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V(D)J recombination and somatic hypermutation (SHM) are the primary mechanisms
for diversification of the human antibody repertoire. These mechanisms allow for rapid
humoral immune responses to a wide range of pathogenic challenges. V(D)J recombination
efficiently generate a virtually limitless diversity through random recombination of variable
(V), diversity (D), and joining (J) genes with diverse non-templated junctions between
the selected gene segments. Following antigen stimulation, affinity maturation by SHM
produces antibodies with refined specificity mediated by mutations typically focused
in complementarity determining regions (CDRs), which form the bulk of the antigen
recognition site. While V(D)J recombination and SHM are responsible for much of the
diversity of the antibody repertoire, there are several secondary mechanisms that, while
less frequent, make substantial contributions to antibody diversity including V(DD)J
recombination (or D–D fusion), SHM-associated insertions and deletions, and affinity
maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced
diversity, these mechanisms allow the production of antibodies that are critical to response
to a variety of viral and bacterial pathogens but that would be difficult to generate using
only the primary mechanisms of diversification.
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INTRODUCTION
A diverse antibody repertoire is a principal component of humoral
immunity and is critical to the development of functional adap-
tive immune responses. Generation of this repertoire diversity
is accomplished primarily through two mechanisms: recombina-
tion and somatic hypermutation (SHM). These two mechanisms
produce massive diversity within antibody complementarity deter-
mining regions (CDRs), which form the primary antigen contact
site. The availability of multiple variable genes for selection at
the time of recombination facilitates large combinatorial diversity,
which is further expanded by a diversity of possible heavy and light
chain combinations. In this review, we discuss in detail three addi-
tional mechanisms which, while less common than recombination
and SHM, contribute substantially to the generation of diversity
within the antibody repertoire: (1) non-standard recombinations
that violate the 12/23 rule of recombination, (2) SHM-associated
genetic insertions and deletions, and (3) affinity maturation and
direct antigen contact by non-CDR antibody regions.

V(D)J RECOMBINATION: FOLLOWING THE 12/23 RULE
Since the discovery that recombination activating gene (RAG)-
mediated recombination of variable (V), diversity (D) and joining
(J) genes generates virtually unlimited sequence diversity in the
antibody repertoire (Brack et al., 1978; Alt and Baltimore, 1982;
Tonegawa, 1983; Schatz et al., 1989; Oettinger et al., 1990), much
progress has been made in determining the genetic and mech-
anistic elements that participate in the antibody recombination
process. It is generally understood that recombination signal

sequences (RSS), which are composed of conserved AT-rich hep-
tamer and nonamer sequences separated by spacers of either 12 or
23 nucleotides, are recognized and bound by RAG1 and RAG2
proteins at the initiation of the recombination process (Hesse
et al., 1989; Alt et al., 1992). RAG binding is highly dependent
on the heptamer and nonamer sequences, and alterations to either
sequence results in decreased RAG binding (Cuomo et al., 1996;
Difilippantonio et al., 1996; Nadel et al., 1998). The length of the
spacer sequence is critical to recombination, and there is evidence
of sequence conservation within the spacer region (Ramsden et al.,
1994; Lee et al., 2003; Montalbano et al., 2003).

Recombination typically occurs only between RSS elements of
different spacer lengths, in a model commonly referred to as the
12/23 rule of recombination (Ramsden et al., 1996; Steen et al.,
1996; van Gent et al., 1996; Schatz, 2004). After binding to one
12-bp RSS and one 23-bp RSS, the RAG complex induces single-
strand DNA nicks between the coding sequence and the heptamer
of each RSS, resulting in hairpin formation on each of the coding
ends and a blunt double-stranded break on each signal end (Roth
et al., 1992; Schlissel et al., 1993; McBlane et al., 1995; Sadofsky,
2001). The hairpins are opened, nucleotides may be added to or
removed from the coding ends, and the double-strand DNA breaks
at the coding ends are joined into a single coding strand (Lewis,
1994; Mahajan et al., 1999; Shockett and Schatz, 1999; Walker et al.,
2001; Mansilla-Soto and Cortes, 2003; Roth, 2003).

In antibody heavy chain genes, D gene segments are
flanked by 12-bp RSSs on either side, while VH and JH

gene segments are flanked by 23-bp RSSs (Early et al., 1980;
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Kurosawa and Tonegawa, 1982). Recombination thus proceeds in
a step-wise fashion, with D–JH recombination preceding VH–D
recombination, resulting in a complete heavy chain variable region
(Alt et al., 1987; Schatz et al., 1992). A single recombination event
joins the light chain V and J gene, and pairing of recombined heavy
chain and recombined light chains results in massive diversity
within the unmutated antibody repertoire.

NON-12/23 RECOMBINATION: V(DD)J AND DIRECT VH–JH
RECOMBINATION
Direct VH–JH joining and V(DD)J recombination (also referred to
as D–D fusion) are in direct violation of the 12/23 rule, but such
recombination events have been demonstrated in both in vitro
and in vivo systems (Sanz, 1991; Kiyoi et al., 1992; Raaphorst et al.,
1997; Koralov et al., 2005, 2006; Watson et al., 2006). Even in model
systems designed to induce such recombination events, however,
non-12/23 recombinations are much less efficient than recombi-
nations that adhere to the 12/23 rule (Akira et al., 1987; Hesse et al.,
1989; Akamatsu et al., 1994).

V(DD)J recombinants are the result of an aberrant recombi-
nation process by which two or more D genes are joined into
a single recombinant. The joining of two D genes, which are
flanked on both sides by 12-bp RSSs, can only be accomplished
in clear violation of the 12/23 rule, but recombined antibody
genes in this configuration have now been isolated by numer-
ous investigators. While V(DD)J recombination typically results
in an unusually long heavy chain CDR 3 (HCDR3) region, the
use of two D segments is not the primary mechanism by which
long HCDR3 loops are generated (Briney et al., 2012a). Long
HCDR3s typically are generated by the use of longer D and J
segments and long non-templated junctional regions. The pre-
cise order of events during the V(DD)J recombination process is
unclear: it is not known whether V(DD)J recombinants are pro-
duced through an additional D–D recombination following the
initial D–JH recombination, or whether D–D fusion occurs before,
even long before, the D–JH recombination. V(DD)J recombina-
tions have been estimated by some to occur in as many as 5–11%
of all recombinations (Sanz, 1991; Kiyoi et al., 1992; Raaphorst
et al., 1997), but the true frequency of V(DD)J recombinations
is difficult to determine. Identification of V(DD)J recombinants
relies on the accurate detection of two diversity genes within a
single recombinant, but N-addition mimicry of diversity gene
segments, which is genetically indistinguishable from true V(DD)J
recombination, likely inflates many published estimates of V(DD)J
recombination (Watson et al., 2006). Recent work, which lever-
aged high-throughput sequencing and a stringent filtering process,
placed a lower bound of the frequency of V(DD)J recombinants in
the human peripheral blood repertoire at approximately 1 in 800
B cells (Briney et al., 2012b).

The occurrence of direct VH–JH recombination, like V(DD)J
recombination, requires clear violation of the 12/23 rule, since
both VH and JH segments are flanked by 23-bp RSSs. Little
is known about the frequency of direct VH–JH recombination
in the human repertoire. Several studies of the human CDR3
repertoire that have identified D–D fusions have failed to iden-
tify VH–JH recombinants, indicating that if they occur, VH–JH

recombinations are likely very rare (Sanz, 1991; Kiyoi et al.,

1992; Raaphorst et al., 1997; Watson et al., 2006). This finding
is somewhat surprising, since in vitro recombination between
two 23-bp RSSs occurred much more frequently than recom-
bination between two 12-bp RSSs (Jones and Gellert, 2002).
In contrast to D–D fusions, for which there are several stud-
ies on the frequency of V(DD)J recombinants in the human
peripheral blood repertoire, much of the published work describ-
ing in vivo VH–JH recombination relies on transgenic mouse
models lacking D gene loci (Koralov et al., 2005, 2006). Since
these model systems produce only aberrant recombinants, it is
difficult to interpret the resulting data in terms of the likely
occurrence and frequency of such recombinants in the natu-
rally occurring circulating B cell repertoire. As with V(DD)J
recombination, determination of the true frequency of direct
VH–JH recombination will likely prove difficult, as extensive
chewback of D genes during normal V(D)J recombination may
appear genetically indistinguishable from true VH–JH recom-
bination and inflate any estimates of the frequency of VH–JH

recombination.

NON-12/23 RECOMBINATION: VH REPLACEMENT AND
RECEPTOR REVISION
VH replacement is a process by which a secondary VH–V(D)J
recombination can occur, resulting in replacement of the vari-
able gene while preserving the original D–JH recombination. VH

replacement, which is though to be a form of heavy chain recep-
tor editing, differs from light chain receptor editing, although both
typically occur early in B cell development (Prak and Weigert,1995;
Nemazee and Weigert, 2000). Light chain receptor editing results
in an entirely new VL–JL recombination through the recombina-
tion of a VL gene segment upstream of the original recombination
with a JL gene segment downstream of the original recombina-
tion (Papavasiliou et al., 1997; Retter and Nemazee, 1998). Thus,
light chain receptor editing proceeds without violating the 12/23
rule. In contrast, VH replacement involves VH–V(D)J recombi-
nation, which results in retention of the original D–JH junction
and replacement only of the VH gene segment (Kleinfield and
Weigert, 1989; Nemazee, 2006). VH replacement utilizes a cryptic
RSS (cRSS) found near the 3′ end of most human variable genes
(Radic and Zouali, 1996), and this cRSS is used to recombine
with the normal RSS at the 3′ end of the invading variable gene.
The cRSS contains a heptamer sequence, but lacks an identifiable
nonamer or spacer sequence, and recombination with the cRSS
is inefficient, much like other forms of non-12/23 recombination
(Koralov et al., 2006; Lutz et al., 2006).

VH replacement also can be distinguished from receptor revi-
sion, which is putatively antigen-driven and has not been shown
to use the conserved cRSS elements near the 3′ end of the V gene.
Instead, receptor revisions are suggested to occur peripherally
in mature B cells using alternate RSS-like elements that some-
times contain only the CAC motif found at the 5′ end of most
RSS heptamers or the inverse GTG motif found at the 3′ end;
the few examples of this phenomenon typically occurred near
the middle of heavy chain framework region (FR) 3 (Itoh et al.,
2000; Wilson et al., 2000; Lenze et al., 2003). Use of these alter-
nate RSS-like elements results in formation of a hybrid V gene,
retaining a substantial portion of the initially recombined V gene,
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as opposed to the nearly complete removal of the initially recom-
bined V gene observed in VH replacement. Because the observed
receptor revision events occurred in stretches of sequence simi-
larity between V genes, it has been proposed that these revisions
may instead be polymerase chain reaction (PCR) artifacts caused
by incomplete recombinant amplification followed by priming of
a different V(D)J recombinant with the partially amplified frag-
ment, resulting in a hybrid sequence (Darlow and Stott, 2005).
In approximately half of all identified receptor revisions in these
studies, the invading V gene is located downstream of the vari-
able gene used in the initial V(D)J recombination, which would
not be possible using the proposed receptor revision mecha-
nism. Inter-chromosomal recombination has been proposed as the
mechanism for these out-of-order receptor revisions (Wilson et al.,
2000). More recent work has shown that receptor reversions are
not observed when amplifying from single B cells (Goossens et al.,
2001), providing further evidence that the previously observed
receptor revisions may be an artifact of PCR amplification of
multiple antibody sequences from bulk B cells.

It is thought that VH replacement, like other forms of recep-
tor editing, occurs primarily in the immature B cell population to
rescue non-functional or autoreactive recombinants (Zhang et al.,
2004; Lutz et al., 2006), but some studies suggest that VH replace-
ment may be possible in mature B cells (Hikida et al., 1996; Han
et al., 1997; Papavasiliou et al., 1997; Hertz et al., 1998; Nussen-
zweig, 1998). Somewhat paradoxically, VH replacement, which is
purported to be a primary mechanism for resolving self-reactive
recombinations, can itself result in antibodies with autoreac-
tive characteristics (Klonowski and Monestier, 2000; Zhang et al.,
2003). VH replacement was observed first in transformed murine
pre-B cells (Kleinfield et al., 1986; Reth et al., 1986), with sub-
sequent studies identifying VH replacement in vivo (Taki et al.,
1993; Chen et al., 1995). In the most informative work done
on VH replacement in the human repertoire, a genetic finger-
print of VH replacement was identified in the human peripheral
blood repertoire (Zhang et al., 2003). Identification of VH replace-
ment events in the peripheral repertoire relies on detection of
short pentameric sequences that are located between the cRSS
and the 3′ end of V genes. These pentamers remain even after
VHreplacement, providing an identifiable remnant of the replaced
V gene. Short pentameric sequences are easily mimicked through
random N-addition, making reliable detection of VH replacement
difficult. Therefore, estimates of VH recombination frequency in
the peripheral blood repertoire have varied widely, from 5 to 22%
of the total repertoire (Zhang et al., 2003; Koralov et al., 2006;
Watson et al., 2006).

SOMATIC HYPERMUTATION
In humans and in mice, diversification of the secondary anti-
body repertoire, which arises in response to antigenic stimulus,
is accomplished primarily through SHM (Brenner and Milstein,
1966; Kelsoe, 1994). Naïve, antigen-inexperienced B cells undergo
the SHM process upon recognition of an infectious agent. It is
through the SHM process, which occurs primarily in secondary
lymphoid tissue, that hosts mutate the variable region of their
antibody genes (MacLennan et al., 1992; Li et al., 2004). Many of
these mutations have no effect on antigen recognition and many

have deleterious effects on either antigen recognition or proper
folding of the antibody protein. Some mutations, however, pro-
duce antibodies with improved affinity for the target pathogenic
epitope (Casali et al., 2006). Thus, the SHM process provides a
basis for the positive selection of high-affinity antibodies that are
characteristic of a mature immune response (MacLennan, 1994).

Many components of the SHM machinery are known, but
the complete process and the mechanisms by which it is targeted
specifically to the immunoglobulin loci are still poorly understood.
SHM introduces point mutations at a frequency of approximately
10−3 mutations per base pair, which is about 106-fold higher than
the rate of spontaneous mutation in other genes (Rajewsky et al.,
1987). Mutations begin approximately 150-bp downstream of the
transcription start site and the mutation frequency decreases expo-
nentially with increasing distance from the transcription start site
(Rada and Milstein, 2001). Activation-induced cytidine deami-
nase (AID) is required for SHM and initiates the SHM process by
the deamination of C nucleotides (Muramatsu et al., 1999, 2000).
Deamination results in a U–G mismatch, and several possible pro-
cesses result in the error-prone repair of the mismatch. Although
the precise mechanism(s) responsible for error-prone repair dur-
ing SHM are not known, several DNA repair mechanisms have
been shown to be critical to the SHM process, including base exci-
sion repair and mismatch repair (Phung et al., 1998; Rada et al.,
1998; Wiesendanger et al., 2000; Di Noia and Neuberger, 2002;
Zheng et al., 2005).

SOMATIC HYPERMUTATION-ASSOCIATED INSERTIONS AND
DELETIONS
Although the SHM process typically results in single nucleotide
substitutions, deletion of germline nucleic acids or insertion of
non-germline nucleic acids does occur in association with SHM
(Goossens et al., 1998; Wilson et al., 1998a; Bemark and Neu-
berger, 2003). These insertions and deletions (indels) are rare, with
SHM-associated (SHA) indels estimated to be present in 1.3–6.5%
of circulating B cells (Goossens et al., 1998; Wilson et al., 1998a;
Bemark and Neuberger, 2003). Short SHA indels are much more
common than long SHA indels, with most insertions and dele-
tions being 1–2 codons in length (Goossens et al., 1998; Wilson
et al., 1998a; Bemark and Neuberger, 2003). Although infrequent,
SHA insertion and deletion events add substantially to the diver-
sity of the human antibody repertoire (Wilson et al., 1998b; de
Wildt et al., 1999; Reason and Zhou, 2006).

Somatic hypermutation-associated insertions and deletions
also have been shown to play a critical role in the antibody
response against viral and bacterial pathogens, including HIV,
influenza, and Streptococcus pneumoniae (Zhou et al., 2004; Walker
et al., 2009, 2011; Wu et al., 2010a; Krause et al., 2011; Pejchal
et al., 2011). Of particular interest, structural analysis of an SHA
insertion in the anti-influenza antibody 2D1 identified a sub-
stantial structural alteration induced by the insertion (Krause
et al., 2011). This insertion, although located in a FRs, caused a
large conformational change in a CDR and allowed antibody–
antigen interactions that were sterically hindered without the
insertion-induced conformational change. In addition to 2D1, the
extremely broad and potently neutralizing HIV antibody VRC01
contained a six nucleotide deletion in the CDR1 of the light
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chain (CDR-L1; Wu et al., 2010a). This SHA deletion shortened
the CDR-L1 loop, thereby removing potential clashes with loop
D of the HIV envelope protein and allowing direct interaction
between the HIV antigen and the CDR-L2 loop of VRC01 (Zhou
et al., 2010).

ANTIBODY COMPLEMENTARITY DETERMINING REGIONS
Antibody CDRs (also referred to as hypervariable regions) are the
primary region of antigen recognition, contain extensive sequence
diversity even among germline genes, and are targeted prefer-
entially for affinity maturation, making them the most variable
regions of the antibody gene (Capra and Kehoe, 1975; Kabat et al.,
1992). There are several structural and genetic reasons for the pref-
erential targeting of CDRs by SHM. Genetically, SHM is known to
preferentially target the WRCY hotspot motif (or its reverse com-
plement, RGYW; Dörner et al., 1998), and the frequency of these
hotspots is increased in CDRs (Wagner et al., 1995; Shapiro and
Wysocki, 2002; Pham et al., 2003). Further, codon usage is biased
in CDRs toward codons that are easily mutable, enhancing the
likelihood that a nucleotide substitution induced by SHM results
in an amino acid change (Motoyama et al., 1991; Wagner et al.,
1995; Kepler, 1997). Structurally, the CDRs are largely loop-based,
which make them sufficiently flexible to incorporate the substitu-
tions and short indels introduced by SHM without compromising
structural integrity. FRs, by contrast, are highly structured
and less able to accommodate somatic mutations (Celada and
Seiden, 1996).

AFFINITY MATURATION AND ANTIGEN CONTACT BY
ANTIBODY FRAMEWORK REGIONS
While much affinity maturation is focused on the CDRs, there
are other regions that are important to antigen recognition. T
cell receptors (TCRs) contain a fourth hypervariable region (HV4,
sometimes referred to as CDR4), which is highly variable, surface-
exposed, and involved in superantigen and accessory molecule
recognition (Choi et al., 1990; Garcia et al., 1996; Li et al., 1998).
We have recently used high-throughput sequencing approaches to
determine the sequence of thousands of antibody genes contain-
ing SHM-associated insertions and deletions (SHA indels), which
revealed significant differences between the location of SHA indels
and somatic mutations (Briney et al., 2012c). Further, we identi-
fied a cluster of insertions and deletions in the antibody FR3 region
that corresponds to the HV4 in TCRs.

Emerging evidence suggests that an HV4-like region may exist
in antibodies as well as TCRs. Recent crystallographic work on
the anti-influenza antibody CR6261 has shown that the HV4-like
region of FR3 was somatically mutated (Throsby et al., 2008) and
directly contributed to antigen binding (Ekiert et al., 2009). The
anti-influenza antibody 2D1 contains a three-codon insertion in a
HV4-like region of FR3 which, while not directly involved in anti-
gen recognition, causes a critical conformational shift in nearby
CDRs that is required for antigen recognition (Krause et al., 2011).
A unique example of HV4-like contribution to antigen recogni-
tion is the anti-HIV antibody 21c (Diskin et al., 2010). 21c binds
to the HIV co-receptor binding pocket, which is only exposed
following binding of CD4, the primary host receptor. Interest-
ingly, while the majority of the binding surface of 21c is in contact

with the HIV envelope protein, the HV4-like region of 21c binds
to CD4, forming a cross-protein epitope. In addition to 21c, the
broadly neutralizing anti-HIV antibody VRC03 contains a sur-
prisingly long seven-codon insertion in the HV4-like region of
FR3 (Wu et al., 2010a). Finally, the HV4-like FR3 region of anti-
body heavy chains of the VH3 family has been shown to interact
with Staphylococcal protein A, a known superantigen (Potter et al.,
1996), mimicking the superantigen-binding activity of the HV4
region in TCRs. While the HV4-like regions that have been iden-
tified to date are not somatically mutated to the same extent as
antibody CDRs, the ability of this HV4-like region to tolerate
a substantial number of somatic mutations and genetic inser-
tions suggests the existence of a somewhat flexible region that has
an under-appreciated ability to accommodate affinity maturation
modifications.

CONCLUSION
V(DD)J recombination, SHA indels, and antigen contact by non-
CDR antibody regions, while secondary to V(D)J recombination
and SHM as mechanisms of antibody diversification, contribute
substantially to antibody diversity. Each of these secondary affin-
ity maturation mechanisms allows for the generation of unique
genetic or structural elements that have been shown to be impor-
tant to the humoral response against a variety of viral and bacterial
pathogens including HIV, influenza virus, staphylococci and pneu-
mococci. These secondary affinity maturation events are much less
common than SHM and, as a consequence, are more difficult
to study effectively. The advent of next-generation sequencing
technology has made it is possible to obtain thousands or mil-
lions, and soon to be billions, of antibody sequences (Boyd et al.,
2009, 2010; Wu et al., 2010b; Prabakaran et al., 2011; Briney et al.,
2012d). It is likely that over the coming years, this digital flood
of antibody sequence data will allow a much more complete
understanding of these secondary affinity maturation events. For
example, current technologies for isolating antigen-specific anti-
bodies from human blood or bone marrow cells are relatively
inefficient and result in stochastic discovery of unique antibod-
ies. High-throughput sequence analysis techniques now allow
comprehensive definition of all expressed antibody sequences in
samples, even to the scale of analyzing all antibody sequences
in leukopacks containing most of the circulating B cells in an
individual at a time point. Novel methods under current develop-
ment for determining phylogenetic relationships among expressed
antibody sequences may allow us to define the path of somatic
mutation from unmutated ancestor sequences to the final affinity-
matured antigen-specific sequence. Likely, these studies will reveal
that B cell clones that develop following antigen stimulation do
not follow linear paths of development, but rather diverge into
complex families with multiply branched phylogenies. Such stud-
ies should greatly broaden our understanding of the molecular and
genetic events occurring in the B cell repertoire following antigen
stimulation.
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