, resulting in the
lysis of the target cell. A study by Almeida et al. (2011), explored the
kinetics of NK cell activation and target cell lysis at the population
level. Experiments have shown that while the number of NK cell-
target cell conjugates reaches saturation within 30 min, significant
target cell lysis is only observed after 3–5 h. A model assuming
that the NK cell can kill its target cell only after being primed by a
former target cell encounter could reproduce the experimentally
observed kinetics and explain this delay. Thus, the population of
NK cells is divided into resting NK cells that do not kill targets,
and activated NK cells that are capable of killing. This suggests
that NK cells need to be primed before they can kill target cells,
and that this priming occurs after the first encounter of the resting
NK cell with a target cell.

NK CELL POPULATION DYNAMICS
Mathematical modeling has been used in several studies to eluci-
date the dynamics of NK cell populations, their development and
activation. Early mechanistic modeling studies of NK cell pop-
ulation dynamics (as opposed to simple curve-fitting studies of
killing dynamics) included attempts to clarify their role in immune
surveillance (Merrill, 1981, 1983) and in immunotherapy (Nani
and Oguztoreli, 1994), or elucidate the dynamics of their adhesion
to target cells (Kuznetsov, 1996). In recent years, there have been
several more mathematical modeling studies on the role of NK
cells in response to infections (Hancioglu et al., 2007; Wodarz et al.,
2007; Elemans et al., 2011) and cancers (Cappuccio et al., 2006). In
many of these studies, however, the models focus on the adaptive
T cell response, and NK cells are just an additional feature. We
are only aware of one study, which focused primarily on NK cell
population dynamics and turnover (Zhang et al., 2007). Recently,
one report investigated the proliferation of NK cells in response to
IL-15 (Zhao and French, 2012). IL-15 plays an important role in
NK cell development, survival and homeostasis, but also during
virus-induced NK cell proliferation. The authors developed a

series of two-compartment models describing the dividing and
non-dividing NK cell subpopulations. NK cells could be recruited
from one compartment into the other and possessed distinct pro-
liferation and cell death rates within a compartment. Comparing
experimental results to different model variations showed that IL-
15 modulates the recruitment rate from the non-dividing to the
dividing compartment and influences the division rates. However,
it did not have any influence on the time until the first division.
The model could even predict NK cell proliferation dynamics in
an environment of changing IL-15 concentrations, as it would be
the case during viral infections, demonstrating the usefulness of
such mathematical models.

NK CELL REPERTOIRE FORMATION
The dynamics of NK cell repertoire development and education
are even more complex than the population dynamics of NK cell
subsets. Initially, two conceptual models have been proposed by
Vance and Raulet (1998), to explain the process of NK cell “educa-
tion” in which the cells adapt to the self-MHC environment. Both
models have assumed that in order to mature, there should be at
least one self-MHC-specific receptor on the NK cell (the “at least
one” hypothesis). The first is the sequential activation model. In
this scheme, genes for Ly49 inhibitory NK cell receptors are ran-
domly expressed; once a receptor gene is expressed, it is known
to remain stably activated. During maturation, the cell expresses
new receptors, until a receptor that binds self-MHC is expressed.
The cells are periodically tested for interaction with self-MHC
molecules. Strong interactions between the receptors and their
MHC ligands prevent additional receptors from being expressed
and result in the maturation of the cell. In this scheme, a sin-
gle testing step accomplishes the education process; however this
single step may be repeated many times during the cell’s devel-
opment. The second scheme is the two-step selection model, in
which the repertoire is fully formed at an initial stage by a stochas-
tic process of receptor expression, and subsequently shaped by
two selection steps: one selects for cells expressing at least one
self-specific receptor, and the other selects against cells expressing
multiple self-specific receptors. The two-step selection thus occurs
only once for each cell, when it has completed its receptor gene
activation. Depending on the signaling thresholds at these steps,
the process may allow maturation of cells expressing more than
one self-specific receptor.

Mathematical methods are ideally suited to distinguish between
these two models. In the study by Salmon-Divon et al. (2003a), the
“two-step” model was implemented as a computer program which
calculates the expected frequencies of cells with given receptor
expression patterns as function of the selection thresholds. The
“sequential” model of NK cell selection was implemented as a
stochastic agent-based simulation of the development of the NK
cell repertoire, again giving the expected frequencies of cells with
given receptor expression patterns based on model parameters.
The original Raulet group data was not sufficient to conclu-
sively decide between the models (Salmon-Divon et al., 2003b).
However, the use of specifically generated, larger data set from
single-MHC mice showed that the two-step selection model fits
the data significantly better than the sequential model (Johansson
et al., 2009).
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Additional studies aimed to determine whether the MHC class
I background affects NK cell repertoire composition, in both
humans and mice. For this purpose, data on NK cell repertoires
extracted from the bone marrow (BM) of mice from different
single-MHC and MHC-deficient backgrounds was analyzed. In
addition, NK cell repertoire data from blood samples of humans
with different MHC backgrounds was used. In both cases, cells
were probed for the expression of five inhibitory receptors (from
the Ly49 or KIR families, in mice and humans, respectively). The
results of these studies are described in another paper in this
issue (Simon, M. et al., submitted).

OUTLOOK
There are still many challenging and open questions about differ-
ent aspects of NK cell regulation to date. We still need to learn more
about NK cell education, subsets, signaling and even memory
(Paust and von Andrian, 2011). The studies described above have
demonstrated that mathematical approaches can help to answer
some of these open questions. They are ideally suited to analyze
complex data sets, make predictions about complicated systems
or simply aid experimental design. We therefore expect to see

many more studies involving mathematical approaches to NK cell
regulation in the near future.
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