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As highlighted by the development of intestinal autoinflammatory disorders when tolerance
is lost, homeostatic interactions between gut microbiota, resident immune cells, and
the gut epithelium are key in the maintenance of gastrointestinal health. Gut immune
responses, whether stimulatory or regulatory, are dictated by the activated dendritic cells
(DCs) that first interact with microorganisms and their gene products to then elicit T and B
cell responses. Previously, we have demonstrated that treatment with genetically modified
Lactobacillus acidophilus is sufficient to tilt the immune balance from proinflammatory to
regulatory in experimental models of colitis and colon cancer. Given the significant role
of DCs in efficiently orchestrating intestinal immune responses, characterization of the
signals induced within these cells by the surface layer molecules, such as lipoteichoic
acid (LTA), and proteins of L. acidophilus is critical for future treatment and prevention of
gastrointestinal diseases. Here, we discuss the potential regulatory pathways involved in
the downregulation of pathogenic inflammation in the gut, and explore questions regarding
the immune responses to LTA-deficient L. acidophilus that require future studies.
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INTRODUCTION
The gastrointestinal tract possesses a highly specialized immuno-
logic system comprised of both innate and adaptive immune
components. These defense systems act in concert to maintain
a state of alertness or physiological inflammation in the gut that
enables the recognition and clearance of invading pathogens while
remaining tolerant to the commensal microbiome (Sansonetti,
2004). By virtue of their antigen processing and presenting abili-
ties, dendritic cells (DCs) are at the forefront of intestinal immune
responses (Chang et al., 2012). DCs in the lamina propria con-
stantly sample an array of food and microbial antigens and present
them to resident T cells. Under steady state conditions, intesti-
nal DCs induce the development of Th1 and Th17 effector T
cells; however, at the same time, a specialized subset of regula-
tory CD103+ DCs promote the generation of induced regulatory
T cells (iTregs; Siddiqui and Powrie, 2008) that prevent exacer-
bated Th1 and Th17 effector responses, and thus limit collateral
tissue damage. Tregs express the transcription factor FoxP3 and
suppress proinflammatory immune responses through the pro-
duction of anti-inflammatory cytokines, including interleukin
(IL)-10 and transforming growth factor-beta (TGF-β), and the
surface expression of inhibitory molecules, such as cytotoxic T
lymphocyte antigen 4 (CTLA-4) and lymphocyte activation gene-
3 (LAG-3; Huang et al., 2004; Li et al., 2007; Rubtsov et al., 2008;
Wing et al., 2008; Bos and Rudensky, 2012). Indeed, the trans-
fer of total CD4+CD25+ Tregs efficiently mitigated established
colitis in an experimental model of the disease (Mottet et al.,
2003), and a deficiency of this cell population has been found in
patients with ulcerative colitis (Takahashi et al., 2006). Although

these studies highlight the role of thymic-derived or natural Tregs,
subsequent studies have emphasized the importance of iTregs for
disease resolution (Haribhai et al., 2009). Therefore, the induction
of peripheral Tregs by regulatory DCs in the gut seems to be par-
ticularly crucial for microbial coexistence and colonic health. In
support of this notion, colonic Tregs were found to express T cell
receptor (TCR) repertoires that were distinct from those found
on Tregs from other organs and were also specific for antigens
encoded by commensal bacteria (Lathrop et al., 2011).

In addition to the aforementioned regulatory immune cells, and
equally important for gut immune homeostasis is the composition
of the gut microbiota (Round and Mazmanian, 2009; Consor-
tium, 2012; Holmes et al., 2012). Recent elegant studies have
contributed to our understanding of intestinal immune modula-
tion and the promotion of regulatory responses by the microbiota.
For instance, monocolonization of germ-free (GF) mice with
the human commensal, Bacteroides fragilis, induced the devel-
opment of IL-10-secreting colonic Tregs (Round and Mazmanian,
2010). Moreover, Clostridium-colonized GF mice demonstrated
a marked increase in the number of CD4+ Tregs in the colon
(Atarashi et al., 2011). Interestingly, a significant percentage of the
Tregs were not positive for Helios, a transcription factor expressed
by natural Tregs (Thornton et al., 2010), indicating that these
Tregs were locally derived through regulatory signaling cascades
(Atarashi et al., 2011). In line with these reports, our work has
shown that oral treatment with a novel strain of Lactobacillus aci-
dophilus deficient in lipoteichoic acid (LTA) effectively ameliorated
inflammation-induced colitis and colonic polyposis, and restored
intestinal homeostasis in experimental models (Mohamadzadeh
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et al., 2011; Khazaie et al., 2012). Nonetheless, despite current
advances in the field, the specific signals delivered by microbes
to innate immune cells, particularly DCs, to foster tolerance
are not completely understood. To this end, this review focuses
on the immunomodulating characteristics of specific cell surface
components of L. acidophilus and discusses potential mecha-
nisms whereby LTA-deficient L. acidophilus is able to promote the
suppression of pathogenic intestinal autoinflammation.

Lactobacillus acidophilus AND ITS SURFACE LAYER
COMPONENTS
Oral consumption of probiotics has been associated with multi-
ple health benefits, including induction of mucus-secreting cells,
maintenance of intestinal permeability, production of antimicro-
bial factors, colonization resistance, and immune cell activation or
regulation (Gareau et al., 2010). Attesting to the importance of a
well-balanced microflora, several systemic and intestinal disorders
are associated with gut dysbiosis or alterations in the intestinal
microbial composition (Nishikawa et al., 2009; De Palma et al.,
2010; Giongo et al., 2011; Blumberg and Powrie, 2012; Jeffery et al.,
2012). Among the beneficial bacteria used to maintain physiologi-
cal intestinal balance, lactobacilli have been tested in clinical trials
with favorable outcomes (Ouwehand et al., 2002). These bene-
fits are, in part, due to induced changes in the immune system,
as specific Lactobacillus species are known to stimulate DCs to
produce stimulatory and regulatory cytokines that direct subse-
quent T cell responses (Christensen et al., 2002; Mohamadzadeh
et al., 2005; Konstantinov et al., 2008). The immunomodulatory
effects of lactobacilli are attributed to the interactions between
bacterial cell surface components and pattern recognition recep-
tors (PRRs) expressed on innate cells, such as Toll-like receptors
(TLRs) and C-type lectins (CLRs; Konstantinov et al., 2008;
Mohamadzadeh et al., 2008). Given the species-specific differential
signaling of lactobacilli cell surface components, detailed examina-
tion of these proteins is imperative for the achievement of tailored
immune responses. Dissecting the downstream consequences of
host immune cell–microbial interactions is of particular impor-
tance in cases where preexisting inflammation or a propensity
for inflammatory conditions might be exacerbated or promoted,
respectively, by otherwise harmless bacterial constituents.

Lactobacillus acidophilus, one of the most widely consumed
beneficial microbes (Sanders and Klaenhammer, 2001), is a Gram-
positive bacterium that expresses the highly conserved LTA and
other surface-exposed (S-layer) molecules, such as the proteins
encoded by slpA, slpB, and slpX. S-layers have putative roles in
cell adhesion, cell shape determination, as protective barriers, and
as anchoring sites for accessory proteins, all of which may con-
tribute to bacterial survival and host–microbial cell interactions
within the gastrointestinal tract. Under laboratory growth condi-
tions, the dominant S-layer protein found on L. acidophilus is SlpA
(Boot et al., 1996), which is coexpressed with the lesser expressed
protein SlpX (Goh et al., 2009). On the other hand, SlpB, due to a
chromosomal inversion, is only coexpressed with SlpX in a small
fraction of laboratory-grown L. acidophilus (Boot et al., 1996) or
in some mutants devoid of SlpA (Boot et al., 1996; Konstanti-
nov et al., 2008; Goh et al., 2009). While deletion of SlpA leads to
decreased binding ability in vitro (Buck et al., 2005), the absence

of SlpX did not result in morphological changes, reduced adher-
ence to epithelial cells in vitro, or increased sensitivity to cellular
stresses (Goh et al., 2009). Still, a L. acidophilus mutant lacking
SlpX and SlpB is cleared faster in vivo than the wild-type strain
(Zadeh et al., 2012), suggesting that SlpX and SlpB, albeit to a
lesser extent, may also contribute to the gastrointestinal interac-
tions of L. acidophilus. In terms of immunomodulatory effects,
DCs stimulated in vitro with a SlpB-dominant strain (SlpA−)
produced higher levels of the proinflammatory cytokines IL-12
and tumor necrosis factors-alpha (TNF-α) than those challenged
with the parental L. acidophilus strain (SlpA+; Konstantinov et al.,
2008), indicating a potential regulatory role for L. acidophilus SlpA
that could very well account for our recent exciting observations
(Mohamadzadeh et al., 2011; Khazaie et al., 2012). Additionally,
the SlpA− mutant demonstrated reduced binding to DC-specific
ICAM-3-grabbing non-integrin (DC-SIGN), a CLR expressed on
DCs, and no differences in the ability to activate TLR2 (Konstanti-
nov et al., 2008), implying that L. acidophilus SlpA does not signal
to DCs via TLR2. Conversely, L. helveticus-derived SlpA, although
very similar to L. acidophilus SlpA, was recently reported to down-
regulate inflammation-associated gene expression when tested in
vitro using an epithelial cell line, but promoted proinflammatory
effects in macrophages via TLR2, also in vitro (Taverniti et al.,
2012). The authors ascribed these discrepancies to differences in
the models employed; nonetheless, the in vivo role of L. acidophilus
SlpA remains to be elucidated and is currently under extensive
scrutiny in our laboratories to decipher its immunoregulatory
effects using a range of experimental animal models.

In contrast, LTA is regarded as the Gram-positive counter-
part of the potent and proinflammatory Gram-negative stimulus,
lipopolysaccharide (LPS; Sriskandan and Cohen, 1999; Su et al.,
2006). LTA is a zwitterionic glycolipid found in the cell wall of
many Gram-positive bacterial strains, including L. acidophilus,
which is believed to facilitate adhesion, colonization, and inva-
sion of host cells (Reichmann and Gründling, 2011). In addition
to the likely role of LTA in Lactobacillus adhesion to mucosal
surfaces, this molecule promotes immune cellular activation via
TLR2 signaling, which then activates downstream proinflamma-
tory cytokine signaling cascades (Schwandner et al., 1999; Chiu
et al., 2009; Chang et al., 2010; Saber et al., 2011). Notwithstanding,
conflicting reports suggested that LTA from certain Lactobacillus
species induces anti-inflammatory cytokine production (IL-10),
and only results in the generation of proinflammatory media-
tors in preexisting inflammatory conditions [i.e., co-culture with
interferon-gamma (IFN-γ); Kaji et al., 2010; Kang et al., 2011].
Taken together, these data contend that the functions of LTA
might differ between bacterial species (beneficial lactobacilli ver-
sus pathogenic) as well as depend on the status of the local cytokine
milieu (steady state versus proinflammatory). However, a caveat
of these studies is that the work was performed in vitro, which
prompts the following question: what is the physiological role of
lactobacilli-derived LTA?

IMMUNE REGULATION INDUCED BY LTA-DEFICIENT
L. acidophilus
To clarify the in vivo effects of L. acidophilus-LTA, we recently
developed a L. acidophilus strain lacking the gene encoding
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FIGURE 1 | Immune regulation established by lipoteichoic acid

(LTA)-deficient Lactobacillus acidophilus. (A) In steady state conditions,
molecules expressed on the cell surface of L. acidophilus activate dendritic
cells (DCs) to promote effector Th1 and Th17 responses that are held in check
by the accompanying generation of induced regulatory T cells (iTregs).
However, in preexisting inflammation or susceptible individuals, immune
activation by L. acidophilus-LTA exacerbates inflammatory responses and fails

to promote immune regulation. Oral intake of mutant strains lacking LTA
expression (LTA− L. acidophilus) predominantly results in suppression of
exacerbated immune responses via the induction of regulatory IL-10-secreting
DCs (B), which then promote the conversion of naive T cells into iTregs. (B)

Confocal microscopy analysis of DCs (CD11c+, green; CD11b+, red) that
produce IL-10 (white) in the colons of healthy control mice after treatment
with LTA-deficient L. acidophilus.
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phosphoglycerol transferase, an enzyme required for the biosyn-
thesis of LTA. As opposed to treatment with the wild-type strain,
oral inoculation with LTA-deficient L. acidophilus not only pre-
vented chemical and pathogenic T cell-induced colitis, but also
quickly resolved established colitis, as measured by diminished
percent weight loss, lower diarrhea and fecal occult blood scores,
and reduced disease activity index (Mohamadzadeh et al., 2011).
By the same token, LTA-deficient L. acidophilus dramatically
reversed colonic preneoplasia in genetically predisposed animals
(Khazaie et al., 2012). While protection from colitis in our stud-
ies correlated with an increase in IL-10-producing DCs and the
number of iTregs (Mohamadzadeh et al., 2011; Khan et al., 2012),
polyposis reversal coincided with an overall dampening of local
and systemic immunity that was linked with restoration of Treg
function and stability (Khazaie et al., 2012). Importantly, proin-
flammatory Tregs have also been identified in colorectal cancer
(CRC) patients (Blatner et al., 2012), further supporting the clin-
ical applicability of LTA-deficient L. acidophilus for the treatment
of intestinal maladies given its potential ability to prevent the
formation of proinflammatory FoxP3+RORγt+ Tregs.

Moreover, in vitro co-culture of DCs with LTA-deficient L.
acidophilus led to a regulatory DC phenotype, as demonstrated
by enhanced IL-10 secretion, low expression of costimulatory
molecules, and concomitant decreases in IL-12 and TNF-α pro-
duction. Alternatively, no beneficial effects could be induced in
IL-10−/− mice in vivo, highlighting the important role of this
anti-inflammatory cytokine in the control of pathogenic intesti-
nal inflammation in our system, similar to previous findings by
others (Asseman et al., 1999; Grangette et al., 2005; Rubtsov et al.,
2008). Activation of mitogen-activated protein kinases (MAPK)
signaling pathways differentially controls features of both innate
and adaptive immune responses (Dong et al., 2002). Favored IL-10
production by regulatory DCs has previously been found to be
dependent on extracellular signal-regulated protein kinases 1 and 2
(ERK1/2) activation, while suppressed IL-12 secretion resulted
from impaired p38 activation (Qian et al., 2006). Indeed, signifi-
cant and sustained ERK1/2 activation was measured in the colonic
tissues of mice orally treated with LTA-deficient L. acidophilus,
whereas the wild-type strain promoted p38 phosphorylation
(Saber et al., 2011). Furthermore, DC stimulation with LTA-
deficient L. acidophilus resulted in only weak TLR2-dependent
cytokine production and did not enhance the expression of this
PRR; these data indicate that LTA is in fact the proinflamma-
tory molecule most strongly associated with TLR2 activation by
L. acidophilus in DCs, and that the in vivo regulatory response
noted after LTA-deficient L. acidophilus treatment is a direct con-
sequence of its absence. Collectively, the favorable effects of
LTA-deficient L. acidophilus may be due to weak TLR2 activation
and downstream signaling, together with the predominant activa-
tion of alternative DC-related PRRs, such as CLRs (Konstantinov
et al., 2008), by different surface-associated molecules, including
SlpA (summarized in Figure 1A).

CONCLUDING REMARKS AND FUTURE DIRECTIONS
Although the exact signaling pathways whereby LTA-deficient
L. acidophilus promotes the generation of regulatory DCs and,
consequently, iTregs, are currently under intensive investigation,

data obtained thus far clearly demonstrate that IL-10-dependent
pathways (Figure 1) underlie the protective effects of LTA-deficient
L. acidophilus. In addition, work by others point to SlpA as
a potential regulatory molecule in L. acidophilus (Konstantinov
et al., 2008). Notably, as seen in the wild-type L. acidophilus
strain, the presence of this S-layer protein alone is not sufficient
to counterbalance the proinflammatory actions of LTA. Addi-
tional studies performed in our laboratories demonstrated that
a mutant strain expressing LTA and SlpA, but not SlpX and
SlpB, was unable to afford any protection against colitis (Zadeh
et al., 2012). In fact, oral treatment with this LTA+SlpA+ L.
acidophilus strain led to a higher number of TNF-α-producing
colonic DCs, in addition to sustained IL-12 production by DCs
in the colon, when compared to the LTA-sufficient parental
strain (Zadeh et al., 2012). These findings may be interpreted
to imply that the other S-layer proteins expressed by L. aci-
dophilus NCFM also contribute to the regulation of LTA-induced
inflammation; however, attempted deletion of SlpA in this strain
resulted in slightly lower expression levels of the protein when
compared to the parental strain, which then suggests that even
small perturbations in the amount of SlpA expressed can exacer-
bate LTA-mediated inflammation. Consequently, ongoing studies
aim to investigate the specific contribution of the S-layer com-
ponents (i.e., SlpA) to conserve and support gut homeostasis by
creating restricted mutant strains of L. acidophilus using molecular
techniques previously described (Goh et al., 2009) and purifying
our protein of interest, SlpA. Thus, the therapeutic value of both
SlpA+SlpB−SlpX−LTA− L. acidophilus and purified SlpA will be
determined in vivo.

In other respects, it is likely that LTA-deficient L. acidophilus
confers additional benefits to the host through mechanisms inde-
pendent of the immunomodulatory effects mentioned above. For
instance, intestinal epithelial cells not only create a protective
barrier against invading pathogens, but also sense and inter-
act with microbes through PRRs to influence subsequent innate
immune responses (Wells et al., 2011). Accordingly, the status of
the mucosal epithelium is central to gastrointestinal health and
accumulating evidence indicates that aberrant epigenetic modifi-
cation of colonic tissue contributes to CRC development (Lao and
Grady, 2011). As these changes can arise in the presence or absence
of pathogenic intestinal inflammation, we recently tested the
effects of LTA-deficient L. acidophilus treatment on the epigenetic
landscape of the intestinal mucosa and found that this bacterium
induced the expression of CRC-associated, epigenetically con-
trolled genes that are often downregulated in cancer-promoting
pathogenic conditions (Lightfoot et al., 2012). These important
results create a strong position to precisely define the bacterial
gene products that may dampen detrimental gut inflammation
and protect against inflammatory conditions, including inflam-
matory bowel disease and colon cancer, not only through immune
cell modulation, but also via direct interactions with the gut
epithelium.
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