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The innate immune system plays a critical early role in host defense against viruses,
bacteria, and tumor cells. Until recently, natural killer (NK) cells and lymphoid tissue
inducer (LTi) cells were the primary members of the innate lymphocyte family: NK cells
form the front-line interface between the external environment and the adaptive immune
system, while LTi cells are essential for secondary lymphoid tissue formation. More
recently, it has become apparent that the composition of this family is much more diverse
than previously appreciated and newly recognized populations play distinct and essential
functions in tissue protection. Despite the importance of these cells, the developmental
relationships between different innate lymphocyte populations remain unclear. Here we
review recent advances in our understanding of the development of different innate
immune cell subsets, the transcriptional programs that might be involved in driving fate
decisions during development, and their relationship to NK cells.
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INTRODUCTION
Mucosal surfaces of the body are constantly bombarded with a
variety of both innocuous and pathogenic organisms. Lympho-
cytes of the gut-, bronchus-, and nasal-associated lymphoid tissues
(GALT, BALT, and NALT, respectively) play a critical role in pro-
tecting the body from harmful pathogens that enter through the
mucosal tissues and lung.

Innate lymphoid cells (ILCs) are an expanding family of
lymphocytes with innate cell characteristics. They co-ordinate
the organization of lymphoid tissues, maintain epithelial tissue
integrity, are responsible for the anatomical containment of com-
mensal bacteria and play important roles in the protection against
pathogens early during infection. Individual populations of ILCs
display distinct cytokine signatures in a manner analogous to the
specialization of cytokine secretion found in T helper (Th) cell
subsets (Figure 1) which has come to define ILC subsets as innate
versions, or perhaps as ancestors, of adaptive Th cells. Importantly,
innate lymphocytes produce their effector cytokines in response
to non-specific danger signals much more rapidly than their adap-
tive T cell counterparts allowing them to act immediately, before
antigen specificity is acquired. This rapid induction of effector
function allows ILCs to provide front-line protection at the onset
of an immune response thereby limiting pathogen spread and
regulating homeostatic tissue integrity.

The heterogeneity of ILCs has become increasingly complex.
Initially, these cells were categorized based on their dominant
expression of a single cytokine and confusingly, many different

Abbreviations: CP, cryptopatch; IL, interleukin; ILC, innate lymphoid cell; ILF,
isolated lymphoid follicle; LN, lymph node; NCR, natural cytotoxicity receptor; NK
cell, natural killer cell; Ror, retinoic-related orphan.

names have been applied to similar populations by the various
research groups. As the diversity within the subsets has emerged,
the need for consistent nomenclature has become apparent (Spits
et al., 2013). It is now suggested that ILCs be grouped into three
broad populations based on their phenotype, function, and tran-
scriptional regulation (Tait Wojno and Artis, 2012; Spits et al.,
2013; Figure 2). Group 1 ILCs (ILC1) are composed of the proto-
typical ILC, natural killer (NK) cells. This classification, however,
might also include other ILCs that express the transcription fac-
tor T-bet and produce interferon-γ (IFN-γ; Spits and Di Santo,
2011; Spits and Cupedo, 2012). Group 2 ILCs (ILC2) produce the
Th2 type cytokines interleukin (IL)-5 and IL-13 and are impor-
tant for helminth expulsion. The group 3 ILCs (ILC3) produce
Th17 type cytokines IL-17 and IL-22. They comprise the clas-
sical lymphoid tissue inducer (LTi) cells that are responsible for
the generation of lymphoid tissue during embryogenesis, LTi-like
cells that are phenotypically similar to LTi cells but are enriched
in the intestine of the adult, together with the natural cytotoxicity
receptor (NCR)-expressing NKp46+ ILC that produces IL-22 and
not IL-17.

Within these groupings, ILC subsets share some overlapping
features in their surface receptor phenotype and cytokine pro-
duction but are distinct in their requirements for specific different
transcription factors. Specification of immune cell fate is a stepwise
process encoded by transcription factors that act on committed
multi-potent progenitors and sequentially restrict their develop-
mental fate to a particular lineage allowing them to develop into
the mature cell type. Much has now been done in defining the
regulatory circuits of B cells (Nutt et al., 2011), T cells (Kaech and
Cui, 2012), NK cells (Sun and Lanier, 2011; Bezman et al., 2012),
and dendritic cells (DCs; Belz and Nutt, 2012), but the lineage
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FIGURE 1 | Parallels between innate lymphocyte populations and CD4+
helperT cell subsets. Multiple populations of CD4+ helper T cells exist and
these are characterized by the production of signature cytokines by each

subset. As the different populations of innate lymphocytes have emerged, it
has become increasingly clear that these subsets produce an array of
cytokines that parallel those of the helper T cell subsets.

defining transcription factors required for the differentiation of
innate lymphocyte subsets is less well understood. Understanding
the transcription factors and transcriptional networks that control
the differentiation of innate immune cell populations is a rapidly
developing area of research.

All ILC subsets are dependent on the transcriptional regula-
tor inhibitor of DNA binding 2 (Id2) while ILC3 cells or Rorγt+
ILCs rely on retinoic acid-related orphan receptor (Ror)γt down-
stream of Id2. A number of other transcription factors such as
Rorα, nuclear factor IL-3 [Nfil3, also known as E4-binding pro-
tein 4 (E4BP4)], thymocyte selection-associated high-mobility
group box protein (Tox), aryl hydrocarbon receptor (Ahr),
Runt-related transcription factor (Runx)/CCAAT-binding factor
(Cbfβ), Gata-binding protein 3 (Gata3), and Notch have also been
implicated in the development, survival, and function of these
populations.

As yet, the relationships between highly similar ILC populations
such as the different subsets of Rorγt+ ILCs and whether develop-
mental plasticity enables dynamic inter-conversion between ILC
subsets in response to environmental stimuli is unclear. Never-
theless, the recent rapid progress of this research area promises a
rich understanding of the complexity of the innate defense sys-
tem protecting the body’s surfaces. Here we review the current

knowledge of the transcription factors that regulate the features of
ILCs (Figure 2; Table 1).

EARLY DEVELOPMENT OF INNATE LYMPHOCYTES
The progenitors of innate lymphocytes develop first from com-
mon lymphoid progenitors (CLPs) in the fetal liver (Sawa et al.,
2010; Vonarbourg et al., 2010) which give rise to multiple lym-
phoid lineages including B cells, T cells, and ILCs. In the fetal liver
α4β7+ CLPs are able to differentiate into NK cells and all subsets
of Rorγt+ ILCs. The development of ILCs from these precursors
is dependent on the expression of Notch, which is regulated differ-
ently in fetal and adult precursors (Possot et al., 2011). α4β7+ CLPs
are severely reduced in Id2-deficient mice indicating that Id2 lies
upstream of Rorγt in the developmental pathway (Cherrier et al.,
2012). These cells also express the chemokine receptor CXCR6
but this marker is not exclusive to LTi cells (Possot et al., 2011).
It is proposed that both CD4+ and CD4− LTi cells arise from
a Rorγt+α4+β7+ progenitor while NKp46+ ILCs emerge pre-
dominantly from a Rorγt+α4+β7− cell fraction (∼50% NKp46+
ILCs) suggesting they are distinct lineages (Narni-Mancinelli et al.,
2011). Challenging this concept, it has also been reported that
Rorγt+ NKp46+ ILCs can arise from LTi cells following adop-
tive transfer (Vonarbourg et al., 2010). Recently, our group has
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FIGURE 2 |Transcriptional programs controlling the development of

innate lymphocyte populations from their progenitor cells in the fetus

and adult. The transcription factor Id2 is critical for the development of all NK
cells and other ILC populations and is likely to direct the emergence of the
common innate lymphoid progenitor (CILP) downstream of the common
lymphoid progenitor (CLP) that does not express Id2. The first expression of
Id2 from cells derived from the CLP marks the emergence of the pre-pro NK
cells, the earliest progenitor of the NK cell lineage. LTi cells and NKp46+ ILCs
all express and are dependent on Rorγt while ILC2 and NK cells develop

without passing through a Rorγt-dependent stage. ILC2, however, rely on
Rorα and Gata3 for their development, expansion, and survival following
stimulation. CD4+ and CD4− Id2+Rorγt+ LTi cells undergo diversification to
generate terminally differentiated NKp46+ ILCs. CD4+ LTi cells appear to
have already established a stable phenotype. In contrast, CD4− LTi cells
expand in response to various cues such as stimulation through AhR. Further
environmental cues induce expression of T-bet and Notch ligands induce
Notch signaling which results in the development of NKp46+ ILCs that
produce abundant IL-22 and protect against bacterial infection.

discovered that NKp46+ ILCs arise solely from the CD4−Rorγt+
ILCs and not the CD4+ LTi subset (discussed in more detail below;
Rankin et al., 2013). Thus, we provide evidence that CD4− LTi cells
and NKp46+ ILCs are of the same lineage distinct from CD4+ LTi
(Rankin et al., 2013). This Rorγt+α4β7− subset which gave rise
to ∼50% NKp46+ cells was unable to generate CD4+ LTi cells
but could make CD4− Rorγt+NKp46− (Sawa et al., 2010). There-
fore, it may be that this progenitor is the true CD4−LTi/NKp46+
ILC precursor that colonizes that gut while Rorγt+α4β7+
cells generate classical LTi cells essential for lymphoid tissue
generation.

Natural killer cells, in contrast to LTi cells and NKp46+ ILCs
do not require Rorγt or IL-7 for their development. Until recently,
the earliest committed precursor of NK cells, the NKP, was identi-
fied through the lack of expression of pan-NK cell markers such as
NK1.1 and CD49b and the expression of IL-2Rβ (Rosmaraki et al.,
2001). Our recent development of an Id2-GFP (green fluorescent
protein) reporter mouse where GFP is expressed under the control
of the endogenous Id2 promoter identified that this population
was heterogeneous and only a small fraction of cells expressed
Id2 (Carotta et al., 2011; Jackson et al., 2011). This population
(lin−CD122+NK1.1−CD49b−Id2-GFP+) gives rise exclusively to
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Table 1 | Requirement of different transcription factors for lymphoid tissue and ILC development.

Transcription

factor

NK cells (ILC1) Nuocytes/natural

helper cells (ILC2)

LTi cells (NCR− ILC3) NKp46+ ILCs

(NCR+ ILC3)

Lymphoid tissue organogenesis

Id2 − − − − None (Yokota et al., 1999)

RORγt + + − − Still have NALT (Eberl et al., 2004)

RORα + − + + Normal (Wong et al., 2012)

Nfil-3 (E4BP4) − + + + Normal (Gascoyne et al., 2009)

Gata-3 Lack thymic NK cells − + + Normal (Hoyler et al., 2012; Mjosberg et al., 2012)

AhR + ? CD4− LTi cells reduced Reduced No ILFs and CP

Normal PP and LN (Lee et al., 2011)

Tox Fail to mature ? Reduced Reduced No LNs; reduced size and number PPs

>90% reduced ILCs (Aliahmad et al., 2010)

Runx/Cbfβ2 + ? Reduced ? Impaired organization

Reduced (Tachibana et al., 2011)

T-bet Immature + + – Normal

NK cells and has been defined as the pre-pro NK cell. This pop-
ulation has also more recently been identified using the surface
marker CD244 and CD27 (Fathman et al., 2011). The induction
of Id2-GFP in the pre-pro NK cell identifies the first commitment
of progenitors to an NK but not T or B cell lineage. It will be
important to determine the identity of the common innate lym-
phoid progenitor (CILP) and position it in the developmental tree
to gain a greater understanding of the Id2-dependent precursors
of ILCs.

INHIBITOR OF DNA BINDING 2
Inhibitor of DNA binding 2 is a helix-loop-helix (HLH) transcrip-
tional regulator that plays diverse roles in directing lymphocyte
development and function. It is part of a group of closely related
proteins, Id1–4, that all share the highly conserved HLH motif
(Sun et al., 1991; Voronova and Lee, 1994). They regulate tran-
scription by inhibiting the function of E-box proteins. E-box (or E)
proteins are another class of transcription factor and include the
family members HEB, E2-2, and the E2A gene products E12 and
E47 (Murre et al., 1989a,b). E proteins are defined by their two
highly conserved domains: (i) a HLH domain which regulates
homo- or heterodimerization and (ii) a basic domain is impor-
tant for binding to E-box sequences on the DNA of target genes
(CANNTG; Murre et al., 1989b). Id proteins are able to inhibit
E protein function by forming a heterodimer with their comple-
mentary E protein via their common HLH domains. As Id proteins
lack the basic domain of E proteins, the Id/E protein heterodimer
is unable to bind to DNA and thus transcription is blocked (Sun
et al., 1991; Voronova and Lee, 1994). In addition to binding to E
proteins, Id proteins have also been shown to interact with other
transcription factors including retinoblastoma protein (Rb), the
ETS (E-twenty six) and Pax (Paired Box) families (Iavarone et al.,
1994; Yates et al., 1999; Roberts et al., 2001).

Inhibitor of DNA binding 2 regulates a diverse number of cell
fate decisions during lymphopoiesis. It is involved in the develop-
ment of effector CD8+ T cells, DCs, NK cells, and ILCs (Yokota

et al., 1999; Hacker et al., 2003; Cannarile et al., 2006; Jackson et al.,
2011; Rankin and Belz, 2011). Genetic ablation of Id2 in mice
results in the complete failure to develop lymph nodes (LNs),
Peyer’s patches, and other secondary and tertiary lymphoid tis-
sues including the NALT which is not affected by loss of other
transcription factors such as Rorγt (Yokota et al., 1999). Loss of
the ability to form these lymphoid tissues has been attributed to
the lack of LTi cells in these mice although multiple ILC popula-
tions are absent and could impact on development (Yokota et al.,
1999; Cherrier et al., 2012). Id2−/− mice also express a marked
reduction in immature NK (iNK) cells in bone marrow and spleen
(Boos et al., 2007). In this setting, Id2 acts to inhibit the tran-
scriptional program induced by E proteins and directs progenitors
toward an innate cell lineage as deletion of E2A was able to partially
overcome the need for Id2 in LTi cell development and restore the
development of lymphoid tissue. In addition, NK cell develop-
ment in the bone marrow was also restored, however, splenic NK
cells were poorly rescued, with only a small number of residual
cells which exhibited a thymic rather than splenic NK cell pheno-
type (Boos et al., 2007). Whether expression of Id2-GFP in an early
progenitor also marks the proposed CILP similar to the pre-pro
NK cell remains unclear.

Runx/Cbfβ COMPLEX
The Runx/Cbfβ complex has been shown to be involved in the
early differentiation pathway of LTi cells (Tachibana et al., 2011).
The Runx complex consists of a DNA binding subunit, Runx1,
2, or 3 and a non-DNA binding partner Cbfβ that increases the
affinity of the Runx subunits for DNA. Runx is essential for the
differentiation of several hematopoietic cell lineages including B
cells, NK T cells, and CD8+ T cells (Okuda et al., 1996; Ichikawa
et al., 2004; Egawa et al., 2005; Setoguchi et al., 2008). Mice lacking
either Runx1 or Cbfβ have defects in lymphoid tissue organo-
genesis (Tachibana et al., 2011). Runx1/Cbfβ complexes regulate
LTi cell differentiation at distinct stages prior to and following
Rorγt expression. In both Runx and Cbf-deficient fetuses, there
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was a significant reduction in the frequency of lin−α4β7+IL-
7RhighRorγt+ LTi precursor cells, a phenotype that parallels that
observed in Id2 and Rorγt-deficient mice (Tachibana et al., 2011).
In contrast to Id2 and Rorγt loss, an even earlier, more pluripotent
precursor, the lin−α4β7+IL-7RintRorγt− population is reduced
in the absence of Cbfβ. Thus, Runx1/Cbfβ2 complexes impair
LTi cell development prior to the induction of the Id2 and Rorγt
transcriptional programs. Given this finding, it might be expected
that NK cell development would also be significantly affected by
loss of Runx1/Cbfβ complexes. However, NK cells appeared nor-
mal in the absence of Runx1/Cbfβ, most likely because NK cells
and CD8+ T cells dominantly express Runx3, rather than Runx1
(Ohno et al., 2008). In contrast, Cbfβ is required for NK cell devel-
opment (Guo et al., 2008). In the absence of Cbfβ, lin− fetal liver
cells produce very few CD122 (IL2Rβ)+ cells capable of respond-
ing to IL-15 which is necessary to generate NK cells. CD122, a
subunit of the IL-15R, is directly regulated by Cbfβ (Ohno et al.,
2008). Nevertheless, transplantation of Cbfβ-deficient bone mar-
row into irradiated recipient adult C57BL/6 mice revealed that
NKP cells could be detected in spleen indicating that NK defi-
ciency occurred at the NKP to iNK cell transition, whereas in
fetal liver, NKP could not be detected and thus the block in
NK development in the fetus must occur prior to the emergence
of NKP.

NATURAL KILLER CELLS (ILC1)
Natural killer cells form part of the immediate response to
pathogens or antigens expressed by transformed (i.e., cancer-
ous or stressed) cells and thus are critical during the innate and
adaptive immune responses (Vivier et al., 2011). They are distinct
from adaptive cells as they do not express somatically re-arranged
antigen-specific surface receptors but instead respond through
a repertoire of activating and inhibitory receptors (for example,
Ly49 molecules in mice, and killer cell immunoglobulin-like recep-
tors (KIRs) in humans; Raulet et al., 2001; Lanier, 2005). The
balance between stress-induced activation of NK cell receptors
(such as the natural cytotoxicity triggering receptor 1, NCR-1,
encoding NKp46) and major histocompatibility complex class
I (MHC class I)-mediated inhibition controls the cytotoxicity
of NK cells during pathogen infection and in destruction of
tumors.

Natural cytotoxicity receptors are immunoglobulin-like trans-
membrane glycoproteins which signal through adaptor proteins
with intracellular tyrosine-based activation motifs (ITAMs). They
are mostly expressed on NK cells. Humans can express NKp30,
NKp44, and NKp46 while mice express NKp46 exclusively (Spits
and Cupedo, 2012). Gazit et al. (2006) adopted an elegant
approach to investigate the role of NKp46 in NK cells by insert-
ing GFP into the Ncr1 locus. This enabled direct visualization of
NKp46 expression on NK cells during influenza infection where
NKp46 recognizes the ligand viral hemagglutinin in a sialic acid-
dependent manner (Mandelboim et al., 2001). It also showed that
NKp46+ NK cells that accumulated in the lung were critical for
the control of lethal influenza. Using this model it has also been
demonstrated that NKp46 expression by NK cells is important in
controlling tumors (Gazit et al., 2006) and for the development
of type-1 diabetes (Gur et al., 2010). Recently, a loss-of-function

mutant of NKp46 (Noé mice) has shed light on the mechanism
of action of NKp46 (Narni-Mancinelli et al., 2012). Noé mice
exhibit a point mutation (W32R) that prevents NKp46 expres-
sion on the surface, but did not impair intracellular expression.
This phenotype was accompanied by increased responsiveness to
stimuli and greater resistance to MCMV and influenza infection.
Detailed molecular analyses showed that down-regulation of NK
cell activity was associated with silencing of the transcription fac-
tor Helios in the NK cells and attenuation of T cell responses.
These studies revealed that NKp46 acts in a dose-specific man-
ner to tune the optimal development of the adaptive immune
response.

Murine NK cells require IL-15 signaling through the IL-15R
(composed of three subunits, namely IL-15Rα, CD122, and
CD132) for their survival (Mrózek et al.,1996; Kennedy et al.,2000;
Cooper et al., 2002; Ranson et al., 2003). Although the majority of
NK cells are generated in the bone marrow from CLPs, a devel-
opmentally distinct subset of NK cells that arise from bi-potent
NK/T cell progenitors in the thymus (Vosshenrich et al., 2006).
Bone marrow and thymic-derived NK cells can be clearly differ-
entiated as thymic NK cells require the transcription factor Gata3
for development and are dependent on IL-7, in addition to IL-
15, for survival (Vosshenrich et al., 2006). They have an immature
phenotype with reduced cytotoxic activity and express lower lev-
els of inhibitory receptors including the Ly49 family and CD94
(Vosshenrich et al., 2006). In the bone marrow, multiple stages of
NK cell development have been defined on the basis of their phe-
notype, function, and proliferative capacity (Hayakawa et al., 2006;
Huntington et al., 2007). These subsets can be distinguished by the
expression of CD27, CD11b (Mac-1), IL-7R, and KLRG-1, which
are differentially regulated through maturation (Brady et al., 2004;
Hayakawa et al., 2006). iNK cells express low levels of CD11b and
the inhibitory receptors CD94 and the Ly49 family, do not express
CD49b (DX5) and exhibit low cytotoxicity (Rosmaraki et al., 2001;
Kim et al., 2002). During maturation, NK cells up-regulate CD49b,
acquire Ly49 and CD94-NKG2 receptor expression then expand
to become Mac-1high (Kim et al., 2002). Once they mature, NK
cells migrate to different tissues including the spleen, LNs, liver,
lung, and skin where they develop tissue-specific phenotypes and
functions. Furthermore, a unique subset of hepatic NK cells has
been described, which constitutively expresses Trail and IL-7R but
not Eomesodermin (Eomes) develops independently of the bone
marrow (Andrews and Smyth, 2010) and persists as a stable lin-
eage in the liver (Takeda et al., 2005). However, the ontogeny and
specific functions of these unconventional NK cells is yet to be
fully elucidated.

Natural killer cells found in the intestinal environment are
present at low frequencies. Functionally and transcriptionally, they
are more similar to other conventional NK (cNK) cells than the
intestinal ILCs (Reynders et al., 2011). In the intestinal lamina pro-
pria, a large proportion of NK cells express the markers IL-7R and
c-Kit and do not express Eomes, a phenotype shared by immature
cNK cells, thymic NK cells, and liver-derived NK cells. In addition,
an unusually high proportion of these NK cells lack the expression
of CD27 and maturation markers such as KLRG-1 and CD11b.
Further phenotypic analysis of intestinal NK cells has shown they
express only low levels of NKG2D, the Ly49 receptors and exhibit
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low cytotoxic activity, again indicating their immaturity (Sanos
et al., 2009). Whether this unique subset of intestinal NK cells are
a distinct lineage or alternately are a gut-specific version of thymic
or hepatic NK cells has not yet been addressed. Nevertheless, effec-
tor molecules such as perforin, granzymes, and IFN-γ produced by
NK cells following activation play crucial roles in defense against
tumors and viral infections. NK cells are therefore thought to rep-
resent the innate version of CD4+ Th1 cells and cytotoxic CD8+
T cells (Trinchieri, 1989; Sun and Lanier, 2011).

TRANSCRIPTIONAL REGULATION OF NK CELLS
Nuclear factor interleukin-3
Nuclear factor IL-3 is a critical transcriptional regulator for NK
cell development, but does not appear to affect the development
of any other ILC subsets (Gascoyne et al., 2009; Kamizono et al.,
2009). The blockade in NK development occurs at the NKP to
iNK transition. Residual NK cells found in Nfil3−/− mice have
impaired cytotoxic activity and reduced IFN-γ production sug-
gesting that Nfil3 could also be essential for maintaining mature
NK cell function (Gascoyne et al., 2009; Kamizono et al., 2009).
Nfil3 is induced following IL-15 signaling through the IL-15R and
is thought to act prior to the requirement for Id2 in NK cell devel-
opment (Gascoyne et al., 2009). Indeed, over-expression of Nfil3
results in an increase in the expression of Id2 in hematopoietic
progenitors and was sufficient to partially rescue NK cell pro-
duction from progenitors. Thus, Nfil3 was thought to directly
induce Id2 in the NK cells (Gascoyne et al., 2009). This conclu-
sion assumes that Nfil3 and Id2 lie sequentially in the signaling
pathway which may not be the case, as loss of Nfil3 resulted in
only ∼30% reduction in Id2 expression. An alternate possibility is
that Id2 and Nfil3 may exert separate critical effects in parallel in
these cells.

T-box factors T-bet and Eomes
T-bet (encoded by Tbx21) and Eomes (encoded by Eomesoder-
min) are highly homologous T-box transcription factors that play
important roles in regulating the function of multiple cell types
especially NK cells (Lazarevic and Glimcher, 2011; Gordon et al.,
2012). In particular T-bet, like the transcriptional repressor B
lymphocyte-induced maturation protein 1 (Blimp1) has been sug-
gested to be involved in maturation and acquisition of effector
functions in NK cells (Townsend et al., 2004; Jenne et al., 2009;
Kallies et al., 2011). More recently it has been shown that these
two transcription factors act in a sequential manner whereby T-bet
directs the development of iNK cells and stabilizes the immature
phenotype (Gordon et al., 2012). Eomes allows NK expression of a
diverse repertoire of Ly49 receptors and maintenance of a mature
phenotype (Gordon et al., 2012). In addition, T-bet and Eomes
appear to have distinct roles in the emergence of different NK cell
subsets. For example, deficiency of T-bet leads to the loss of hepatic
NK cells but not cNK cells (Gordon et al., 2012), suggesting a spe-
cific developmental pathway for intrahepatic NK cells (Andrews
and Smyth, 2010).

Ets-1
Ets-1 is a member of the Ets family of winged HLH transcription
factors. Ets-1−/− mice display significantly reduced splenic NK

cells with decreased cytotoxic activity (Barton et al., 1998). The
mechanism by which Ets-1 regulates the development and effector
function of NK cells has only recently been described. Ets-1 acts at
the pre-pro NK stage, directly regulating the expression of Id2 and
T-bet (Ramirez et al., 2012). The residual Ets-1−/− mature NK
cells have reduced expression of activating receptors like NKp46,
Ly49D, and Ly49H resulting in lower cytotoxic capacity (Barton
et al., 1998). Interestingly, Ets-1−/− NK cells also exhibit increased
expression of IL-15-regulated genes as well as inhibitory receptors,
which is a characteristic of chronically activated NK cells. Thus,
Ets-1 controls a broad range of transcription factors and receptors
that drive NK cell development and function (Ramirez et al., 2012).

Tox
Tox, similar to Id2 and Ikaros, plays a role in the development
of both LTi and NK cells. Tox was firstly described as essen-
tial for T cell development (Wilkinson et al., 2002; Aliahmad and
Kaye, 2008) but subsequent studies have shown Tox−/− mice to
have severe defects in mature NK cells in the bone marrow and
peripheral lymphoid tissues (Aliahmad et al., 2010). Furthermore,
knockdown or over-expression studies in human hematopoietic
stem cells have also shown Tox to be an important regulator of NK
cell development in humans (Yun et al., 2011). In the few remain-
ing Tox−/− NK cells, Id2 expression was significantly reduced but
unlike in Nfil3−/− mice, ectopic expression of Id2 in Tox−/− bone
marrow precursors could not rescue NK cell development (Aliah-
mad et al., 2010). Thus, loss of Id2 expression cannot fully explain
the developmental defect observed in Tox−/− mice, suggesting
that additional regulatory pathways exist for the development of
NK cells.

NUOCYTES, NATURAL HELPER CELLS, AND INNATE HELPER
CELLS (ILC2)
Over the last 3 years, a new family of innate lymphocyte has
been identified that are able to initiate Th2-like immune responses
(Neill and McKenzie, 2011). These have been referred to as nat-
ural helper cells (Moro et al., 2010), innate helper cells (Price
et al., 2010) and nuocytes (Neill et al., 2010). These populations
are Rorα-dependent ILCs that express CD278 (ICOS), ST2 (IL-
33R), and IL-17BR (Scanlon and McKenzie, 2012). Whether these
ILCs represent tissue-specific versions of the same cell type is not
yet understood, but they can collectively be referred to as ILC2s
due to their common production of T helper type 2 cytokines, IL-
13, IL-5, IL-4, and IL-6 (Moro et al., 2010; Neill et al., 2010; Price
et al., 2010; Saenz et al., 2010). These cytokines can activate mast
cells, basophils, and eosinophils, which are important for protec-
tion against parasitic infections, and have also been implicated in
the development of allergic diseases such as asthma (Neill et al.,
2010; Neill and McKenzie, 2011). ILC2s expand and secrete these
potent Th2 cytokines in response to the IL-17 family member IL-
25 and the IL-1 family member IL-33 (Moro et al., 2010; Neill
et al., 2010). Nuocytes and natural helper cells are lin− IL-7R+
and express the stem cell markers c-Kit and Sca-1. Natural helper
cells were first discovered in clusters of lymphocytes found in adi-
pose tissue termed fat-associated lymphoid tissue (FALT; Moro
et al., 2010) while nuocytes have been shown to be essential for the
expulsion of helminths during infection (Moro et al., 2010; Neill
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et al., 2010; Price et al., 2010; Saenz et al., 2010). An IL-33 respon-
sive population of ILC2s located in the lung also secrete IL-13 and
IL-5. They regulate airway epithelial integrity and promote tissue
remodeling following lung disease such as influenza virus infec-
tion (Monticelli et al., 2011). During the development of allergic
lung disease IL-9 production further promotes secretion of IL-5
and IL-13 in ILCs (Wilhelm et al., 2011). Interestingly, cytokine
production in this setting is dependent on collaboration with the
adaptive immune response as IL-2 is required for ILC-derived IL-9
production. In turn, these ILC2 cells promote the generation and
expansion of IL-13 producing T cells (Neill et al., 2010). Another
significant population of IL-33 responsive ILC2s is also present
in the intestine of mice and most likely important for helminth
expulsion (Hoyler et al., 2012). A human equivalent of the IL-13
ILC has also been identified in nasal polyps of patients with chronic
rhino-sinusitis suggesting a role for ILC2s in the pathology of type
2 immunity-associated diseases (Mjosberg et al., 2011).

TRANSCRIPTIONAL REGULATION OF ILC2s
Gata-binding protein 3
Recent evidence suggests that similarities in the transcriptional
programs exist between ILC2 and Th2 cells. Gata3 is required for
the differentiation and maintenance of ILC2 and is the fate deter-
mining transcription factor for differentiation of Th2 cells (Hoyler
et al., 2012). Gata3 belongs to the family of transcription factors
that bind DNA at the WGATAR motif (Orkin, 1992). It contains
two Gata-type zinc fingers and regulates a number of important
aspects of T cell function including the secretion of IL-4, IL-5,
and IL-13 (Ho et al., 2009). Mice lacking Gata3 lack IL-13 pro-
ducing cells, the majority of which are ILC2 cells that express high
levels of Gata3 (Moro et al., 2010; Halim et al., 2012; Liang et al.,
2012). These mice phenocopy IL-13-deficient mice and display
significantly increased susceptibility to Nippostrongylus brasiliensis
gut infection. While these observations highlight parallels between
Th2 cells and ILC2 cells, NK cells also rely on Gata3 for maturation,
expression of homing molecules and production of IFN-γ (Sam-
son et al., 2003). Thus, Gata3 plays an important role in terminal
differentiation and acquisition of full effector function of multi-
ple innate lymphocyte populations. However, through a cis-acting
regulatory element located 280 kb 3′ to the Gata3 gene that appears
to be both T cell and NK cell-specific (Hosoya-Ohmura et al.,
2011), therefore, Gata3 was postulated to play an important role in
directing the differentiation of individual innate populations per-
haps through the expression of cell-specific enhancers. In parallel
with these observations it was discovered that human ILC2s also
highly express Gata3 and this expression, together with enhance-
ment of signal transducer and activator of transcription 5 (STAT5)
activation, was driven by expression of the cytokine thymic stro-
mal lymphopoietin (TSLP; Mjosberg et al., 2012). These findings
emphasize the complexity of the emerging transcriptional network
guiding ILC development, and in addition, underline the similar-
ities that exist in the regulation of these innate cell types between
mouse and man.

Rorα
Although ILC2s do not require Rorγt for development, it has
recently been shown that the highly related transcription factor

Rorα is critical for their terminal differentiation and their capacity
to effect immunity against intestinal worms (Wong et al., 2012).
This positions Rorα as an essential regulator of the ILC2 lin-
eage downstream from Id2. “Stagger” mice (Rorαsg/sg) exhibit
a spontaneous deletion in Rorα that prevents translation of the
ligand-binding homology domain of Rorα and provide a novel
tool for investigating the biology of Rorα in the immune system
(Hamilton et al., 1996). ILC2s are readily expanded in vivo by the
administration of IL-25. In the stagger mice, injection of IL-25 was
unable to expand the nuocyte population in contrast to wild-type
littermate controls (Wong et al., 2012). Furthermore, loss of the
nuocyte population in the lung mucosal tissues resulted in exacer-
bated responses to asthma, and in the gut, impaired immunity to
helminthes infections such as N. brasiliensis.

Rorγt-DEPENDENT INNATE LYMPHOID CELLS (ILC3)
The Rorγt-dependent ILCs are divided into LTi cells, and a
heterogeneous population of Rorγt+ ILCs found in the intesti-
nal mucosa. These mucosal Rorγt+ ILCs include NKp46+ ILCs
(NCR+ ILC3) and LTi-like cells (NCR− ILC3) populations.

LTi CELLS AND LYMPHOID TISSUE ORGANOGENESIS
Lymphoid tissue inducer cells were originally reported as an
obscure subset of CD4+CD3− lymphocytes able to colonize the
mesenteric LNs and peripheral LN anlagen in the developing
mouse fetus (Kelly and Scollay, 1992; Mebius et al., 1997). It is
now known that they are comprised of a heterogeneous pop-
ulation of cells where only a proportion express CD4 and they
require signaling through IL-7R for their survival and expansion
(Adachi et al., 1998; Yoshida et al., 1999; Finke et al., 2002; Kim
et al., 2003, 2008; Lorenz et al., 2003; Mebius, 2003; Eberl et al.,
2004; Coles et al., 2006; Satoh-Takayama et al., 2010). They are
essential for the formation of lymphoid tissues including LNs and
mucosal-associated lymphoid tissues (MALT) which encompasses
the NALT, GALT, and BALT.

During fetal development, LTi cells colonize LN and Peyer’s
patch anlagen where mucosal addressin cell adhesion molecule-1
(MadCam-1), the ligand for α4β7, is highly expressed (Mebius
et al., 1996). They are the first hematopoietic cells recruited to
secondary lymphoid tissue where they use LTα1β2 to interact
with the LTβR expressed on mesenchymal cells at LN and Peyer’s
patch anlagen (Yoshida et al., 1999, 2002; Mebius, 2003). Acti-
vated mesenchymal cells then express adhesion molecules as well
as pro-inflammatory cytokines and chemokines to enable recruit-
ment and organization of lymphocytes in a process similar to
inflammation. Tumor necrosis factor activation-induced cytokine
(TRANCE) signaling is required for LTi cell accumulation at LN
anlagen leading to early embryonic development of peripheral
LNs, while the loss of IL-7R leads to an absence in develop-
ment of both LNs and Peyer’s patches (Adachi et al., 1998; Kim
et al., 2000).

Rorγt+ ILCs IN THE INTESTINAL MUCOSA – LTi-LIKE ILCs (NCR− AND
NCR+ ILC3)
Subsets of Rorγt+ ILCs that are developmentally and function-
ally similar to LTi cells but show distinct phenotypic differ-
ences have been described in the intestinal mucosa. These have
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been termed LTi-like cells. They include NCR− ILC3 which
can be further divided into CD4−NKp46−CCR6+/−Rorγt+
and CD4+NKp46−CCR6+Rorγt+ subsets, and NCR+ ILC3s
(CD4−NKp46+Rorγt+).

These Rorγt+ ILCs are most highly represented in tertiary
lymphoid structures of the GALT. CD4+ LTi cells are most promi-
nent at birth and appear to be involved in the formation of
Peyer’s patches. However, after birth, CD4+LTi only make up
15–20% of the NCR− ILC3+ populations when the CD4− LTi
cells and NKp46+ ILCs rapidly expand at the same time as micro-
bial colonization, indicating an important interplay between their
development and environmental signals.

LTi-LIKE ILCs (NCR− ILC3) IN THE GENERATION OF TERTIARY LYMPHOID
TISSUE
Secondary lymphoid tissue of the GALT, namely mesenteric LN
and Peyer’s patch develop in an organized and programed way
involving fetal LTi cells, whereas tertiary lymphoid structures
develop in response to the environmental cues from microbiota
and surrounding tissue and are thought to involve NCR− ILC3
CD4− or CD4+ cells (Lorenz et al., 2003; Eberl et al., 2004; Ota
et al., 2011). Here, LTi-like cells are able to induce the develop-
ment of well-organized lymphoid structures capable of carrying
out germinal center reactions and promote immunoglobulin A
(IgA) class switching in response to inflammation (Lorenz et al.,
2003; Tsuji et al., 2008). They are key effector cells that drive both
the size and number of cryptopatches (CPs) and isolated lymphoid
follicles (ILFs) in the gut tissues.

NKp46+ ILCs (NCR+ ILC3)
A major subset of intestinal Rorγt+ ILCs express the surface
molecule NKp46 in addition to the transcription factors Rorγt
and Id2. NKp46+ ILCs rely on IL-7 signaling for survival and
are themselves potent producers of IL-22 but unlike NCR− ILC3s
do not produce IL-17 (Satoh-Takayama et al., 2008, 2010; Reyn-
ders et al., 2011). NKp46+ ILCs reside mainly in CPs, but are also
found in ILFs, Peyer’s patches and at very low frequencies in the
mesenteric LNs (Luci et al., 2009). NKp46+ ILCs can be further
divided according to their expression level of Rorγt and NK1.1
into RorγthiNK1.1lo/− and RorγtintNK1.1int populations, how-
ever whether these are distinct subsets remains unclear (Luci et al.,
2009). The human counterpart for NKp46+ ILCs are defined by
their expression of NKp44 rather than NKp46 (Crellin et al., 2010).
NKp46 was originally presumed to be exclusively expressed by NK
cells. It was therefore assumed that NKp46+ ILCs were most closely
related to NK cells, however, NKp46+ ILCs are distinct from NK
cells in several fundamental ways. NKp46 is not essential for the
development or function of NKp46+ ILCs, which contrasts with
the important role of NKp46 in NK cells (Satoh-Takayama et al.,
2009; Narni-Mancinelli et al., 2011). IL-15 is essential for the dif-
ferentiation, survival, and activation of NK cells but is not required
for the development of NKp46+ ILCs, which like LTi cells depend
on the cytokine IL-7 (Satoh-Takayama et al., 2009, 2010). Func-
tionally, NKp46+ ILCs also differ from NK cells as they produce
little IFN-γ, no perforin and show little cytotoxic potential (Satoh-
Takayama et al., 2008; Reynders et al., 2011). An exception to this
is RorγtintNKp46+ ILCs that can be induced to produce IFN-γ

during intestinal inflammation and are potent inducers of colitis
(Vonarbourg et al., 2010).

Rorγt+ ILCs during inflammation
In addition to the key role Rorγt+ ILCs play in the develop-
ment of lymphoid tissues in the intestinal mucosa, they are
crucial for maintaining epithelial integrity through the produc-
tion of IL-22 and IL-17, signature cytokines secreted by IL-17
producing Th cells (Wolk et al., 2004; Ivanov et al., 2006; Zheng
et al., 2007; Pickert et al., 2009; Takatori et al., 2009; Vivier et al.,
2009; Ota et al., 2011). ILCs are the main producers of IL-
22 in the intestine following stimulation by IL-23 produced by
activated intestinal DCs (Sawa et al., 2011; Cox et al., 2012). Inter-
estingly, at steady state the adaptive immune system represses
IL-22 production by ILCs, however this is de-repressed follow-
ing epithelial damage (Sawa et al., 2011). IL-22 activates the
transcriptional regulator STAT3 and triggers production of anti-
microbial molecules such as β-defensin, lipocalin-c and Reg family
proteins from epithelial cells to limit pathogen survival and dis-
semination (Liang et al., 2006; Sugimoto, 2008; Zheng et al., 2008;
Sonnenberg et al., 2011). IL-17 is a pro-inflammatory cytokine
that promotes neutrophil recruitment and activation and is also
enhanced by IL-23 (Takatori et al., 2009). In contrast to LTi cells,
murine NKp46+ ILCs are not known to produce IL-17 (Luci
et al., 2009; Sawa et al., 2011) although the complete spectrum
of cytokines that this population does produce during inflam-
mation has not been fully assessed. Rorγt is known to regulate
IL-17, so it is intriguing that these Rorγt+ILCs lack production
of this cytokine implying different transcriptional regulation of
cytokines in NKp46+ ILCs compared with LTi cells. The impor-
tance of IL-23 induced IL-22 production by Rorγt+ ILCs is
demonstrated during experimental models of intestinal inflam-
mation such as Citrobacter rodentium, as mice deficient in these
cells rapidly succumb to infection (Satoh-Takayama et al., 2008;
Zheng et al., 2008). Here, ILC-derived IL-22 can be induced by
lymphotoxin-β in the presence of IL-23 and reduces the sys-
temic dissemination of bacteria from the colon to the liver and
spleen (Ota et al., 2011; Sonnenberg et al., 2011). While IL-17 and
IL-22 are important to maintain intestinal homeostasis and pro-
tect against intestinal pathogens, aberrant production of these
cytokines has been associated with inflammatory bowel disease
and colon cancer. IL-17 produced by ILCs is thought to be
one of the key cytokines in driving colon inflammation in an
innate model of Helicobacter hepaticus driven colitis (Buono-
core et al., 2010). Human studies show that IL-17 production
and the frequency of ILCs increases in patients with inflamma-
tory bowel disease (Geremia et al., 2011). IL-22 can also promote
intestinal disease by enhancing epithelial cell proliferation leading
to colon cancer (Huber et al., 2012). Therefore it is important
to understand the activating factors and molecular pathways
controlling IL-17 and IL-22 production as this will eventually
lead to the development of improved treatments for intestinal
disease.

NKp46+ ILCs are a critical source of IL-22 but despite this, the
relative contribution of IL-22 secreted from NKp46+ ILCs or other
LTi-like cell subsets is not clear. Until recently, the extent to which
one population might dominate or compensate for the other may
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depend on the type of mucosal activation was unclear, however we
have recently shown that other Rorγt+ cells cannot compensate for
the absence of IL-22 producing NKp46+ ILCs during C. rodentium
infection (Rankin et al., 2013).

Rorγt+ ILCs and commensal microflora
During steady state, Rorγt+ ILCs play critical roles in maintaining
mucosal homeostasis through responding to carefully regulated
signals from the epithelial layer and commensal bacteria in the
intestine. Firstly, the induction of ILFs from CPs occurs in response
to external stimuli such as peptidoglycan from gram-negative bac-
teria in the gut lumen (Bouskra et al., 2008). In this situation, B
cells and other lymphocytes are recruited to CPs in a lympho-
toxin receptor-dependent manner (Lorenz et al., 2003; Bouskra
et al., 2008). Interestingly, ILFs do not develop in germ-free mice,
but instead remain as CPs (Hamada et al., 2002; Pabst et al., 2006;
Bouskra et al., 2008). Therefore, the number of CPs, ILFs and
commensal microflora are tightly controlled by a dynamic acti-
vatory/inhibitory negative feedback loop (Bouskra et al., 2008).
Increased formation of ILFs enhances the capacity of the immune
system to target responses toward the luminal bacteria. In turn,
this restricts bacterial proliferation and invasion and serves to shut
down the signals that induce ILFs (Sawa et al.,2010; Ota et al.,2011;
Sonnenberg et al., 2011). Adult LTi cells become activated and
induce recruitment of other lymphocytes through a chemokine-
mediated network. CCR6 responds to signaling from CCL20 (also
known as MIP-3α), a molecule highly expressed by the epithelium
overlying Peyer’s patches and ILFs. β-defensin 3 also binds CCR6
and is expressed by inflamed epithelia and intestinal CPs. Thus,
it is suggested that Rorγt+ ILCs depend on CCR6 responses to
CCL20 and β-defensin signaling (Sawa et al., 2010).

Secondly, Rorγt+ ILCs constitutively produce IL-22 where the
levels are controlled by careful integration of signals from com-
mensal bacteria and the epithelial layer. Vonarbourg et al. (2010)
also showed that commensal microflora and IL-7 can act to sta-
bilize Rorγt expression within the NKp46+ ILC population, but
they apparently do not induce their differentiation. Other reports
have shown that intestinal microbiota have no effect on relative or
absolute numbers of ILCs in the gut (Reynders et al., 2011; Sawa
et al., 2011) while earlier reports showed a reduction in NKp46+
ILCs, but not LTi cells in germ-free mice suggesting a role for com-
mensal microflora in directing their development and function
(Satoh-Takayama et al., 2008; Sanos et al., 2009; Vonarbourg et al.,
2010). It has now been reported that the absence of microflora
enhanced the ability of NKp46+ ILCs to produce IL-22 (Reyn-
ders et al., 2011; Sawa et al., 2011). The microbiota were shown to
induce IL-25 expression on epithelial cells which in turn inhib-
ited NKp46+ ILC IL-22 secretion (Sawa et al., 2011). As IL-25R
is not expressed on Rorγt+ ILCs, this must be occurring via an
intermediate cell type such as intestinal DCs. While analyses of
the contribution of microbiota to the development, function, and
proliferation of ILCs has been investigated, virtually nothing is
known about how the individual ILC populations might modify
the microbiome.

Thirdly, in a recent elegant study, intestinal ILCs were shown
to be crucial for the anatomical containment of commensal bac-
teria during steady state (Sonnenberg et al., 2012). Here ILCs were

depleted in Rag−/− mice and a specific species of commensals
that reside in Peyer’s patches and mesenteric LNs named Alcali-
genes disseminated to the liver and spleen. This resulted in systemic
inflammation and increased levels of lipopolysaccharide (LPS). As
such, ILCs were crucial for the specific anatomic containment of
Alcaligenes through the production of IL-22.

TRANSCRIPTIONAL REGULATION OF ILC3
Rorγt
The orphan nuclear receptor Rorγt is an important transcrip-
tion factor involved in lymphocyte development. It belongs to a
large family of steroid hormone receptors that include receptors
for steroids, retinoids, thyroid hormones, and vitamin D3 and
are important regulators of development, cell differentiation, and
organ physiology (Mangelsdorf et al., 1995). Rorγt is encoded by
the Rorc gene and encodes two isoforms, Rorγ and Rorγt from
distinct promoters (He et al., 1998; Villey et al., 1999). While the
mRNA of the first isoform, Rorγ, is detectable in many tissues, the
expression of Rorγt is limited to a small number of lymphocyte
populations. Rorγt is highly expressed in double positive (DP) thy-
mocytes (Villey et al., 1999; Sun et al., 2000). The thymus of mice
deficient in Rorγt is dramatically decreased in size and cellularity
(Kurebayashi et al., 2000; Sun et al., 2000). This is mainly due to the
reduced number of CD4+CD8+ DP thymocytes that results in the
reduction of mature single positive (CD4+CD8− or CD4−CD8+)
thymocytes. Rorγt−/− thymocytes also show increased levels of
apoptosis due to the failure of induction of the pro-survival pro-
tein Bcl-xL in the absence of Rorγt (Eberl and Littman, 2004). It
was therefore proposed that Rorγt prolongs the lifespan for DP
thymocytes allowing them a greater chance to undergo positive
selection (Kurebayashi et al., 2000). Beyond its role in thymocyte
development, Rorγt expression does not appear again in the T
cell development program until peripheral CD4+ Th cell sub-
sets undergo differentiation. In this population, Rorγt is induced
in response to IL-6 and transforming growth factor beta (TGF-β)
signaling to drive naïve CD4+ T cells toward a Th17 fate character-
ized by the production of IL-22 and IL-17 (Ivanov et al., 2006). In
the absence of Rorγt, naïve CD4+ T cells are unable to differentiate
into Th17 cells.

Similar to Id2-deficient mice, Rorγt null mice lack secondary
lymphoid tissues due to the absence of LTi cells (Sun et al., 2000;
Eberl and Littman, 2003). This includes LNs, Peyer’s patches,
ILFs, and CPs. However, in contrast to Id2-deficient mice, NALT
development remains unperturbed in the absence of Rorγt (Eberl
and Littman, 2003). Using the elegant Rorγ tGFP/GFP mouse strain
(which are deficient in Rorγt) it has demonstrated that both LTi
cells and all subsets of Rorγt+ ILCs in the intestine are dependent
on Rorγt for their development while NK cells and nuocytes are
unaffected (Eberl et al., 2004; Satoh-Takayama et al., 2008; Luci
et al., 2009; Sanos et al., 2009; Moro et al., 2010; Neill et al., 2010;
Vonarbourg et al., 2010). Recent microarray and fate mapping
experiments on cells expressing the cell surface receptor NKp46
further support the notion that Rorγt is a lineage defining tran-
scription factor for the all ILC3 cells as intestinal NK cells and
NCR+ ILC3s were shown to represent two distinct lineages both
genetically and developmentally (Narni-Mancinelli et al., 2011;
Reynders et al., 2011).
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Tox
In addition to it’s essential role during NK development (above),
Tox is also required for the development and maturation of innate
lymphocytes (Neill and McKenzie, 2011). Tox−/− mice have ∼
90% reduction in LTi cells in the spleen of neonates and NKp46+
ILCs are also diminished (Aliahmad et al., 2010). In contrast to
mice that lack Id2, in the absence of Tox, Peyer’s patches still
develop but their size and number are severely reduced. Over-
expression of Id2 was unable to recover a normal phenotype in
the Tox−/− LTi cells suggesting that Tox is downstream of Id2.
However, such experimental approaches do not excluded that Id2
and Tox may not lie in the same linear pathway, or that Tox may
regulate other critical Id2-independent steps in ILC development.
In addition, the role of Tox in specific subsets of intestinal ILCs,
including NKp46+ ILCs, were not investigated in detail in this
study. Nevertheless, although Tox and Id2 are both highly influ-
ential in regulating the development of NK and LTi cells, Tox
appears to act later and differentially affects Peyer’s patches and
LN formation (Aliahmad et al., 2010).

Aryl hydrocarbon receptor
Aryl hydrocarbon receptor is a ligand-dependent transcrip-
tion factor that is a member of the basic HLH/Per-Arnt-Sim
(bHLH/PAS) family. AhR is a cytosolic transcription factor bound
to co-chaperones such as hsp90 and is normally inactive. On
ligand binding, it dissociates from its chaperones and translo-
cates to the nucleus dimerizing with the AhR nuclear translocator
(ARNT) that results in changes to gene transcription (Burbach
et al., 1992). AhR is a sensor of a number of chemicals and
environmental toxins including as 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) and phytochemicals such as indole-3-carbinol
found in cruciferous vegetables such as cauliflower and cab-
bage. Endogenous ligands such as the tryptophan photo-
product 6-formylindolo-3,2-b-carbazole (FICZ) have also been
identified.

Aryl hydrocarbon receptor has been shown to affect the differ-
entiation of regulatory T cells (Tregs) and enhance the production
of IL-17 from Th17 cells. Furthermore, AhR is necessary to allow
Th17 cells to produce IL-22 (Kimura et al., 2008; Quintana et al.,
2008; Veldhoen et al., 2009; Mezrich et al., 2010). Recently mice
lacking AhR have been shown to exhibit a significant deficit in
CD4− LTi cells and NKp46+ ILCs in the intestinal mucosa (Kiss
et al., 2011; Qiu et al., 2012). As the Rorγt ILCs were not com-
pletely ablated, it appears that AhR is required for the expansion
and survival of CD4− LTi cells and NKp46+ ILCs following micro-
bial colonization of the intestine after birth rather than their
development. CD4+ LTi cells were also affected albeit mildly
(Kiss et al., 2011). Extending these studies in an elegant set of
experiments it was shown that although AhR-deficient mice lack
ILFs and CPs, they have normal Peyer’s patch development (Lee
et al., 2011). Thus, AhR is specifically required in the forma-
tion of postnatal lymphoid tissues highlighting the differential
requirements of Rorγt+ ILC subsets for ILF and Peyer’s patch
development. Investigation into AhR target genes required for
ILC development showed that inhibition of the Notch signal-
ing pathway, which is regulated by AhR, critically affected ILC
populations.

Notch
Notch proteins (Notch1–4) are transmembrane receptors that
bind to the surface ligands Delta-like or Jagged before induc-
tion of proteolytic cleavage to release the Notch intracellular
domain (ICN). On release, ICN translocates to the nucleus where
it binds to the CSL/RBP-J (CBF-1/RBP-J, Suppressor of Hairless,
Lag-1) transcription factor displacing co-repressors and recruit-
ing co-activators of the Mastermind-like family (MAML). Notch
signaling in developing lymphocytes is complex (Bray, 2006). In
peripheral CD4+ T cells, Notch-1 plays an important role in
Th1 polarization (Minter et al., 2005). Both Notch-1 and Notch-2
together with the canonical effector RBPJ (recombination sig-
nal binding protein for the immunoglobulin kappa J region) act
to protect activated cells against apoptosis (Helbig et al., 2012).
In innate lymphocytes, Notch-2 was strongly implicated in the
development of adult, but not fetal, Rorγt+ cells due to the dif-
ferentiation of progenitors in response to the stromal cell OP9
expressing the Notch ligand DL-4 (Possot et al., 2011). Disruption
of Notch signaling, by the deletion of RBPJ, reduced the num-
ber of NK46+ ILCs in the small intestine though it had only a
marginal effect on other Rorγt+ ILC subsets and thus ILF and CP
development and this was thought to be downstream of Ahr (Lee
et al., 2011). The circuitry regulating the differential dependence
of Notch in different ILC subsets appears to depend largely on the
induction of T-bet (Rankin et al., 2013).

T-bet
The role of T-bet in the development of innate lymphocytes has
not previously been investigated except in NK cells. Our recent
data showed that T-bet was highly expressed by both the Rorγt
intermediate and high populations of NKp46+ ILCs but not the
NKp46−Rorγt+ ILCs. Indeed, T-bet was found to be essential
for the differentiation of NKp46+ ILCs (Rankin et al., 2013). Fur-
thermore, T-bet was crucial for the transition from CD4−Rorγt+
LTi cells into Rorγt+NKp46+ ILCs and this transition depended
on Notch signaling. Interestingly, both ILC subsets were strongly
affected by the absence of Ahr, indicating that CD4− LTi cells are
a lineage distinct from CD4+ LTi cells (Kiss et al., 2011). Similar
to NK cells, Blimp1 was also exclusively expressed by NKp46+
ILCs but was not required for their development (Rankin et al.,
2013). In contrast to NK cells, we did not observe any expression
of Eomes in NKp46+ ILCs or LTi cells indicating that Eomes and
T-bet operate in a non-redundant manner in this lineage. This
identifies T-bet as a master regulator of NKp46+ ILC differenti-
ation and the CD4− LTi subset as their direct precursor through
the T-bet-Notch signaling pathway (Rankin et al., 2013).

CONCLUSION
In the past 3 years, it has been clear that innate lymphocytes
comprise a heterogeneous group of cells composed of individ-
ual populations with discrete, yet complementary functions in
maintaining tissue homeostasis and providing protection during
an immune responses.

Teasing apart the intrinsic and extrinsic regulatory circuits
that result in the development and functional contributions of
the various innate lymphocyte populations during inflammation
or infection is both an exciting and evolving story. Significant
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progress has been made in identifying some of the key transcrip-
tional regulators required for the differentiation of ILC subsets,
but how they are regulated remains unclear. For example, whether
Id2 lies up- or downstream of Nfil3 will require re-examination;
or where the terminal differentiation of Rorγt-dependent lineages
lies, especially where LTi cells branch off from NCR+ and NCR−
ILC3s. This may also facilitate further understanding of whether
different phenotypes of cells within an ILC population represents
a unified lineage that differs because of localization in the body,
or they are related but distinct populations within a lineage (e.g.,
understanding the relationship between the highly similar nuo-
cytes and natural helper cells). Future studies will be important in
dissecting these pathways and in understanding the specific contri-
butions ILC subsets make to immunity and pathology in different
inflammatory settings.

In the adult tissues, particularly the gut, how the different sub-
sets of Rorγt+ ILCs are developmentally related has remained
contentious. It is possible that NKp46+ ILCs develop as direct
progeny of LTi cells or alternately they may arise from a closely
related but distinct cell type. Our recent data show that NKp46+
ILCs are in fact the direct progeny of CD4− LTi cells isolated
from the small intestinal lamina propria. However, in a separate
study, LTi cells cultured in vitro under various conditions were
unable to be induced to express NKp46 supporting that the adult
phenotypes of gut ILCs remain stable (Sawa et al., 2011). This
may be because the conditions used in these experiments were
not optimal to induce differentiation. Nevertheless, a highly spe-
cific set of signals from the environment and neighboring cells
that induce transcription factors such as T-bet, Notch, Ahr, and
other signaling molecules drive the differentiation of NKp46+
ILCs. However, in order to understand how innate lymphocytes
are regulated in the gut during steady state and disease to effect
protective immunity, it will be essential to elucidate further the
developmental and micro-environmental requirements of the ILC

family. In addition, the degree of plasticity between the vari-
ous Rorγt+ populations is not yet clear. It will be important
to uncover whether NKp46+ ILCs are a terminally differenti-
ated cell type or, as shown for Th cell subsets, they are in
dynamic equilibrium with CD4− LTi cells responding to environ-
mental cues.

A third key question for the field revolves around determining
the identity of the CILP as well as the molecules and steps involved
in lineage branching to form the different ILC subsets. Id2 is an
essential core regulator of the development of the innate lympho-
cyte family and although the exact identity of the CILP remains to
be elucidated it will most likely be an Id2 expressing cell.

Finally, although it is widely recognized that Id2 and Rorγt
are essential regulators of a number of ILC populations, the
downstream molecular targets of these transcription factors in
the LNs and Peyer’s patch have not yet been identified. At a
cellular level, elucidating whether the attributes of different ILC
populations are shared or distinct, whether there exists plasticity
between the populations and whether they develop locally from
precursors, or alternately are recruited through the blood will be
important in understanding how ILCs orchestrate robust mucosal
protection and provide insight into potential avenues to harness
and manipulate these cells to promote or ameliorate immune
responses.
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