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INTRODUCTION

The immunodominant epitopes expressed by the HIV-1 envelope protein gp120 are
hypermutable, defeating attempts to develop an effective HIV vaccine. Targeting the
structurally conserved gp120 determinant that binds host CD4 receptors (CD4BD) and
initiates infection is a more promising route to vaccination, but this has proved difficult
because of the conformational flexibility of gp120 and immune evasion mechanisms
used by the virus. Mimicking the outer CD4BD conformational epitopes is difficult
because of their discontinuous nature. The CD4BD region composed of residues 421-433
(CD4BD*®°™®) is a linear epitope, but this region possesses B cell superantigenic character.
While superantigen epitopes are vulnerable to a small subset of spontaneously produced
neutralizing antibodies present in humans without infection (innate antibodies), their
non-covalent binding to B cell receptors (BCRs) does not stimulate an effective adaptive
response from B cells. Covalent binding at naturally occurring nucleophilic sites of the
BCRs by an electrophilic gp120 (E-gp120) analog is a promising solution. E-gp120 induces
the synthesis of neutralizing antibodies the CD4BD®™®. The highly energetic covalent
reaction is hypothesized to convert the abortive superantigens—BCR interaction into
a stimulatory signal, and the binding of a spatially distinct epitope at the traditional
combining site of the BCRs may furnish a second stimulatory signal. Flexible synthetic
peptides can detect pre-existing CD4BDC°"®-specific neutralizing antibodies. However,
induced-fit conformational transitions of the peptides dictated by the antibody combining
site structure may induce the synthesis of non-neutralizing antibodies. Successful vaccine
targeting of the CD4BD will require a sufficiently rigid immunogen that mimics the
native epitope conformation and bypasses B cell checkpoints restricting synthesis of the
neutralizing antibodies.

Keywords: B cell superantigen, catalytic antibody, CD4 binding determinant, human immunodeficiency virus,
neutralizing antibody, vaccine
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In 2008, an estimated 33.4 million people worldwide were liv-
ing with HIV/AIDS; 2.7 million people were newly infected; and
2.0 million people died due to AIDS. Anti-retroviral therapy
(ART) suppresses viral replication and increases life expectancy.
However, ART does not eradicate the infection, resistant viruses
emerge, and adverse effects are frequent. Also, ART is costly,
and sustaining affordable ART coverage in resource-poor regions
where HIV is endemic is difficult. Developing a safe and
efficacious vaccine represents the best long-term solution to
combating HIV.

No effective vaccine has emerged from over 170 clinical tri-
als that evaluated more than 30 vaccine candidates for induction
of neutralizing antibodies, cytotoxic T cells or both arms of the
immune system (McElrath and Haynes, 2010; Munier et al., 2011;
Koff, 2012). Neutralizing antibodies, which can block infection
by the free virus, are crucial to protection. Cytotoxic T cells can
lyse infected cells, but have no effect on free virions. The root
cause is the genetic sequence variability of the antigenic epitopes
of HIV created by its error-prone reverse transcriptase enzyme.
Several genetically distinct Group M HIV-1 subtypes have been

CRF01-CRF54) (Los Alamos National Laboratory Theoretical
Biology and Biophysics Group, 2012). Any protective immune
response to the epitopes induced by the infection is transient, as
the virus quickly develops resistance mutations, and the adaptive
immune response is too slow to keep pace with the generation
of the viral quasispecies. As anti-HIV antibodies and cytotoxic
T cells usually recognize the mutable envelope regions, the infec-
tion is not controlled, and thousands of diverse HIV strains have
evolved world-wide.

The recent RV144 trial tested a vaccine candidate composed
of gpl20 protein and a gpl20/gag/protease expression vector
(Rerks-Ngarm et al., 2009). This was the first trial showing a
statistically significant reduction in the risk of contracting HIV
infection, but the risk reduction was marginal, and the results
are not clinically meaningful in slowing the pandemic. An enve-
lope vaccine derived from a single HIV strain may be conceived
to provide some protection against infection by strains that
express sufficiently similar mutable epitopes, but it is practi-
cally impossible to design a single vaccine immunogen capa-
ble of inducing antibodies that are broadly reactive with the
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mutable antigenic epitopes expressed by genetically divergent
HIV strains.

To develop a broadly protective vaccine, it is necessary to
target an HIV determinant that is structurally constant across
the range of Group M HIV-1 strains responsible for infection
world-wide. Moreover, it is important that the target determinant
fulfills an essential role in infection—otherwise antibodies to the
determinant may not neutralize the virus. Many recent vaccine
development efforts have been focused at the envelope deter-
minants essential for interaction with host receptors. Such viral
determinants are likely to be structurally conserved to maintain
the ability to the virus to infect cells.

OVERVIEW OF THE CD4BD

The envelope glycoprotein complex (Env) on the HIV surface
mediates entry into host cells and represents a prime target for
neutralizing antibodies (Pantophlet and Burton, 2006). Env con-
sists of homotrimeric complexes of non-covalently associated
gp120-gp41 heterodimers derived by proteolytic processing of the
precursor gpl60 protein. The surface required for CD4 recep-
tor binding is composed of gp120 residues with no involvement
from gp41. Initial HIV binding to host cell CD4 receptors is an
obligatory step for infection by all HIV-1 subtypes. This pro-
vides a selective pressure for structural conservation of the gp120
determinant that binds CD4 (the CD4 binding determinant,
CD4BD), and the CD4BD has remained mostly conserved while
the sequence of other gp120 regions has increasingly diverged as
various Group M HIV-1 strains have evolved over the course of
the pandemic in the last 3 decades.

The approximate spatial localization of the CD4BD has been
deduced from crystallography of gp120 that was experimentally
“rigidified” by excision of certain flexible segments (Kwong et al.,
1998) together with site-directed mutagenesis followed by analy-
sis of CD4 binding and monitoring of infectivity (Olshevsky et al.,
1990). The complete CD4BD is a discontinuous determinant
composed of residues distributed over six structural segments of
gp120 (Figure 1): (1) the V1/V2 stem ($2—f3 segments), (2) loop
LD, (3) the p15-a3 excursion from the gp120 surface, (4) the
B20—P21 hairpin, (5) the 23 strand, and (6) the f24—a5 con-
nection loop. All but the p2—f3 and p20-B21 segments of the
CD4BD are located in the so-called gp120 “outer” domain, a
designation meant to imply that this gp120 region is not proxi-
mal to the gp41 membrane anchor (Kwong et al., 1998). In the
unliganded state of SIV gp120, the p2—-B3 and p20—P21 hairpin
regions are separated away from each other by about 20-25A
(Chen et al., 2005). Unliganded HIV gp120 structures are avail-
able, but these structures contain deletions that simulate the
CD4-bound state of the protein (Kwon et al., 2012). The CD4BD
portion located in the outer domain (CD4BD®P) is suggested to
mediate initial weak contacts with CD4 (Zhou et al., 2007). This
interaction is proposed to trigger a conformational rearrange-
ment that translocates the 2—83 and p20—f21 hairpins toward
each other, forming the bridging sheet between the outer and
“inner” domains.

Eight CD4 contacting amino acid residues are clustered in the
linear stretch of amino acids 421-433 located in the p20-f21
bridging sheet region, corresponding to 33% of the overall
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FIGURE 1 | Putative CD4BD structure. The structure was deduced from
the complex of gp120 (core), soluble CD4 and antibody 17b (Kwong et al.,
1998). The main chain is shown as a tube, with the CD4BDOP elements of
the so-called Phe43 pocket in blue (the cavity into which CD4 residue
Phe43 penetrates) and the CD4BD®"™® elements located in the bridging
sheet in purple. Other CD4 contacting residues are in green. Side chain
atoms of CD4 contacting residues are shown as ball-and-stick structures.
Created with PDB data 1GC1.

CD4BD (Kwong et al., 1998). This includes the contiguous
425-430 region. Many of these residues are essential for virus
infection as shown by mutagenesis studies (Lasky et al., 1987;
Cordonnier et al., 1989). Consequently, the 421-433 region con-
stitutes the critical core of the CD4BD (CD4BD®°™¢). If the CD4
binding model entailing initial, weak binding at the CD4BD®P
from crystallography studies is correct (Zhou et al., 2007), at a
minimum CD4 contacts at the CD4BD" are essential for subse-
quently strengthened, high affinity CD4-HIV Env binding needed
to express the binding site for the co-receptor (for most primary
isolates, CC-chemokine receptor type 5). As noted in the next sec-
tion, synthetic CDBD"® peptides bind CD4 with modest affinity
with no dependence on the remaining components of the overall
CD4BD, and we do not exclude a requirement for CD4BD°" at
the earliest CD4-HIV interaction stages.

POTENTIAL OF CD4BDOP AND CD4BD®°'e AS HIV VACCINE
TARGETS

The search for model neutralizing antibodies to the CD4BD that
neutralize genetically divergent HIV strains and CD4BD-based
immunogens that can induce the synthesis of such neutraliz-
ing antibodies has been ongoing for over two decades. As CD4
binding initiates infection, an antibody that binds an essen-
tial epitope within the CD4BD is predicted to neutralize the
virus by a steric hindrance mechanism. In addition, a class of
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antibodies that catalyze the hydrolysis of gp120 following initial
non-covalent binding to the CD4BD with HIV neutralizing activ-
ity was described by our group (Paul et al., 2004; Planque et al.,
2007). Other “non-neutralizing” mechanisms of viral inhibition
are also feasible. For example, antibodies may facilitate removal
of virus-infected cells by natural killer cells. This mechanism
is designated antibody-dependent cell-mediated viral inhibition,
involving recognition of an HIV epitope by the antibody vari-
able domains, followed by binding of the antibody constant
domain region to Fc receptors expressed by natural killer cells
(Bialuk et al., 2011).

The CD4BD, however, is poorly immunogenic, and difficulties
were encountered in identifying neutralizing anti-CD4BD anti-
bodies. In HIV primary isolates, virtually the entire outer domain
surface is covered by glycans, and only the CD4-binding loop
and neighboring surfaces are solvent exposed. Sugars are generally
poorly immunogenic, and the glycan “shield” is thought to reduce
the antibody response to the shielded surface (Wyatt et al., 1998;
Wei et al., 2003). However, the exposed segments of the CD4BD
also fail to induce an adequate antibody response (see next sec-
tion). Other mechanisms underlying the poor immunogenicity of
the CD4BDOP and CD4BD“™ must be identified and bypassed to
design an HIV vaccine.

Selection of a target epitope within the CD4BD is key step
in designing a vaccine that can induce a broadly neutralizing
antibody response (Table 1). Discussed below are considerations
likely to influence the neutralizing efficacy of various antibodies
to the CD4BD and induction of their synthesis.

CD4BDOP

Antibodies to the CD4BD®P were cloned from HIV infected
patients. Most anti-CD4BDOP antibodies did not neutralize
genetically diverse primary HIV isolates (Herrera et al., 2003;

Binley et al., 2004). For over decade, the sole exception was
the monoclonal antibody b12 with comparatively broad neu-
tralizing activity directed to genetically heterologous HIV strains
(Burton et al., 1994). Antibody b12 neutralized about 40% of
the multi-clade pseudovirus panel tested (Binley et al., 2004;
Walker et al., 2009; Corti et al., 2010). Neutralization potency
for infection of the host cells engineered to express the type
5 chemokine receptor by pseudovirus strains was often supe-
rior to infection of human lymphocytes by primary HIV isolates
(Binley et al., 2004). Intravenous infusion of antibody b12 pro-
tected rhesus macaque monkeys against vaginal challenge with
simian human immunodeficiency virus engineered to express
the HIV gp120 gene (Parren et al, 2001). The antibody also
protected immunodeficient mice populated with human lym-
phocytes and then challenged with HIV (Gauduin et al., 1997).
With the advent of improved B cell cloning technologies, several
additional CD4BDP antibodies with broad and potent neutral-
izing activity have been identified recently. Among the broadest
and most potent monoclonal antibodies of this class are VRCO1,
NIH45-46, and PGV04 (90% of pseudovirus strains tested were
neutralized) (Wu et al., 2010; Scheid et al., 2011; Falkowska et al.,
2012). The protective efficacy of antibodies to the CD4BDOP in
humans has not been tested.

Structural analysis of neutralizing and non-neutralizing
antibodies to the CD4BD®P has highlighted the difficulty
in designing an immunogen that can induce the synthe-
sis of the neutralizing antibody variety. The neutralizing
and non-neutralizing anti-CD4BD®P antibodies typically bind
monomeric gpl20 with comparable binding affinity and their
binding determinants are largely common (Moore and Sodroski,
1996; Pantophlet et al., 2003; Zhou et al., 2007, 2010; Wu et al,,
2011). Yet the non-neutralizing antibodies showed little or no
binding to the Env expressed on cell-surface (which was assumed

Table 1 | gp120 CD4BD neutralizing epitopes.

Antibody Structure, location Neutralizing Antibody source Neutralization properties
epitope antibodies
CD4BDOP Discontinuous amino IgG b12 Infected human (presumed subtype Broad and potent inhibition of pseudovirus
acid residues including B virus) entry into cells engineered to display
CD4 contacting residues ] receptors for HIV; For some antibodies,
in the outer domain IgG VRCO1 Infected human (subtype B virus) neutralization of PBMC infection by HIV
I9G NIH45-46 Same donor as VRCO1 primary strains is unknown; Appearance of
resistant viruses
1gG PGV04 Infected human (subtype A/D
hybrid virus)
CD4BDcere Linear epitope consisting 1gG YZ23 E-gp120-immunized mice Broad and potent neutralization of PBMC
of residues 421-433; infection of HIV primary isolates; No
Antibodies YZ23 and IgG 3A5 E-gp120-immunized mice inhibition of pseudovirus entry into
3Ab also recognize a scFv JL413 Non-infected human (lupus engineered cells, suggesting distinct
conserved V3 stem patients) CD4BD¢°"® dependence of infection in two
assay systems
scFv JL427 Same donor as JL413
IgA LTS Polyclonal serum IgA from

long-term survivors of HIV infection
(19-21 years)
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to mimic the functional gp120 structure on the virus surface)
(Pancera and Wyatt, 2005). Clearly, monomer gp120 binding data
cannot be extrapolated to recognition of the native CDBDOP,
CD4-gp120 is thought to trigger an allosteric conformational
change that exposes the coreceptor binding site. Antibodies to the
CD4BDOP with and without neutralizing activity induce distinct
conformational changes in monomer gp120 (Zhou et al., 2007;
Chen et al., 2009; Falkowska et al., 2012), but these analyses have
not provided guidance in rational design of an immunogen that
can induce the synthesis of the neutralizing antibodies.

If the role of the CD4BDOP in CD4 binding is limited to
providing initial weak contacts, an antibody that mimics exactly
the mechanism of CD4-CD4BDOP binding may not be suffi-
cient to interfere with the autonomous binding interactions of
CD4 with the remaining CD4BD components. For more effective
neutralization, therefore, it is desirable to induce antibodies that
make additional high affinity contacts with the remaining CD4BD
components or spatially remote gp120 residues that control the
CD4BD conformation. In the case of antibody VRCO1, unique
contacts not directly involved in CD4 binding include certain sug-
ars in the outer domain and amino acids in the inner domain
region (Zhou et al,, 2010). However, an antibody specificity
outside the functionally essential CD4BD also increases the like-
lihood that antibody-resistant virus strains will emerge. Indeed,
while antibody VRCO1 neutralizes heterologous virus strains, the
dominant autologous HIV quasispecies in the patient from whom
the antibody was isolated were antibody-resistant (Wu et al,,
2012). Promising attempts to improve the epitope specificity
of antibodies to the CD4BDOP by a rational, laboratory-level
mutagenesis approach have been reported. Introducing a muta-
tion in such an antibody designed to increase contact with the
gp120 P21 sheet region that helps form the CD4BD™ epitope
resulted in increased neutralization potency and breadth (Diskin
et al., 2011), supporting the potential value of an immunogen
that induces antibody responses to gpl20 regions outside the
CD4BD®P.

The difficulties in isolating broadly neutralizing antibod-
ies to the CD4BDOP and understanding their behavior have
inspired conflicting hypotheses invoking intrinsic weaknesses in
the humoral immune system as the cause, that is, an inability of
germline antibodies to recognize the CD4BDOP vs. a failure of the
adaptive phase of the antibody response. Inducing antibody syn-
thesis involves initial weak immunogen binding to B cell receptors
(BCRs) with V regions encoded by germline genes (BCRs; anti-
bodies associated with signal transducing proteins), followed by
immunogen-driven clonal expansion of B cells and selection of
BCRs containing mutated complementarity determining regions
(CDRs) expressing improved antigen binding affinity. The BCR
repertoire expressed constitutively prior to contact with immuno-
gen is diverse and large, composed of paired light chain and heavy
chain variable domains (Vi and Vg domains) generated from
about 500V, D, and J germline genes by V-(D)-J gene recombina-
tion, a step that introduces sequence diversity in CDR3 (Janeway
et al., 2005). The diversity of constitutive BCRs is innate in the
sense that it is generated randomly with no requirement for con-
tact with immunogen. Dimitrov and coworkers suggested that
an unusually low binding affinity of conserved HIV epitopes for

constitutive BCRs precludes B cell recruitment into the adaptive
differentiation pathway (Xiao et al., 2009) (Figure 2). Conversely,
the neutralizing antibody VRCO1 cited in the preceding para-
graph contains extremely dense V region somatic mutations
(Scheid et al., 2011; Wu et al, 2011), which prompted the
hypothesis that B cells are incompetent in generating antibodies
containing a sufficient number of adaptive mutations upon expo-
sure to HIV. The VRC-like antibodies originate exclusively from
the VH-1 antibody family containing the germline-encoded VH
Arg71 residue important for CD4BDOP recognition (West et al.,
2012), suggesting the importance of pre-existing germline anti-
body repertoire in mounting an adaptive antibody response to the
CD4BD®P,

cD4BDeere
The CD4BD“™ is structurally distinct from the CD4BDOP,

Except in the early years of HIV vaccine research, dominant
research groups in the field have held that the CD4BD®P is the

Other conserved

, CD4BD®0"®
epitopes

Germline
BCR+CD4BS
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BCR-CD4BS
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FIGURE 2 | Reasons underlying failed induction of antibodies to
CD4BD. Competing hypotheses advanced to explain failure of adaptive
antibody synthesis to the CD4BD. Middle white panel: regulatory
check-points in B cell differentiation influencing neutralizing antibody
production. Right yellow panel: the CD4BD°™® is a B cell superantigenic
epitope that binds the FRs of constitutive BCRs non-covalently, but this
causes B cell down-regulation. In contrast, covalent vaccination
up-regulates B cells. Left light blue panel: other popular hypotheses based
on studies by Dimitrov and coworkers, Scripps Institute investigators and
NIH Vaccine Research Center investigators. Sufficient V gene mutations
needed to bind CD4BD do not occur. Alternatively, the affinity of conserved
HIV epitopes for BCRs is too low. NAbs, neutralizing antibodies. X,
weakness in B cell response. /, our proposed basis for HIV vaccination.
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best target epitope for vaccination, and little attention was paid
to the CD4BD°" as an alternative worthy of detailed structural
discussion. However, the pdb files of various crystal structures of
“rigidified” monomer gp120 contain important structural details
that are consistent with the suitability of the CD4BD" as a vac-
cine target (e.g., CD4 liganded 1GC1, 1G9M, 1G9N, 1RZ], IRZK,
3JWD, 3JWO, 2NXY, 2NXZ, 2NY5, 2B4C, 2QAD; unliganded
2BF1, 3TGQ, 3TGR, 3TGT, 3TIH; CD4BDOP antibody liganded
3NGB, 3SES8, 3SE9, 3U7Y, 2NY7, 3HI1, 3IDX; low-molecular-
weight CD4 mimetic liganded 1YYL, 1YYM, 2I5Y, 2160, 3TGS).
The solvent-exposed area of the CD4BD°" (residues 421-433) is
971-1023 A? (Kwong et al., 1998, 2000; Chen et al., 2005; Huang
et al., 2005), exceeding the area needed for high affinity antibody
binding (Wilson et al., 1991). While translational movement of
the CD4BD"-containing bridging sheet upon CD4 binding has
been emphasized (Kwong et al., 2002), the crystal structures pro-
vide no support for the occurrence of a conformational change
within the CD4BD" (Figure 3A). There is no evidence, there-
fore, that the CD4-binding function of the CD4BD" is sterically
unfavorable or depends on a temporally preceding allosteric
conformational transition.

Linear synthetic peptides encompassing the CD4BD“’ are
conformationally flexible in aqueous solution. Circular dichro-
ism and nuclear magnetic resonance studies failed to identify a
preferred conformation unless solvents providing a hydropho-
bic environment are included (Graf Von Stosch et al., 1995).
Interestingly, in such solvents, the CD4BD"™ synthetic peptides
assume a helical conformation that binds CD4 autonomously
with moderate binding affinity (Reed and Kinzel, 1991; Robey
et al., 1996). Inclusion of the N terminal pentapeptide L-P-C-R-I
corresponding to residues 416—420 also favors assumption of
a helical conformation by the CD4BD™ residues 421-433
with improved CD4-binding capability (Reed and Kinzel, 1993).

The solution-state helical CD4-binding conformation differs
from the B-fold CD4BD“™ state identified in the model
monomer gpl20 crystals (Figures3B,C), and it is not clear
whether the crystal structures are useful models for the unli-
ganded and CD4-bound states of the native trimeric gp120 on
the HIV surface.

B cells and the CD4BD°™ have a remarkable relationship. The
CD4BD*®°™ overlaps the B cell superantigen site of gp120. Like
other B cell superantigens, gp120 is recognized non-covalently
by the framework regions (FRs) of pre-immune antibodies pro-
duced without prior HIV exposure (constitutive antibodies)
(Townsley-Fuchs et al., 1997; Silverman and Goodyear, 2006).
Several groups reported that antibodies produced spontaneously
by humans without HIV infection or vaccination bind the
CD4BD*®°"-spanning superantigenic determinant of gp120 and
synthetic peptides containing the CD4BD" (Berberian et al,,
1993; Goodglick et al., 1995; Karray and Zouali, 1997; Karray
et al.,, 1998; Neshat et al., 2000). Superantigen epitopes are recog-
nized by antibodies containing V regions in the germline config-
uration with no requirement for an immunogen-driven antibody
response (Silverman and Goodyear, 2006). Rare CD4BD®"®-
specific antibody fragments that neutralize diverse HIV strains
potently have been isolated from phage display libraries prepared
from non-infected humans (single chain Fv fragments JL413,
JL427) (Karle et al., 2004; Planque et al., 2012b). The binding
occurs mostly at germline gene-encoded structural elements in
the FRs and certain CDR residues outside the traditional antigen-
binding pocket formed by the CDRs (Berberian et al., 1993;
Karray et al., 1998; Neshat et al., 2000).

Braun’s group studied the relationship between the levels
of reversibly binding IgGs to the gpl120 superantigen site in
non-infected humans and the risk of contracting HIV infection
(Townsley-Fuchs et al., 1996). Increased binding was correlated

CD4-liganded

Unliganded,
SIv

FIGURE 3 | CD4BD®°" conformations. (A) Superimposed CD4BDc°"®
conformations in gp120 variants (residues 421-433) complexed with soluble
CD4 and antibody 17b (cyan; 1GC1) and gp120 (extended core) without a
ligand (purple; 3TGQ, 3TGR, 3TGT, 3TIH). For comparison, the CD4BD®°"® of
unliganded SIV gp120 is included (yellow; 2BF1). Protein backbones were
superimposed onto the CD4-bound structure. (B) Structure of a synthetic

peptide corresponding to gp120 416-430 determined by nuclear magnetic
resonance spectroscopy (NMR) in 2,2,2-trifluoroethanol. (C) Structure of the
corresponding 416-430 region in the gp120 protein determined by X ray
crystallography (1GC1). The NMR-derived peptide structure is reprinted with
permission from reference Mihailescu et al. (2002) (Copyright 2002 American
Chemical Society).
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with reduced incidence of HIV infection. Like the innate
reversible binding activity for superantigens, some antibodies
express a germline V gene encoded catalytic activity (Gao et al.,
1995; Gololobov et al., 1999; Reshetnyak et al., 2007; Sharma et al.,
2009; Hifumi et al., 2012). Upon completion of the non-covalent
CD4BD’® binding step, a subset of the constitutive antibodies
was reported to catalyze the hydrolysis of gp120 by a nucleophilic,
serine protease mechanism (Paul et al., 2004; Planque et al., 2007).
The catalytic property is expressed at greatest levels by anti-
bodies of the IgM and IgA classes, and the secretory IgA from
non-infected humans neutralized HIV (Planque et al., 2007).
Importantly, the antibodies from various non-infected humans
recognize the CD4BD" at highly variable levels, and only a small
subset of the innate antibodies neutralize HIV with potency that
is sufficiently great to anticipate protection against the infection
(Planque et al., 2012b).

The reversible binding and catalytic properties of the pre-
existing antibodies may furnish limited innate protection against
HIV (Townsley-Fuchs et al., 1996; Planque et al., 2007, 2012b).
There is, however, a heavy cost—the failure of adaptive B cell
immunity. Stimulatory antigen binding at antibody CDRs drives
B cell clonal selection. By contrast, superantigen binding at
the FRs likely induces a distinct cellular signaling pathway(s)
that causes apoptosis, thereby counteracting any stimulatory
B cells signals needed to develop a mature class-switched anti-
body response (Silverman and Goodyear, 2006; Goodyear et al.,
2007). Superantigen-FR binding, therefore, may be viewed as
down-regulatory event (Figure 2). Infected humans and animals
immunized with gp120 rarely generate class-switched neutraliz-
ing antibodies to the CD4BD’"® by adaptive immune mechanism
(Sun et al., 1989; Kelker et al., 2010). It may be hypothesized that
vulnerable epitopes essential for microbial survival have evolved
superantigenic character as an immune evasion mechanism that
precludes an efficient adaptive antibody response (Goodyear and
Silverman, 2005; Planque et al., 2008). Rapid induction of B cell

adaptive immunity is a stochastic process driven by certain high
probability cellular signaling pathways. Adaptive synthesis of the
antibodies by CD4BD“"® binding at the BCR FRs, on the other
hand, is a low probability event. The prohibition on producing
neutralizing antibodies to the CD4BD" does not appear to be
an absolute one. We reported CD4BD "¢ -specific antibodies with
potent neutralizing activity directed to genetically heterologous
HIV strains in the blood of three hemophilia A patients who
survived infection for over two decades with little or no require-
ment for ART (Planque et al., 2010). It may be hypothesized
that upon sufficiently prolonged stimulation by HIV, the immune
system can bypass the restriction on adaptive synthesis of neutral-
izing antibodies to the CD4BD°"® epitope. The three hemophilia
A patients were coinfected with hepatitis C virus and had received
extensive Factor VIII replacement therapy. Consequently, further
studies will be needed to rule out fortuitous immune stimulatory
events unique to these patients as the cause of CD4BD "¢ -specific
antibody production.

As innate, FR-based CD4BD“"¢-specific antibodies neutralize
HIV, rapid amplification and improvement of these antibod-
ies may serve as a viable basis for developing an HIV vac-
cine (Figure 4). Success, however, will require solutions to these
broad problems. First, the physiological restriction on vaccine-
driven synthesis of antibodies dependent on their FRs for HIV
neutralization must be overcome. Second, CD4BD“"® confor-
mational flexibility must be controlled. Synthetic peptides were
useful in discovering the innate, FR-dependent antibodies to
the CD4BD™. Small peptides, however, are flexible, and they
assume alternate conformations depending on their microenvi-
ronment. The importance of controlling CD4BD“™ conforma-
tion is evident from reports of vigorous production of antibodies
to synthetic peptides that displayed inconsistent HIV neutraliz-
ing activity and varying binding specificity (Neurath et al., 1990;
Morrow et al., 1992; Karle et al., 2003). While the CD4BD"®-
spanning peptides detect pre-existing neutralizing antibodies,

Innate

Specific, highest
affinity subset

Antibody frequency

Ideal vaccine

Moderate

FIGURE 4 | Constitutive CD4BD°°"-reactive antibodies pertinent to
HIV vaccination. Left panel: model of innate germline antibody
repertoire containing a wide range of antibodies with varying
CD4BD¢°"®-reactivity and HIV neutralizing potency. A small antibody
subset with the greatest CD4BDC°™-reactivity is hypothesized to
possess potent and broad neutralizing activity (red). Middle panel:

CD4BDc¢°re reactivity

an electrophilic vaccine expressing a CD4BDC°™ that mimics the viral
CD4BD®°™® conformation accurately will selectively amplify the broadly
neutralizing antibody subset with greatest CD4BDC®°™®-reactivity. Right
panel: a vaccine that mimics the viral CD4BD°™® imperfectly will
amplify an antibody subset with lesser CD4BDC®°™®-reactivity and
neutralizing activity (pink).
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inducing the synthesis of such antibodies is more onerous. If the
dose of the CD4BD"® peptide immunogen is sufficient to sat-
urate the FR-based binding sites, the peptide can also induce a
classical adaptive antibody response by binding at the lower affin-
ity CDR-based binding sites of germline BCRs (Figure 5). Peptide
binding at the FRs will not induce antibody synthesis, as this
interaction is thought to induce down-regulatory B cell signaling.
Binding at the CDRs induces antibody synthesis, but antibody
response may be dominated by irrelevant, non-neutralizing anti-
bodies due to the induced-fit binding mechanism (Figure5).
Indeed, synthetic peptide immunogens often fail to induce the
synthesis of neutralizing antibodies to the native conformation
of the corresponding epitope in full proteins for the same reason,
i.e., folding of peptides into irrelevant conformations induced by
fitting into the germline antibody binding site (Leder et al., 1995;
Wedemayer et al., 1997).

The conformation of peptide epitopes within the back-
bone of large proteins is usually more rigid and less sensitive
to transitions upon microenvironmental perturbations com-
pared to the synthetic peptides. Full-length, monomeric gp120
expresses the CD4BD™ in a conformation reactive with the
innate, FR-dependent neutralizing antibodies (Nishiyama et al.,

=

Flexible peptide loses

correct conformation

and does not induce
neutralizing Ab

B

FIGURE 5 | Hypothetical mechanism for induction of non-neutralizing
antibodies by flexible CD4BD®°" mimetics. A flexible mimetic can detect
innate antibodies (or B cell receptors) that utilize the FRs for CD4BD¢°™®
recognition and induce the synthesis of such antibodies if mechanisms for
productive B cell stimulation can be devised (Bottom). When used as an
immunogen, the conformation of the flexible mimetic can adapt to the
structure of the B cell receptor CDRs by the induced-fit mechanism, which
will corrupt the adaptive antibody response and skewed the response
toward production of non-neutralizing antibodies directed to the incorrect
CD4BD*®°™® conformation (Top).

CDR binding

Flexible peptide 2=

2009; Planque et al., 2010). Despite the evident existence of a
conformationally correct, solvent-exposed CD4BD“*® on the sur-
face of gp120 (Nishiyama et al., 2009; Planque et al., 2010),
immunization with this protein does not induce a robust adap-
tive anti-CD4BD" antibody response (Sun et al., 1989; Kelker
et al., 2010), and these antibodies are also poorly represented in
the antibody response to HIV infection (Planque et al., 2010).
The down-regulatory interactions at the BCR FRs, therefore, may
be the primary factor limiting the CD4BD°"¢-directed neutraliz-
ing antibody response to the monomeric gp120 immunogen and
oligomeric gp120 on the HIV surface. As the CD4BD™ is rec-
ognized preferentially by the innate FRs compared to the CDRs,
no induction of the CDR-based antibody response to this epitope
is anticipated unless the monomer gp120 immunogen and infec-
tious virions are presented to the immune system at an excess
concentration.

CD4BD MIMETICS AS CANDIDATE VACCINES

There is no doubt that HIV has evolved highly specialized mech-
anisms that enable its vulnerable epitopes to evade physiologi-
cal immune responses. Previously tested candidate vaccines do
not induce sufficient neutralizing antibodies to the CD4BD for
prevention or control of the infection. This section describes
attempts to engineer Env-based immunogens that might address
the challenges in inducing the antibodies to CD4BDOP and
CD4BD*®°re,

C€D4BDOP

It was suggested that the poor antibody response to the con-
served CD4BDOP epitopes was due to the superior intrinsic
immunogenicity of gpl20 variable domain epitopes (Boudet
et al., 1992; Montefiori et al., 1993) and conformational flex-
ibility of gp120 (Kwong et al., 2002). Conformational differ-
ences between the CD4BDOP epitopes expressed by monomer
gp120 and oligomeric gp120 on the viral surfaces have also
been invoked to explain the poor CD4BDOP antibody response
induced by the former immunogen (Chen et al., 2009). Extensive
and sophisticated projects were designed to develop analogs of
gp120 that overcome these weaknesses, but no immunogen capa-
ble of inducing broadly neutralizing antibodies has emerged.
For example, a mutant gp120 was prepared (PF2-gp120) by delet-
ing the immunodominant V1, V2, and V3 loops and the N- and
C-termini, and mutations were introduced (T257S and S375W)
to mimic the CD4-bound state (Xiang et al., 2002). Oligomeric
PF2-gp140 containing the GCN4 trimerization motif was pre-
pared to replicate the trimeric Env spikes on the HIV surface
(Dey et al., 2007). These analogs displayed limited selectivity
in discriminating between binding to reference neutralizing and
non-neutralizing antibodies to CD4BD®P epitopes, but they did
not induce the synthesis of broadly neutralizing antibodies in
rabbits (Dey et al., 2007; Feng et al., 2012).

CD4BDOP epitopes are composed of discontinuous gp120
regions composed of small peptide units and individual amino
acids. Protein epitopes can adopt a multitude of conformations
by the induced-fit mechanism along the binding reaction coor-
dinate. Consequently, it is difficult to rationally design mimetics
that replicate the functional CD4BDOP epitope conformations.
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Peptides that mimic the CD4BD®P have been sought based on
binding of the antibody b12 from a random peptide library
(Zwick et al., 2001). A 15-residue disulfide-linked dimer that
bound the antibody with a uM Kp was identified. The peptide
is homologous in sequence to gp120 loop LD, a CD4BD compo-
nent. However, the antibody makes distinct types of contacts with
the peptide versus gp120 according to crystallography, and the
peptide mimics at most 1-2 binding sites of the antibody-reactive
CD4BDOP epitope (Saphire et al., 2007). Immunization with the
peptide did not elicit neutralizing or gp120-binding antibodies
(Saphire et al., 2007). Given the varying neutralizing properties
of anti-CD4BDOP antibodies with largely shared epitope speci-
ficity, it is hard to see how the peptide binding strength can be
applied to develop a CD4BDOP mimotope capable of inducing
neutralizing antibody responses.

cb4BDcore

Like the hypothetical CD4BDOP-based vaccine, developing a
CDBD’ immunogen that induces the synthesis of broadly neu-
tralizing antibodies must solve basic science hurdles, chiefly, the
problem of B cell superantigenicity. A potential solution to this
problem has emerged serendipitously. Conformational mimicry
of the native CD4BD" is also essential. On the positive side,
the CD4BD" is a linear epitope. Synthetic CD4BD"™ peptides
are a useful starting point for identification of a probe that can
accurately detect neutralizing antibodies, and potentially might
induce the synthesis of neutralizing antibodies.

Electrophilic gp120 (E-gp120) analog

E-gp120 displays novel molecular properties that support its
potential as a vaccine candidate capable of inducing neutral-
izing antibodies to the CD4BD®™. It consists of glycosylated
monomeric gpl20 conjugated at Lys residues to electrophilic
phosphonates via a linker (Paul et al., 2003). E-gp120 displayed
soluble CD4 (sCD4) binding comparable to the non-electrophilic
gp120, indicating a preserved CD4BD conformation. Several
antibodies with neutralizing activity attributable to CD4BD"®
recognition were bound by E-gp120 at levels somewhat supe-
rior to non-electrophilic gp120, indicating that the CD4BD™

epitope is accessible on the E-gp120 surface (the innately pro-
duced single chain Fv JL427, polyclonal IgA from survivors of
prolonged HIV infection) (Nishiyama et al., 2009; Planque et al.,
2010, 2012b). Binding of the anti-V3 monoclonal antibodies
447-52D and 268-DIV by E-gpl120 was reduced compared to
non-electrophilic gp120, suggesting selectively reduced accessi-
bility or partial destruction of the gp120V3 epitopes deriving
from structural perturbations attendant to electrophile inser-
tion (Nishiyama et al., 2009). Interestingly, E-gp120 sponta-
neously formed covalently bonded oligomers by virtue of an
intermolecular reaction between the phosphonate electrophile
and a naturally occurring gp120 nucleophilic site (Paul et al.,
2003; Nishiyama et al., 2005, 2009). Similar nucleophilic sites
serve as the catalytic sites of enzymes, and such sites were orig-
inally assumed to exist only in catalytic biomolecules. However,
studies with small molecule electrophilic probes revealed the
frequent distribution of the naturally occurring nucleophilic
sites in non-catalytic proteins, including the non-catalytic gp120
protein and non-catalytic antibodies (Planque et al., 2003;
Nishiyama et al., 2005).

Like the non-covalent CD4BD" binding capability, nucle-
ophilic reactivity of antibodies is an innate property encoded by
the germline V region genes (Planque et al., 2003). The E-gp120
immunogen was designed to stimulate the synthesis of antibodies
with adaptively strengthened nucleophilic reactivity coordinated
with improved non-covalent epitope recognition (Paul et al.,
2003). We hypothesized that antibodies with strengthened nucle-
ophilic reactivity would produce these outcomes (Figure 6): (1)
Irreversible gp120 binding if the antibody active site does not
support water attack on the covalent acyl-antibody complex;
and (2) Catalytic gp120 hydrolysis if the water attack step in
the hydrolytic reaction pathway is feasible. Both outcomes were
observed. Monoclonal IgG antibodies to E-gp120 displayed irre-
versible gp120 and HIV binding (Nishiyama et al., 2006). Some
of the IgGs catalyzed the hydrolysis of gp120 slowly (Paul et al.,
2003). The limitation in catalytic rate derives from the IgG class
constant domain scaffold—recent studies have shown that the
same V domains of an innately produced anti-CD4BD™ anti-
body displayed far superior catalytic activity when expressed

Covalent immune
complex 1

Noncovalent immune
complex

FIGURE 6 | Schematic representation of irreversible antigen (Ag) binding
and catalytic Ag hydrolysis by a nucleophilic antibody (Ab). Specificity

is derived from non-covalent epitope—paratope binding. The antibody
nucleophile (Nu) attacks the weakly electrophilic peptide bond carbonyl.
Covalent immune complex 1 is a resonant stable complex formed prior to

Covalent immune

Nu-Ab regenerated
complex 2

expulsion of C-terminal antigen fragment (NH,-Ag”). Covalent immune
complex 2 is an acyl-antibody complex that is hydrolyzed to release the
N-terminal antigen fragment (Ag’-X; X is an amino acid) when activated water
is available in the antibody combining site. Ag’ and Ag” are components of
the epitope recognized by the antibody.
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within the IgM scaffold compared to the IgG scaffold (Sapparapu
et al,, 2012), and polyclonal IgM preparations also displayed
superior catalysis compared to IgG preparations from the same
sera (Paul et al., 2004). The IgGs display no deficiency in non-
covalent recognition, and the subsequent nucleophilic attack step
results in irreversible gp120 binding, a reaction that is function-
ally equivalent to an infinite binding affinity event (Nishiyama
et al., 2006). Deficient support of subsequent steps in the cat-
alytic cycle in the IgG scaffold, however, can limit the rate
of hydrolysis.

Induction of neutralizing antibodies to the CD4BD™ by
immunization with gp120 devoid of the electrophiles is a rare
event (Sun et al., 1989; Kelker et al., 2010). Examination of
epitope specificity using overlapping synthetic gp120 peptides
yielded remarkable findings. First, monoclonal 1gGs induced by
the E-gp120 immunogen recognized the CD4BD" frequently,
an activity correlated with neutralization of genetically diverse
HIV strains (Figure 7A) (Nishiyama et al., 2009). Second, the
CD4BD*®°™® recognition capability was accompanied by recog-
nition of a second epitope that is spatially distant from the
CD4BD" in the gpl20 crystal structure, an epitope located
in the gp120V3 stem. Crystallography and mutagenesis of an
E-gp120 induced IgG (clone YZ23) suggested that binary epitope
specificity is explained by CD4BD" binding at the antibody
FRs in concert with binding of the second epitope at the CDRs
(Figures 7B,C) (Nishiyama et al., 2009). The replacement/silent
mutation ratios for the antibody CDRs and Vi FRs of the mon-
oclonal antibodies exceeded the ratios for a random mutational
process, suggesting an immunogen-driven antibody synthetic
response. We suggested these mechanisms underlying the neu-
tralizing antibody induction: (1) Covalent binding of nucleophilic

BCRs by E-gp120, a reaction generating a large amount of energy
that can be used for stimulating productive B cell signalizing
compared to the non-productive non-covalent binding of the
CD4BD*®° at the FRs; and (2) Stimulatory CDR-engagement by
a second epitope occurring simultaneously with FR binding of the
CD4BD*°"® epitope, which may compensate for down-regulatory
signaling due to FR-CD4BD°" binding.

While further studies are needed to establish the immuno-
logical checkpoints restricting physiological synthesis of anti-
CD4BD"® antibodies and the suggested mechanisms underlying
the success of E-gp120, the antibody epitope specificity and
neutralization studies indicate that the problem of CD4BD™
superantigenicity is solvable. The data indicate that insertion
of electrophiles in gp120 converts the poorly immunogenic
CD4BD®°" into a strongly immunogenic neutralizing epitope.
As the antibodies bind HIV, the CD4BD“' conformation
expressed by E-gp120 must mimic the native epitope confor-
mation on the HIV surface. It remains possible that E-gp120
induces the synthesis of antibodies to irrelevant CD4BD®
conformations in addition to antibodies to the correct epitope
conformation found to neutralize HIV broadly. Effective vac-
cination will require that the latter antibody subset is repre-
sented sufficiently in the polyclonal antibody response induced
by E-gp120. Ongoing analyses of macaque sera following immu-
nization with E-gp120 have provided encouraging neutraliza-
tion data about the quality of the polyclonal antibody response
(Planque et al., 2012a).

E-416-433
The idea of focusing the antibody response at the CD4BD°"®
using a synthetic peptide immunogen is attractive, as this may

® Neutralizing MAbs
® Non-neutralizing MAbs
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FIGURE 7 | Monoclonal antibodies (MAbs) raised to E-gp120. (A) Epitope
specificity-neutralizing activity relationships. Anti-E-gp120 MAbs frequently
display binary E-288-306 and E-421-433 binding. Binding of E-288-306 and
E-421-433 by 17 MAbs was measured. Plotted are band intensities (in arbitrary
volume unit, AVU) of the adducts formed by individual MAbs. Cyan quadrant
contains MAbs with adduct densities at least 4-fold greater than the
background mean band intensity of adducts formed by the irrelevant control
E-peptide probes (binary peptide binding MAbs). Yellow quadrant contains
monoreactive MAbs to E-288-306. Red symbols denote MAbs that neutralized
subtype C strain 97ZA009 (ICsp < 20 wg/mL); black symbols, non-neutralizing

MAbs. Number in parentheses corresponds to the MAbs in the quadrant.

(B) Binary epitope BCR-immunogen recognition model. E-gp120 binds BCR
nucleophiles (Nu) covalently, releasing a large amount of energy that eliminates
the physiological restriction on differentiation of innate CD4BDC¢°"®-specific

B cells. Concomitant CDR binding by the 2nd E-gp120 epitope also
counteracts negative B cell signaling. (C) Expanded view of V FR-cavity fitted
with the solid white object deduced by crystallography. Cyan, Vy FR residues;
green, Vi CDR2 residues. Yellow line connects atoms that can form a
nucleophilic diad by serving as the proton donor-acceptor pair (Vi T70 Oy; Vy
T70 carbonyl O). Panels (A) and (C) from reference Nishiyama et al. (2009).
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eliminate irrelevant non-neutralizing antibodies to other epitopes
and the offsetting effect of antibodies that might enhance HIV
infection via the Fc receptor and complement receptor-dependent
pathways (Takeda et al., 1988). There is no evidence that anti-
bodies to the CD4BD™ enhance infection by such pathways.
Unlike the CD4BDOP epitope, the CD4BD™ contains con-
tiguous amino acids necessary for CD4 binding. Linear syn-
thetic peptides mimic the CD4BD“" conformation sufficiently
to detect neutralizing antibodies. We employed probes residues
421-433 or 416-433 containing electrophilic phosphonate groups
(E-421-433 and 416—433, respectively), to identify antibodies that
neutralize primary HIV strains, including antibodies produced
spontaneously by humans without HIV infection (Planque et al.,
2007), patients with prolonged HIV infection (Planque et al,
2010) and animals immunized with E-gp120 (Nishiyama et al.,
2009). Other groups employed non-electrophilic synthetic pep-
tides to identify rare monoclonal antibodies to the CD4BD<°"®
that neutralized laboratory-adapted HIV strains. The E-416-433
peptide binds CD4 better than E-421-433 (Nishiyama et al., 2009)
on account of the helix stabilizing N-terminal Leu-Pro-Ser-Arg-
Ile (Reed and Kinzel, 1993) and insertion of bulky side chain
phosphonates may rigidify the peptides. However, the CD4 bind-
ing strength is still ~10-fold lower than E-gp120, presumably due
to the absence of the CD4BDP.

As noted in section “CD4BD"™”, a peptide probe that detects
neutralizing antibodies may not induce the synthesis of neu-
tralizing antibodies. E-416—433 represents an improved mimetic
of the CD4BD", but a small, conformational flexible pep-
tide can induce non-neutralizing antibodies to an irrelevant
CD4BD®°"® conformation due to the induced-fit binding mech-
anism. Preliminary macaque studies suggest that E-gp120 may
be the superior immunogen (Planque et al., 2012a). Factors
in evaluating the immunogenicity of E-416-433 versus E-gp120
include the presence of the additional outer domain CD4 bind-
ing residues in the latter immunogen. The CD4BDOP could
potentially stabilize the CD4BD"™ conformation, and E-gp120
could induce antibodies with overlapping CD4BD°"¢/CD4BDOP
specificity. Both E-gp120 and E-416-433 contain electrophiles
that bind BCRs covalently, but E-gp120 enjoys the advantage
of binary docking of the CD4BD“'¢ into the FR-based site and
a second epitope into the CDR-based site. A single E-peptide
molecule can only bind either at the FRs or the CDR, and CDRs
that bind the incorrect CD4BD" conformation may domi-
nate the E-416-433 induced antibody response. Binary E-gp120-
BCR docking, in contrast, facilitates production of Abs with the
FR-based site that recognize the correct CD4BD“" conformation
(Figure 5).

IMPORTANCE OF HIV NEUTRALIZATION ASSAYS

Immunochemical measurements of antibody-CD4BD reactivity
using purified gp120 or peptide probes do not predict faithfully
the HIV neutralizing capability due to the problem of CD4BD
conformational variability. Consequently, a central concern in
vaccine development is valid measurement of HIV neutralizing
activity using tissue culture assays. Antibodies to the CD4BD<"®
described in the preceding sections neutralize the infection of
human peripheral blood mononuclear cells by genetically diverse

strains found across the world (PBMC assay). This assay is often
cited as the “gold standard” for determining HIV neutralization
in tissue culture because it approximates the natural process of
infection in vivo. However, discrepant neutralization by antibod-
ies to various HIV epitopes in the primary virus-PBMC assay
vs. the pseudovirion-engineered reporter cell assay were noted
(Brown et al., 2008; Mann et al., 2009; Rusert et al., 2009; Paul
et al., 2010; Heyndrickx et al., 2012), including the CD4BD"¢
epitope. The CD4BD"¢-specific antibodies produced by long-
term survivors of HIV infection (Planque et al., 2010) or induced
in mice by E-gp120 immunization (Nishiyama et al., 2009) dis-
playing strong neutralizing activity in the PBMC assay did not
impede pseudovirion entry into genetically engineered host cells
expressing CD4 and chemokine receptors (TZM/BI cells) (Paul
et al., 2010). Antibodies to the CD4BD°P, in contrast neutralize
the infection of TZM/BI cells by pseudovirions. The reason for
discrepant neutralizing activity remains to be elucidated, but a
potential factor is overexpression of the HIV coreceptors result-
ing in decreased dependence of the infection process on the
CD4BD° residues essential for antibody recognition (Paul et al.,
2010). Chemokine receptor saturation can result in artifactual
inhibition of HIV infection. Certain antibodies and contaminant
endotoxin can induce the host cells to release f-chemokines that
inhibit infection of PBMCs (Geonnotti et al., 2010; Moody et al.,
2010). However, neutralization by antibodies to the CD4BD°"®
occurs by recognition of HIV, not the host cells. For example, HIV
neutralization increased progressively with increasing time of
antibody contact with HIV while holding PBMC exposure to anti-
bodies constant, ruling out anti-host cell effects (Planque et al.,
2012b). Also, the antibody neutralizing activity was preserved in
the presence of anti-B-chemokine antibodies. Additional evidence
for genuine neutralization attributable to CD4BD“" recogni-
tion is available: the neutralizing activity was enriched in the
CD4BD*° -specific subset of polyclonal antibodies; CD4BD°"¢-
specific recombinant antibodies displayed neutralizing activity;
the CD4BD" peptide inhibited antibody neutralization com-
petitively; neutralizing monoclonal antibodies were induced by
immunization with E-gp120; and the antibodies recognized
amino acids within the CD4BD" important for CD4 binding
(Planque et al., 2010). It may be concluded that the PBMC-based
assay is a valid measure of specific CD4BD“" recognition and
HIV neutralization.

CONCLUSION

A candidate HIV vaccine directed to the CD4BD must address
the problems of poor CD4BD immunogenicity and induction of
antibodies that recognize the native CD4BD conformation. The
CD4BD®P and CD4BD™ epitopes present distinct immuno-
genicity and structural problems that are associated with epitope
discontinuities, conformational instability, and B cell super-
antigenicity. Neutralizing antibodies to both types of epitopes
are available. Currently the only immunogen demonstrated to
induce a broadly neutralizing antibody response is electrophilic
E-gp120, a protein that reacts covalently with nucleophilic
BCRs. This immunogen addresses at least in part the prob-
lems of CD4BD superantigenicity and conformational flexibil-
ity. These problems are not limited to HIV. Other microbes
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such as Staphylococcus aureus express B cell superantigens. The
principle of covalent immunization with electrophilic immuno-
gens holds potential as a novel vaccine method that amplifies and
improves the small set of innate antibodies capable of recognizing

superantigens.
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