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INTRODUCTION

Complex mechanisms underlying the maintenance of fully functional, proliferative,
HIV-1-specific T-cell responses involve processes from early T-cell development through
to the final stages of T-cell differentiation and antigen recognition. Virus-specific prolifera-
tive CD4 and CD8 T-cell responses, important for the control of infection, are observed in
some HIV-17 patients during early stages of disease, and are maintained in long-term non-
progressing subjects. In the vast majority of HIV-17 patients, full immune functionality is
lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline
throughout the course of chronic infection. This appears irreparable despite administration
of potent combination antiretroviral therapy, which to date is non-curative, necessitating
life-long administration and the development of effective, novel, therapeutic interventions.
While a sterilizing cure, involving clearance of virus from the host, remains a primary aim,
a "functional cure” may be a more feasible goal with considerable impact on worldwide
HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in
the absence of toxic and costly drugs. Effective immune homeostasis coupled with a bal-
anced response appropriately targeting conserved viral antigens, in a manner that avoids
hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral
control. This review describes novel concepts underlying full immune functionality in the
context of HIV-1 infection, which may be utilized in future strategies designed to improve
upon existing therapy. The aim will be to induce long-term non-progressor or elite controller
status in every infected host, through immune-mediated control of viremia and reduction
of viral reservoirs, leading to lower HIV-1 transmission rates.
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co-exist; rather than life-long, costly, and often unpleasant, treat-

HIV-1 has infected more than 65 million people worldwide and
this number is increasing year on year, with 34 million persons
currently living with the virus (UNAIDS, 2012). The virus/host
relationship is not sustainable, and, without chemotherapy, 99%
of infected-individuals succumb to AIDS, resulting in death within
an average of 10 years. SIV, the simian ancestor of HIV, has been
present in its natural host for centuries and establishes a non-
pathogenic, life-long infection. In contrast, HIV-1 infection, a
relatively recent emergence, is almost universally fatal to its host.
Huge global efforts are being implemented to provide effica-
cious protection from infection for future generations through
HIV prevention, treatment, and the development of prophy-
lactic vaccines!>2. Many millions of pounds have been invested
in the development of non-curative combination antiretroviral
chemotherapy (cART), an indisputable success for the treatment
of HIV-1-infected individuals. Our understanding of the path-
ogenic interactions between a number of hosts and different
retroviruses continually increases. Short, more user-friendly treat-
ment regimens, with persisting therapeutic benefits, are required
to attenuate disease progression and enable host and pathogen to
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ment. It is noteworthy that the number of deaths from AIDS
worldwide and in the UK, although initially reduced following
the introduction of cART, now shows little evidence of major
decline according to the most recent report from Health Protec-
tion Agency (HPA, 2012). Employing the vast scientific knowledge
of the immune system in humans, and our evolutionary neighbors
the non-human primates, understanding immune control of viral
infections and translating that knowledge into the development
of effective immunotherapies, while challenging is of substan-
tial importance. Although viral eradication from the infected host
must remain the ultimate goal, a more feasible therapeutic target
may be the co-existence of host and virus in the absence of thera-
peutic drugs, as observed in long-term non-progressing individu-
als or elite controllers who represent <1% of the HIV-1-infected
cohort and control plasma HIV-1 RNA levels to below limit of
detection (BLD) (Blankson, 2010; Migueles and Connors, 2010;
Mandalia et al., 2012). The discovery of a successful prophylac-
tic immunization strategy will still leave approximately 34 million
HIV-1" people worldwide in need of improved, long-term thera-
peutic options. The information available is vast, therefore we have
summarized some of the findings that address key questions on
how individuals with HIV-1 non-progressive infection, character-
ized primarily by proliferative and IL-2-producing HIV-1-specific
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CD4 and CD8 T-cell responses, are able to keep the virus under
control.

THE LONG-TERM NON-PROGRESSOR: CRITERIA OF
DEFINITION AND EMULATION OF LTNP STATUS

Cohorts of long-term non-progressors (LTNP) were identified
prior to the availability of assays that quantify the plasma viral
load (pVL), and as a result viremia was not initially included in
the criteria of definition (Pantaleo and Fauci, 1996). Following the
introduction of the viral load assay, the term “True LTNP” defined
individuals meeting the original LTNP criteria in addition to sup-
pressed pVL BLD (Migueles and Connors, 2010). Terminology
then changed to refer to such atypical HIV-1T individuals as “Elite
controllers,” “Elite suppressors,” and “HIV controllers” (Deeks and
Walker, 2007; Blankson, 2010; Migueles and Connors, 2010). More
recently, an additional group of individuals exhibiting a disparate
course of clinical disease have been described and termed “Discord
controllers” (Groves et al., 2012). These individuals control viral
replication to BLD of the routinely available viral load assay, but
demonstrate peripheral blood CD4 T-cell counts lower than the
normal range, therefore failing to meet the inclusion criteria for
LTNP status. It is thought that definitions based upon the “nor-
mal range” of CD4 T-cell counts can be somewhat stymied as they
fail to take into account natural variations in CD4 T-cell count
within and between populations of different ethnicities, and that
the infecting viral clade may differ from that which current rou-
tinely available pVL assays have been optimized to detect (Westrop
etal., 2011).

In our cohort, HIV-17T patients exhibiting stable CD4 T-cell
counts below normal range displayed shorter time to disease pro-
gression than LTNP who maintained their CD4 T-cell counts
within the normal range (Mandalia et al., 2012). However eventual
disease progression appeared very likely in both groups — indicat-
ing loss of control over HIV-1. The combined data so far show that
only a few LTNP and elite controllers have been identified in any
cohorts, endorsing the need for universal definitions to facilitate
more meaningful comparisons (Mandalia et al., 2012). The major
question remains as to why disease progression eventually occurs
in our cohort of LTNP after many years of effective viral control
(Westrop et al., 2009b; Mandalia et al., 2012), and studies to date
suggest multiple factors.

Data presented in various studies accentuate a need for col-
laborative efforts when studying these atypical patients, such as
work performed within the international Genetic and Immuno-
logical Studies on HIV' European and African LTNP (GISHEAL)
and the HIV Controllers Study (HIVCS) consortia (Pereyra et al.,
2010; Guergnon et al., 2012), to increase the number of LTNP
and controllers who can be identified and studied. Using different
criteria to define patient groups results in different estimates in
time until disease progression, before even considering functional
immunology, genetic, and virological factors, further emphasizing
the need for agreed standardized use of terminology and defini-
tions before more in depth study of these individuals is performed.
LTNP within the Chelsea and Westminster HIV cohort are defined
by a duration of HIV-1 infection longer than 7 years from time
of HIV-1T diagnosis, in the absence of cART and clinical symp-
toms, and the stable maintenance of CD47 T-cell count within the

normal reference range (Mandalia et al., 2012). For this review, we
use the term LTNP to refer to HIV-1T subjects that fit the criteria
used to define our cohort, and with pVL BLD.

It has been well established for over two decades that HIV-1
infection is branded with loss of T-cell proliferation accompanied
with limited IL-2 production (Lane et al., 1985; Shearer et al.,
1986; Miedema et al., 1988; Clerici et al., 1989; Gruters et al., 1990;
Fan et al., 1993). Importantly, “True LTNP” show proliferative
responses associated with cytotoxic potential of HIV-1-specific
CD8 T cells, known to correlate with immunologic control of HIV-
1 replication (Migueles et al., 2002, 2008). Such elite suppression
(Blankson and Siliciano, 2008), trademarked by effective prolifer-
ation and clonal expansion, is linked with higher levels of cytolytic
granules (granzyme B and perforin) within HIV-1-specific CD8
T cells. This is observed only in these unique LTNP who control
HIV-1 replication, but not in typical progressors. Several differ-
ent mechanisms of viral control have been proposed, nonetheless
findings clearly suggest that proliferation is a prerequisite for pro-
ducing effective CD8 T cells able to kill target CD4 ™ cells (Blankson
and Siliciano, 2008; Migueles et al., 2008). Furthermore, these find-
ings by Connors and colleagues (Migueles et al., 2008) also showed
that stimulation of cells from typical progressors and induction of
proliferation resulted in effective killing — indicating the potential
to reverse CD8 T-cell unresponsiveness in progressors.

Over the last few years several reports, including our own, have
supported the idea that in LTNP with undetectable viral load, piv-
otal CD4 helper T lymphocyte (HTL) orchestration of anti-HIV-1
immunity is mediated via intricately balanced proliferative ability
and cytokine profiles (Wilson et al., 2000; Imami et al., 2002). Our
current understanding of the response to SIV and HIV-2 infection
in the natural hosts, and the fact that amongst the broad spec-
trum of HIV-1 pathological manifestations (Klein and Miedema,
1995), a very small number of HIV-1-infected persons (<1%)
remain well without suffering quantitative or qualitative declines
in proliferative IL-2-secreting HIV-1-specific CD8 and CD4 T-
cell responses (Wilson et al., 2000; Imami et al., 2002; Migueles
et al., 2002, 2008; Betts et al., 2006; Westrop et al., 2009b), indi-
cates that modulation of the immune system may offer benefits to
chronically infected individuals receiving cART. Individuals who
successfully suppress viral replication to BLD retain the immune
profile present in most patients at the early stage of infection;
that is, they display proliferative virus-specific T-cell responses,
fully functional antigen-presenting cells (APC) including higher
numbers of pDC, and intact innate immune responses, for many
years following infection (Borrow et al., 1994; Koup et al., 1994;
Rinaldo et al., 1995; Harrer et al., 1996; Rosenberg et al., 1997;
Gea-Banacloche et al., 2000; Wilson et al., 2000; Soumelis et al.,
2001; Imami et al., 2002; Migueles et al., 2002).

INTERPLAY BETWEEN VIRAL PATHOGENESIS AND
IMMUNOPATHOLOGY

Despite over 30 years of concentrated study, many aspects of HIV-1
immunopathology remain unclear. A very important model of the
pattern of natural pathogenic infection has emerged, based on the
SIV-infected rhesus macaque, which describes the immunopatho-
genesis of lentiviral infection as the result of two distinct periods of
destruction (Li et al., 2005; Mattapallil et al., 2005). The two-phase
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infection is characterized by an acute, highly destructive phase
when virus massively depletes the CD4 memory T cells from effec-
tor sites in the gastrointestinal tract, followed by a chronic phase
in which the damaged immune system slowly fails as constant
immune hyperactivation eventually exhausts the ability for recon-
stitution (Li et al., 2005; Mattapallil et al., 2005; Douek et al.,
2009). This early destruction of the CD4 memory T-cell pool cou-
pled with rapid establishment of a viral reservoir suggests that
current strategies alone, which work to suppress replication of
virus, are unlikely to result in eradication of the viral reservoir
from the host, or facilitate reconstitution of immunity (Richman
et al., 2009; Deeks et al., 2012). Nonetheless, in LTNP and other
HIV-17 individuals receiving multi-targeted drug treatment at
the initial acute stages of infection, the proviral reservoir has been
described as significantly reduced compared to those treated at a
later chronic stage of infection (Pires et al., 2004; Cellerai et al.,
2011; Ananworanich et al., 2012).

Strong virus-specific CD8 cytotoxic T lymphocyte (CTL)
responses are required to control most viral infections including
HIV-1 (Walker et al., 1987; Koup et al., 1989, 1994; Klein et al.,
1995; Moss et al., 1995; Goonetilleke et al., 2009). CD4 HTL also
play a principal role in supporting the development of the humoral
immune response, during antigen processing and presentation by
APC, and have a major influence on the development, maturation,
differentiation, and maintenance of effective CD8 CTL immu-
nity (Kaech and Ahmed, 2003; Lichterfeld et al., 2004; Williams
and Bevan, 2007). The complex interactions between the virus
and T cells involve recognition of antigen by T cells, a process
that requires antigen capture and processing into peptides (York
and Rock, 1996; Rudolph et al., 2006; Blum et al., 2013). Such
peptides originating from the cytosol within an infected cell, are
delivered and loaded to form tertiary structure complexes with
Major Histocompatibility Complex (MHC) class I molecules, and
are displayed on the cell surface for recognition by the CD8 T-cell
receptor (TCR). Peptides derived from vesicles are recognized by
CD4 TCR, whilst in complex with MHC class II molecules on the
surface of an APC (Sebzda et al., 1999; Blum et al., 2013). These
interactions initiate the anti-viral immune response, including
proliferation, clonal expansion, and differentiation (Lanzavecchia
and Sallusto, 2002; Sallusto and Lanzavecchia, 2011). Generation
of CD8 CTL memory is dependent on the presence of fully func-
tional CD4 HTL during both priming and effector function (Zajac
etal., 1998; Janssen et al., 2003; Shedlock and Shen, 2003; Sun and
Bevan, 2003). Douek et al. (2002) have shown that peripheral HIV-
1-specific CD4 HTL are preferentially targeted for viral infection,
and that these cells are possibly anergized during acute infection,
and subsequently deleted or destroyed over the course of chronic
disease. In SIV infection of sooty mangabeys or African green
monkeys no immunosuppression is evident, and in HIV-2 infec-
tion progression to disease is very slow, even though viral loads
may be high. Mechanisms for the cessation of, or reduced rates
of, disease progression in SIV or HIV-2 infection remain unde-
fined, although it has been suggested that distinct T-cell activation
and cytokine profiles reflect the presence of effective host immune
responses and the extent of viral replication (Hirsch, 2004; Hanson
et al., 2005; Silvestri, 2005). The essential role of T-cell prolifera-
tion coupled with IL-2-producing capacity was identified in HIV-2

studies describing maintenance of virus-specific CD4 T-cell help,
and polyfunctionality of both CD4 and CD8 T cells as hallmarks
of non-progressive infection (Alatrakchi et al., 2006; Duvall et al.,
2006, 2008), providing additional support for the role of prolif-
erative IL-2-producing T cells in viral control. In HIV-1T LTNP,
unlike the chronically infected typical progressors, the majority of
T cells are not rendered anergic either by HIV-1 or by clonal inac-
tivation, exhaustion, or suppression. HIV-1-specific CD8 T cells
are not deficient in their differentiation, maturation, and prolifer-
ative function, and the virus does not escape through generation
of mutations in viral epitopes targeted by T cells (Allen et al., 20005
Kelleher et al., 2001; Moore et al., 2002; Seder and Ahmed, 2003;
Bailey et al., 2006). Strong proliferative HIV-1-specific CD4 T-cell
responses to a number of viral proteins are demonstrable (Rosen-
bergetal., 1997; Wilson et al., 2000; Imami et al., 2002; Iyasere et al.,
2003; Malnati et al., 2012), and APC and natural killer (NK) cell
function are normal (Mendila et al., 1999; Stebbing et al., 2003).
The presence of a fully functional anti-HIV-1 immune response in
LTNP coupled with undetectable or very low pVL, consequently
results in low transmission potential (Migueles et al., 2000). In
contrast to LTNP, the majority of HIV-17 patients are chronically
infected, have progressive disease, become severely immunosup-
pressed (Pantaleo and Fauci, 1996), and if untreated remain highly
infectious — fueling the AIDS pandemic.

Taking into account the kinetics of the immune response and
steps in antigenic stimulation over time observed in LTNP, and
applying that to immunotherapeutic and prophylactic settings
presents a challenge for the future. Accumulation, availability,
and presentation of antigen through cell-to-cell interactions and
cytokine networks determine progression of T cells through stages
of differentiation and proliferation (Lanzavecchia and Sallusto,
2002). Following antigenic stimulation, IL-2 production precedes
T-cell proliferation providing there is effective IL-2/IL-2R inter-
action, signaling, and responsiveness (Smith, 2001; Malek, 2008).
This promotes the development and homeostatic maintenance of
T-cell memory (through cell-division/proliferation), and triggers
functional down-regulatory or inhibitory cascades essential for a
balanced proliferative HIV-1-specific T-cell response observed in
LTNP (Imami etal., 2002; Downey and Imami, 2010). It is through
such mechanisms that LTNP appear to sustain survival of IL-2
responsive (and producing) T cells that are readily able to mount
a proliferative response.

The scientific rationale for the use of immunotherapy in jux-
taposition with cART as novel therapeutic intervention is based
on the demonstrable increase in naive T-cell numbers upon com-
mencement of effective cART, when viremia is fully suppressed
(Kelleher et al., 1996; Autran et al., 1997; Connors et al., 1997).
Thisis thought to indicate residual thymic function producing new
T lymphocytes (Haynes et al., 2000; Serana et al., 2011; Quiros-
Roldan et al., 2012), and IL-7-driven homeostatic survival and
proliferation of naive T cells (Takada and Jameson, 2009; Crawley
and Angel, 2012). This supports the feasibility of therapeutically
induced immune reconstitution in HIV-1T patients. We and oth-
ers have demonstrated that recovery of immune responsiveness
during administration of cART is reflected in functional improve-
ment of T-cell responses directed toward various recall antigens
and other pathogens (Autran etal., 1997; Lietal., 1998; Hardy et al.,
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2003). However reconstitution of fully functional, proliferative,
HIV-1-specific CD8 T-cell (Appay et al., 2000; Gea-Banacloche
et al., 2000; Migueles et al., 2002), and HIV-1-specific CD4 T-cell
responses (Kelleher et al., 1996; Autran et al., 1997; Connors et al.,
1997; Wilson et al., 2000; Iyasere et al., 2003; Younes et al., 2003)
remains incomplete. It is also apparent that reduced numbers of
APC, together with loss of APC function, contributes to HIV-1-
specific T-cell anergy, including the suppression of proliferative
T-cell responses (Knight and Patterson, 1997; Chougnet et al,,
2002; Boasso et al., 2007, 2008; Sabado et al., 2010), and that NK
cell function is deregulated by HIV-1 infection (Mela et al., 2005).
Such dysfunctional immune responses are apparent very early after
HIV-1 infection, and may be favorably affected by early initiation
of multi-targeted ART and long-term duration of successfully sup-
pressive ART (Ananworanich et al., 2012). It remains clear that
induction and maintenance of HIV-1-specific T-cell responses in
chronically infected individuals with progressive infection requires
the generation and preservation of proliferative effector and helper
T-cell subsets and innate immune responses similar to those seen
in LTNP.

CD4 T CELLS IN HIV-1 DISEASE AND CONTROL AND THEIR
PROLIFERATIVE APTITUDE

Long-term non-progressor individuals mount vigorous and broad
IL-2-producing CD4 HTL proliferative responses to multiple HIV-
1 antigens, particularly to the core proteins (Rosenberg et al., 1997;
Imami et al., 2002). Using conventional and novel immunologic
assays in parallel, we have demonstrated that functional defects
in HIV-1-specific CD4 HTL in chronic HIV-1 infection include
an inability to proliferate and produce IL-2 in response to HIV-1
antigens, although secretion of anti-viral cytokines such as IFN-
y and TNF-o remained unimpaired (Wilson et al., 2000). These
important findings demonstrated that HIV-1-specific CD4 T cells
might not be irretrievably deleted during chronic infection, but
are actually present although unable to respond adequately to
HIV-1. Subsequent studies concurred with these initial findings,
and detailed simultaneous analysis of IFN-y and IL-2 produc-
tion by anti-HIV-1 CD4 T cells, and their resulting proliferation
in clinical progressors and LTNP revealed three functionally dis-
tinct subsets of virus-specific CD4 T cells: those producing IFN-y
only; those producing IL-2 only; and cells producing both IFN-y
and IL-2 (Iyasere et al., 2003; Younes et al., 2003; Harari et al.,
2004a). Further phenotypic analysis of CCR7/CD45RA expres-
sion (Sallusto et al., 1999), revealed a phenotypic heterogeneity
of virus-specific CD4 T cells, dictated by both viral load and
persistence (Harari et al., 2004b); highlighting the need to rec-
ognize the relative functional and phenotypic heterogeneity of
T-cell subsets specific to HIV-1 and other viruses (Appay et al.,
2008), particularly in the context of co-infection. This heterogene-
ity may be due to different types of antigen and APC employed,
resulting in altered proliferative capacity and a variable CD4 HTL
response.

When considering the potential of therapeutic immunization
and other forms of immunotherapy for HIV-1T patients, it is
important to consider the incongruent reconstitution of the mem-
ory and naive CD4 T-cell compartments upon treatment with
cART (Schacker et al.,, 2006). Long-term use of cART during

chronic HIV-1 infection may increase numbers of memory and
naive CD4 T cells specific for opportunistic pathogens, but does
not apparently allow regeneration of proliferative HIV-1-specific
CD4 T-cell responses with the potential to keep the virus under
control (Autran et al., 1997). In the vast majority of cases, the
exception perhaps being when cART is administered extremely
early after initial infection (Rosenberg et al., 1997, 2000), cART
does not allow LTNP status to be established. Thus such treat-
ment does not promote reconstitution or regeneration of pro-
liferative HIV-1-specific CD4 T-cell responses with the potential
to control viremia and protect CD4™ cells from infection and
destruction — facilitating discontinuation of cART. It has been
considered that the substantial damage occurring early in dis-
ease is irreparable (Brenchley et al., 2006). However we suggest
that rather than being deleted, certain HIV-1-specific CD4 T-
cell clones are present but anergized, and consequently fail to
provide critical help to anti-HIV-1 CD8 CTL. The presence of
HIV-1-specific CD4 HTL, albeit not fully functional, implies a
potentially reversible process to allow the kinds of proliferative
responses observed in LTNP (Imami et al., 1999; Wilson et al.,
2000). We reported robust and broad virus-specific proliferative
CD4 HTL responses in LTNP to a range of HIV-1 proteins and
peptides such Gag and Env (Wilson et al., 2000; Imami et al,,
2002), and additionally responses to regulatory Nef, Tat, and Rev
(Westrop et al., 2009b; Malnati et al., 2012). It is also important
to consider the CD4 T-cell functionality in gastrointestinal tract,
since it has been reported that controllers have higher magnitude
and frequency of polyfunctional mucosal HIV-1-specific CD4 T
cells for which the strongest responses were associated with cer-
tain MHC class II alleles (HLA-DRB1*13, HLA-DQB1*06) (Ferre
et al., 2010).

Long-term non-progressors with controlled HIV-1 replication
also mount significantly higher proliferative responses to other
viruses, namely influenza, HSV, VZV, and CMV compared to
untreated chronically infected HIV-1T patients (Imami et al.,
2001). This more robust lymphoproliferative response is also seen
when LTNP are compared to HIV-1-negative individuals where
anti-HSV and -CMV proliferation in LTNP exceeds that of healthy
controls (Imami et al., 2001). A possible explanation for this may
be the difference in prevalence of HSV and CMV infection between
the two cohorts. Alternatively this data may demonstrate a supe-
rior anti-viral proliferative ability in LTNP, which is not limited
to the anti-HIV-1 response. Responses to and control over other
viruses such as HCV and HBV are comparable to those observed
within HIV-1-negative individual (Lauer et al., 2002; Thomas,
2008). Distinctive divergent T-cell proliferative response observed
between HIV-1 and other viruses might be due to relative dif-
ferences in viral loads and/or viral replication (Day and Walker,
2003), which might or might not result from viral fitness/evasion
of host immunity (in both HIV-1 and HCV) (Grakoui et al,
2003). HCV viral load has been reported lower in HIV-1 con-
trollers coinfected with HCV, than in chronically HIV-1-infected
counterparts (Ruiz-Mateos et al., 2011). Similarly to HIV-1 infec-
tion, this study also associated HLA-B*57 with superior control of
HCV, and HLA-B*35 with worse control, however there were no
HLA-associated differences in spontaneous HCV clearance rates
(Ruiz-Mateos et al., 2011), suggesting common host mechanisms
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involved in the control of plasma viremia in these two persistent
viral infections.

An additional possible mechanism in individuals responding
not only to HIV-1 but also other viruses, could relate to the virus-
specific CD8 T-cell evasion of regulatory CD4 (or CD8) T-cell
(Treg) suppression (Elahi et al., 2011). CD8 CTL specific for HIV-
1, HSV-2, and EBV HLA-B*27 and HLA-B*57 restricted epitopes
were resistant to Treg cell-mediated suppression, explaining how
such cells continue to proliferate and control infection(s) in LTNP,
which might also apply to the virus-specific CD4 T cells.

Furthermore, CD4 T cells from “Elite controllers” have
been shown to resist HIV-1 infection, reverse-transcribing viral
genomes, and transcribing mRNA from proviral DNA less effec-
tively than CD4 T cells from chronically infected HIV-1" indi-
viduals (Chen et al., 2011). This resistance has been associated
with upregulation of intracellular p21, a cyclin-dependent kinase
inhibitor (Chen et al., 2011), and may explain the lower proviral
DNA reservoirs in peripheral blood and in the central memory
CD4 T cells of LTNP (Pires et al., 2004; Descours et al., 2012).
Lower levels of HIV-1 provirus may result in reduced expression
of viral proteins by these CD4 T cells, and therefore a lower density
of viral epitopes presented on the cell surface to surveying HIV-
1-specific CD8 CTL, resulting in fewer CD4 T cells targeted by
CTL killing (Descours et al., 2012). Therefore another pertinent
question to be answered is how the HIV-1-infected target CD4™
cells protect themselves from CTL attack? There are a number of
potential mechanisms accounting for this, as already hinted at, oth-
ers might include upregulation of inhibitory immunoregulatory
molecules such as CTLA-4 (Kaufmann et al., 2007), PD-1 (Day
et al., 2006), and TIM-3 (Jones et al., 2008; Downey and Imami,
2010). Cell surface density of immunoregulatory molecules and
their ligands on target cells and/or effector T cells may orches-
trate cytotoxic killing, with enhanced expression of inhibitory
markers overriding such activity, resulting in limited cytotoxic
capacity.

It has been known for almost two decades that cellular immu-
nity is involved in viral control during acute infection (Koup et al.,
1994) and in long-term asymptomatics (Klein et al., 1995). How-
ever it is essential to compare methodologies utilized previously
to those subsequently introduced, as well as the antigenic stim-
uli used (whole antigen/protein, peptides or APC employed), in
order to comfortably distinguish between the precise contribution
of virus-specific CD4 and CD8 T-cell responses. A recent report
from Soghoian et al. (2012) adds an interesting twist — defining
HIV-1-specific cytolytic CD4 T cells and placing them both at
the center and to the forefront of the immune response. It was
reported that in primary HIV-1 infection, controllers had an early
expansion of both classical HTL, and cytolytic CD4 T cells which
were able to kill infected cells directly. Such cytolytic CD4 T-cell
responses have been shown to kill Gag peptide-pulsed autologous
targets ex vivo (Norris et al., 2004). Moreover, these recent find-
ings indicate that during acute infection such killer HIV-1-specific
CD4 T cells are predictive of favorable outcome and are character-
ized by the expression of the death protein granzyme A (Soghoian
and Streeck, 2010; Soghoian et al., 2012), implying that expansion
of these cells during initial stages of HIV-1 infection controls viral
replication.

Regulatory T cells (Tregs) in LTNP express more inhibitory
Tim-3 receptor than chronic progressors and are therefore less
active and do not suppress HIV-1-specific or other virus-specific
CD8 T-cell responses (Elahi et al., 2011). It seems likely that
virus-specific CD4 T cells of LTNP are able to evade Treg suppres-
sion. Although the impact of Tregs on proliferative virus-specific
CD4 T-cell responses in LTNP and progressors remains contro-
versial (Blankson, 2010; Burton et al., 2011), the first documenta-
tion of HIV-1-Gag-specific Tregs using MHC class II tetramer
technology will shed light on the role of these cells in HIV-1
immunopathogenesis (Angin et al., 2012).

Importantly, the proportion of naive and memory effector,
CD45RO™ T cells in LTNP are comparable to uninfected controls.
The majority of CD4 T cells express the co-stimulatory molecule
CD28 and do not express HLA-DR, suggesting a resting memory
phenotype with full co-stimulatory ability most likely represent-
ing central memory T cells (Tcm) (Boaz et al., 2002; Imami et al.,
2002). Subsequent reports have indicated that LTNP, like patients
initiating cART early, have high proportions of Tgy. T cells that
are low in HLA-DR and high in CD28 surface expression are most
likely the same subset, because they rapidly proliferate and pro-
duce vast amounts of IL-2 in vitro in response to both HIV-1 and
other viral antigens (Day and Walker, 2003; Younes et al., 2003;
Harari et al., 2004a). Sustained CD28 expression also increases
total proliferative potential (Parish et al., 2010). However, it is
essential to understand not only surface markers of activation and
exhaustion (Downey and Imami, 2010), but also the intracellu-
lar signaling events which are essential for priming/activation and
maturation/differentiation of both CD4 and CD8 T-cell subsets.
This may reveal specific differences in the signaling cascades which
favor fully functional proliferative dynamics in non-progressors,
and lead us to understand how unresponsiveness/anergy can be
reversed (Downey et al., 2011).

HIV-1 PLASMA RNA LOAD, VIRAL RESERVOIRS, AND
PROLIFERATION

We have previously reported that even a small increase in pVL may
be indicative of forthcoming clinically relevant changes of dis-
ease state. An increase from 1,236 to 6,483 RNA copies/ml plasma
led to a loss of HIV-1 Gag-specific proliferative responses, and a
shift toward a type II cytokine profile as indicated by loss of IL-2
production and increase in IL-4 production, and subsequent dis-
ease progression (Imami et al., 2002). This increase in pVL and
loss of CD4 proliferation has also been described to occur in elite
controllers who subsequently progress (Dyer et al., 2008). Com-
parison between two HIV-17" individuals both presenting with
atypical HIV-1 disease progression and non-declining CD4 counts
is shown in Figure 1. Substantial proliferation to a number of HIV-
1 proteins is demonstrated in a non-progressing individual with
suppressed pVL (Figure 1A). Lack of such a proliferative response
is seen when viremia is above detection limit (Figure 1B), albeit
considerably lower than the majority of chronically infected HIV-
1" individuals. It is debatable whether the pVL in such situations
is the cause or effect of immunological changes, and although
cART-treated individuals provide a control group for low pVL,
and therefore lower antigenic stimulation, additional effects of
cART do not enable resolution of the cause versus effect question,
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FIGURE 1 | Characteristic proliferative responses detected by and (B) a typical lack of such responses in a chronically infected patient
3H-thymidine incorporation in a lymphocyte proliferation assay. (Westrop et al., 2009b). Normal CD4 T-cell range of 450-1650 cells/j!
(A) lllustration of the characteristic presence of proliferative responses to blood is marked with horizontal lines. The threshold for positivity,
recombinant (r) Tat, rRev, rNef, rp24 (Gag), and rgp120 (Env) HIV-1 stimulation index > 3, is also marked with a dashed horizontal line (inset
proteins observed in a “True LTNP" with suppressed HIV-1 plasma load, graph).
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bringing into the equation virologic factors such as infection with
less pathogenic virus and the role of viral fitness (Blankson, 2010).

In HIV-17 individuals exhibiting pVL BLD in the absence of
cART, in addition to robust IFN-y producing T-cell responses,
we observed strong and broad lymphoproliferative responses to
a number of HIV-1 proteins and peptides, that were accompa-
nied with robust IL-2 production and IL-2-responsiveness (Wilson
etal.,2000; Imami etal.,2002). HIV-1-specific CD8 T cells also dis-
play an autocrine proliferative IL-2-producing response (Imami
et al., 2002; Migueles et al., 2002, 2008). For most people treated
during chronic infection, prior studies have demonstrated that
there is no meaningful decay of the reservoir of HIV-1 (Siliciano
et al., 2003). Initiation of cART during early stages of infection
results in lower levels of viral reservoirs comparable to those
observed in LTNP (Pires et al., 2004; Cellerai et al., 2011), which is
not apparent if cART is started during chronic infection; strongly
indicating an association between timing of cART initiation and
decay of the viral reservoir. A number of therapeutic approaches
are anticipated which may avoid activating latently infected CD4 ™
T cells and cells of the monocytic lineage which would increase
HIV-1 replication and shedding, and potential de novo infection
of CD4™ cells within host, as well as increasing risk of transmission
to a new host (Richman et al., 2009; Deeks et al., 2012).

Itis CD4™ resting T cells that harbor the greatest magnitude of
hidden viral reservoirs and dictate the strategy for a very impor-
tant area of future research (Siliciano and Greene, 2011; Fisele
and Siliciano, 2012). This may include the use of histone deacety-
lase (HDAC) inhibitors such as suberoylanilide hydroxamic acid
(SAHA) to increase HIV-1 gene expression as described by Archin
et al. (2012). Although the study numbers were low (n=28) the
work described is important because it is the first demonstration
that it is possible to therapeutically awaken the latent reservoir
in HIV-1-infected individuals, potentially exposing infected cells
to elimination by the immune system or by some other interven-
tion. A recent report, using SAHA in an in vitro model system,

demonstrated that stimulating the HIV-1-specific CTL prior to
reactivating the latent HIV-1 appears to be a crucial step for suc-
cessful eradication, which should be taken into account when
aiming to achieve cure (Shan et al., 2012). In this study, pres-
timulation with HIV-1 Gag peptides in conjunction with IL-2
induced proliferation of HIV-1-specific CD8 T cells from patients
on cART, and resulted in potent targeting of infected CD4* T
cells in the presence of SAHA. This highlights the potential of
such approaches to reduce viral reservoirs in chronically infected
HIV-17" subjects.

In the context of immunotherapeutic intervention it is always
important to consider the potential for restoring the full func-
tionality of memory T cell subsets, including increased prolif-
erative responses, and overall immune reconstitution, however
such approaches should also take into account the requirement
for replenishing the naive T cell compartment (Imami et al., 2007;
Herasimtschuk et al., 2008).

THYMIC FUNCTION: MAINTENANCE AND ATROPHY

The thymus (Figure 2A), the site where hematopoietic stem cells
from the bone marrow differentiate into T cells before circulat-
ing and surveilling the periphery, is damaged by HIV-1 infection,
resulting in reduced output of T cells into the periphery (Douck
et al., 1998; Dion et al., 2004). HIV-1 expressing cells have been
shown to be present in both the perivascular space and the true
epithelial thymus of HIV-1% chronically infected individuals, with
evidence of thymic epithelial cell death and calcification (Haynes
etal.,, 1999,2000). Infection of thymic epithelial cells may result in
presentation of HIV-1 epitopes as “self” to developing thymocytes,
and subsequent deletion of “self-reactive” HIV-1-specific clono-
types leading to absence of these cells from the periphery. In LTNP,
and other patients exhibiting stable CD4 T-cell counts through-
out HIV-1 infection, the thymic epithelium, as with peripheral
CD4™ T cells, may be resistant to HIV-1 infection (Chen et al.,
2011). This offers an explanation for the observed preservation of
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FIGURE 2 | Human thymus and thymic function in HIV-1* long-term controllers (HIC; “True LTNP") compared to age-matched HIV-1+ chronic
non-progressors and chronic progressors. (A) Histological section of a progressors (CP). Histogram plots show median values with standard
healthy human thymus. SR, subcapsular region; C, cortex; CMJ, deviations. Data from Imami et al. (2001), Pido-Lopez et al. (2003), and
cortico-medullary junction; M, medulla. (B) TREC levels in PBMC of HIV Westrop et al. (2009b).
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thymic function, high output of naive signal joint TCR excision
circle-positive (sJTRECT) T cells, and proliferation competent
HIV-1-specific T cells (Figure 2B) (Imami et al., 2001; Pido-Lopez
et al., 2001; Westrop et al., 2009b). Degeneration of the thymus is
characterized by replacement of the thymic tissue with adipocytes,
and such age-related thymic involution has been shown to be accel-
erated in progressive HIV-1 infection (Douek et al., 1998; Zhang
etal., 1999). Accordingly, generation of naive CD4* and CD8" T
cells in untreated HIV-17 individuals has been shown, by sjTREC
analysis, to be significantly lower in peripheral blood and lymph
nodes than in age-matched uninfected controls (Douek et al., 1998;
Pido-Lopez et al., 2003). This observed thymic atrophy, the high
rate of T-cell turnover and the increased number of T cells in the
lymphoid tissues induced by HIV-1 during chronic infection, indi-
cates a significant role for the thymus in T-cell homeostasis during
HIV-1 infection (Ho Tsong Fang et al., 2008; Bandera et al., 2010;
Sasson et al., 2012).

VIRUS-SPECIFIC CD8 T CELLS AND PROLIFERATION

The proliferative ability of HIV-1-specific CD8" T cells is associ-
ated with cytolytic capacity that is observed in LTNP only (Migue-
les et al., 2002). In addition to vigorous proliferation, there is a
higher frequency of IL-2-producing HIV-1-specific CD8* T cells
in LTNP who successfully suppress viral replication (Emu et al,,
2005, 2008; Pereyra et al., 2008). Polyfunctionality and defined
phenotypic subsets reflect the advantage of quality, rather than
quantity, of the proliferative HIV-1-specific CD8 T cells that rep-
resent mediators of immunological control (Appay et al., 20005
Gea-Banacloche et al., 2000; Betts et al., 2001, 2006; Champagne
et al., 2001; Migueles et al., 2002, 2006; Addo et al., 2003). HIV-
1-specific CD8 T cells in chronically infected patients are unable
to mature and differentiate into fully functional proliferative and
cytotoxic effector cells, due to loss of cell-cell and soluble factor
mediated signals from specific anti-HIV-1 CD4 HTL and APC
(Champagne et al., 2001; Kaech and Ahmed, 2003; Seder and
Ahmed, 2003; Williams and Bevan, 2007). This unresponsiveness
persists following initiation of cART, as HIV-1-specific CD8 T cells
remain defective throughout therapy (Migueles et al., 2009). It is
still not fully understood if the immune system exerts pressure
on the virus to mutate away from effective immune responses,
and if so, whether such mutation results in reduced viral fitness
with less pathogenic potential, or results in fitter virus with the
ability to escape (Gao et al., 2005; Leslie and Goulder, 2006).
Thus we still question whether immune pressure on the virus
may provide benefit, harm, or both to the host (Lobritz et al,
2011). Regardless, HIV-1-specific CD8 T cell proliferation relies
on IL-2 production, and is consistently correlated to enhanced
host immune control over viral load (Migueles et al., 2002; Zim-
merli et al., 2005; Day et al., 2007). The other predictive parameter
consistently associated with disease outcome has been the presence
of certain MHC class I molecules; strengthening the potential role
of both host genetics and MHC class I/peptide recognition by
TCR on CD8 T cells (Pereyra et al., 2010; Goulder and Walker,
2012). Interestingly, while virus-specific CD8 T-cell responses in
LTNP were not distinguished from those of chronic progressors
on the basis of clonal diversity and/or TCR sharing as described
by Mendoza et al. (2012), in another setting where viral escape

from the immune response was not an issue, control of HIV-1
was associated with distinct TCR clonotypes (Chen et al., 2012).
Limitations of such studies are the small numbers of patients, nev-
ertheless these findings indicate that in addition to magnitude, it
is the breadth, and also quality, affinity, and avidity of the HIV-
1-specific CD8 T-cell response which are important. Additionally,
certain critical epitopes restricted by protective or non-protective
alleles dictate various immune responses, viral control, viral evo-
lution, and hence diverse disease outcome (Westrop et al., 2009a;
Goulder and Walker, 2012).

Evaluation of quantitative and qualitative differences accom-
pany a number of questions about correlations between pheno-
type, function, and protection from disease progression. There
are three main CD8' T cell populations (naive, memory, and
effector), which are distinguished by patterns of cell surface
marker expression. Although there is no clear consensus in the
use of markers to identify memory subsets of CD8" T cells,
several studies have used a model established by Sallusto et al.
(1999), which proposes that long-lived memory CD8% T cells
reside within a CD3tCD81TCD45RA™CCR7" Tcy cell popula-
tion that is endowed with high proliferative capacity, a broad T
cell repertoire, and expression of IL-7Ra (Lanzavecchia and Sal-
lusto, 2002; Sallusto and Lanzavecchia, 2011). In contrast, effector
memory CD8™ T cells of the Tgy; (CD45RA™CCR7™) and TemRra
(CD45RATCCR7™) populations demonstrate strong cytolytic
potential butlow proliferative capacity (Sallusto et al., 1999; Lanza-
vecchia and Sallusto, 2002). In HIV-1 infection, patients have been
shown to exhibit a skewed maturation profile of HIV-1-specific
CD8™ T cells (Champagne et al., 2001), however the mechanisms
behind this are as yet undefined (Appay et al., 2008). Upon anti-
genic stimulation, differentiation of naive CD8" T cells, which
eventually gives rise to the different compartments of T-cell mem-
ory subsets, has a substantial effect on the CD8" T cell pool (Lan-
zavecchia and Sallusto, 2002). Impairment of this might contribute
to the dysfunctional, ineffective anti-HIV-1 response (Wherry and
Ahmed, 2004), unsettling the proliferative capacity of epitope-
specific CD8 T cells that are inversely related to the plasma HIV-1
RNA load (Day et al., 2007). In addition, it has been shown that
removal of antigen due to either initiation of cART or development
of epitope escape mutations, results in diminished HIV-1-specific
CD8 T-cell response over time (Janbazian et al., 2012).

THE INTERPLAY BETWEEN HOST AND VIRUS GENETICS

Definitions of LTNP based on clinical characteristics remain arbi-
trary, and there is evidence for both host and non-host genetic
factors as the basis of long-term non-progression. Thus it has
been suggested that genomic mutations and deletions found in
the host, virus, or both could account for, or contribute toward,
LTNP status. Therefore, all must be taken into consideration when
looking at HIV-1 infection within an individual patient. While very
strong associations have been reported from a number of different
cohorts between non-progressive infection/HIV-1 control and the
HLA-B alleles B57 and B27 (Hendel et al., 1999; Fellay et al., 2007;
Guergnon et al., 2012), not all individuals with this genotype are
atypical progressors, and conversely, not all atypical progressors
possess this genotype (Emu et al., 2008). Genome wide association
studies (GWAS) identified SNPs within the binding groove of the

Frontiers in Immunology | HIV and AIDS

March 2013 | Volume 4 | Article 58 | 8


http://www.frontiersin.org/HIV_and_AIDS
http://www.frontiersin.org/HIV_and_AIDS/archive

Imami et al.

T-cell proliferation in non-progressive HIV-1 infection

MHC molecule as a high resolution explanation of the variation
in viral control among patients possessing the same HLA-type
(Pereyra et al., 2010). It has also been shown that the protective
HLA-B*57 allele is in strong linkage disequilibrium with other
genes, namely HCP5 (Fellay et al., 2007; Guergnon et al., 2012); is
synergistic with particular KIR types (Martin et al., 2002); and has
an effect independent to that of HLA-C (Pereyra et al., 2010).

Individuals possessing the “protective” HLA-allele B*2705 have
the ability to rearrange the TCR to produce high affinity clono-
types specific to certain viral epitopes essential for HIV-1 fitness
(van Bockel et al., 2011). In agreement with a number of other
studies, we have observed a high representation of alleles associ-
ated with delayed disease progression in our cohort of LTNP with
undetectable viral load (Guergnon et al., 2012). Separate reviews
within this issue of Frontiers in HIV and AIDS discuss the merits
of GWAS.

Cohorts of LTNP have an enrichment of MHC class I alle-
les associated with slow progression, and may also have a higher
frequency of heterozygosity for the CCR5-A32 mutation, result-
ing in reduced HIV-1 co-receptor expression on the cell surface.
However, reports on the presence of this polymorphism in LTNP
cohorts and its association with HIV-1 disease progression have
been varied (Poropatich and Sullivan, 2011). Attenuating muta-
tions in the viral genes nef (Kirchhoff et al., 1995; Rhodes et al,,
2000); env (Alexander et al., 2000); gag (Alexander et al., 2000);
rev (Churchill et al., 2007); vif (Rhodes et al., 2000); vpr (Wang
etal., 1996; Mologni et al., 2006); vpu (Alexander et al., 2000); and
tat (Wang et al., 1996) have been reported. No attenuating muta-
tions have been described in the HIV-1 reverse transcriptase (RT)
enzyme, likely due to abrogation of protein function and therefore

loss of virion viability if such mutations occurred. Such find-
ings raise issues regarding viral fitness, subsequent antigenic load,
and potential for mounting a fully functional proliferative T-cell
response. Encouraging results from a study reporting isolation of
replication-competent virus in elite controllers (normal replica-
tion kinetics in the absence of any insertions/deletions/mutations)
(Blankson et al., 2007), indicate that in this instance it was the host
not the virus that determined HIV-1 control (Deeks and Walker,
2007; Blankson, 2010). However, whether it is the replication com-
petence of the virus or robustness of the T-cell responses that deter-
mine LTNP and elite controller status still remains unanswered
(Lobritz et al., 2011).

LONG-TERM NON-PROGRESSORS AND FUTURE
THERAPEUTIC AND PROPHYLACTIC APPROACHES

Our current hypothesis, based on several years of experience and
a large amount of preliminary data summarized herein, is that
immunotherapeutic approaches designed to reverse the anergic
state seen in chronic disease and induce those kinds of immune
responses seen in LINP, should improve long-term cellular func-
tional memory leading to improved virologic control, slower dis-
ease progression, and less transmission events (Table 1). Table 1
summarizes a number of approaches, used by our group and
others, with the potential to induce a LTNP-like immune pro-
file in chronically HIV-1-infected persons; a highly desirable aim
to strive for through both immunotherapy and immunization
(Imami et al., 2007; Downey and Imami, 2010; Deeks et al., 2012;
Shan et al., 2012). The achievement of LTNP-like status, including
the reversal of both quantitative and qualitative immune defects,
is likely to involve targeting of the latent viral reservoir. It is

Table 1 | Inmunotherapeutic interventions with the potential to induce LTNP status in individuals with chronic HIV-1 infection.

Treatment of
chronic progressors

Potential immunological effects resulting from treatment aiming to induce a LTNP-like immune profile

Excessive immune activation and exhaustion; immunosuppression; T-cell anergy and unresponsiveness to HIV-1; infected

Increased number of naive T cells; functional improvement in T-cell responses to some recall antigens; partial normalization

of activation, exhaustion, and regulatory function; some normalization of NK cell and APC function; incomplete

Improved T-cell growth, survival, differentiation/maturation; reversal of T-cell anergy; increased frequency and function of T
effectors and Tregs, particularly HIV-1-specific CD4 HTL and CD8 CTL; lower the numbers of HIV-1-infected latent CD4 T cells

None
CD4T cells; dysfunctional APC; dysregulated NK cells
cART
reconstitution of fully functional HIV-1-specific CD4 and CD8 T-cell effector responses
Cytokines
(such as I-2)
Cytokines

(such as GM-CSF)

Hormones
(such as rhGH)

HIV-1
immunogens

HDAC inhibitors
reactivating latent HIV-1 is thought to be crucial

Reversal of anergy; increased T effector cells; increased frequency of HIV-1-specific HTL and CTL; enhanced APC and NK
cell function; potential to purge viral reservoirs in cells of monocytic lineage

Increased thymic activity; increased pool of naive T cells; decreased systemic hyperactivation; restored
differentiation/maturation, prevention of apoptosis, and promotion of proliferation; increased NK cell function

Provision of unpathogenic antigenic stimulation; induced/boosted anti-HIV-1 functional responses (new and memory);
potential to deplete viral reservoirs (or at least reduce these to levels observed in LTNP or Elite controllers)

Potential to purge the latent viral reservoir in resting CD4 T cells; however stimulation of HIV-1-specific CTL prior to

APC, antigen-presenting cell; cART, combination antiretroviral therapy,; CTL, cytotoxic T lymphocyte; GM-CSF, granulocyte macrophage colony stimulating factor;

HDAC, histone deacetylase; HTL, helper T lymphocyte; I-2, interleukin-2; NK, natural killer; rhGH, recombinant human growth hormone.
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important to note that at present, the majority of these strategies
are being considered in the context of fully suppressive cART, to
prevent de novo infection of newly generated/expanded target CD4
T cells. Mimicking such efficacious natural immunity may even-
tually enable chronically infected individuals to stop, or at least
interrupt, cART for prolonged periods.

The primary aim of our current and future work is to deter-
mine whether the proliferative IL-2-secreting HIV-1-specific T
cells in HIV-1%" patients exhibiting successful suppressive con-
trol over viral replication are influenced by viral fitness. We have
recently described the criteria important to define cohorts inter-
nationally (Guergnon et al., 2012; Mandalia et al., 2012), along
with standardized methodology for measurement of the efficacy
of T-cell responses and characterization of the immune correlates
of the non-progressive phenotype (Gotch et al., 2005). Further
to the derivation of the salient mechanisms of suppressive anti-
HIV-1 immune responses observed in LTNP, the introduction of
validated assays which can be used to describe immunological
phenomena in chronically infected HIV-17 patients undergoing

immunotherapy, are necessary to enable meaningful compar-
isons with responses observed in LTNP (Figure 1). We also
emphasize the importance of comprehensive analyses assessing T
cells directed against diverse HIV-1 proteins in order to deter-
mine the entire quantity (breadth and magnitude), and also
the quality (proliferative capacity, polyfunctionality and subset
phenotype) of virus-specific immune responses, enabling us to
boost T-cell responses to novel epitopes. Creating gold stan-
dard LTNP status remains the ultimate aim where proliferation
competent HIV-1-specific T-cell responses are induced, and main-
tained, with the ability to purge viral reservoirs, eradicate infection,
and achieve either functional or sterilizing cure, as illustrated
in Figure 3. Hence, sustaining such responses form the ratio-
nale for novel immunotherapeutic intervention in the context
of cART.

It is essential that we reach consensus on several levels, includ-
ing improved understanding of the kinetics of the T-cell response;
the link between T-cell phenotype and proliferation; the relation-
ship between T-cell function (IL-2 production and IL-2/IL-2R

I CD8 T-cell differentiation and maturation I( IL-2 ) (GM—CSF) (rhGH) (HIV-1 Ag)

Production of HIV-1-specific
T cells from thymus

v
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FIGURE 3 | Central importance of HIV-1-specific CD4 T cells in LTNP:
summary of the various elements that contribute to, or are essential
features of, the LTNP phenotype. Dashed arrows indicate where, in
chronic HIV-1 infection, the functional immune response present in LTNP
is compromised. Therapeutic intervention is represented in purple ovals.
Concomitant administration of immune-based therapies with effective
cART may result in reversal of both the CD4 and CD8T lymphocyte
dysfunction commonly observed to persist in treated HIV-1* progressors.
Such immune-based therapeutic strategies in conjunction with novel
approaches (including HDAC inhibitors such as SAHA) for treatment of
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chronic HIV-1 infection may enable the induction of virus-specific CD4 T
cells essential for the subsequent “kick-start” and expansion of specific
CD8T cells. This provides a window of opportunity to steer the immune
system to the advantage of the patient and achieve LTNP status or
functional cure. APC, antigen-presenting cell; cART, combination
antiretroviral therapy; CTL, cytotoxic T lymphocyte; GM-CSF, granulocyte
macrophage colony stimulating factor; HIV-1 Ag, HIV-1 antigen; HTL,
helper T lymphocyte; IL-2, interleukin-2; NK, natural killer; rhGH,
recombinant human growth hormone; RTE, recent thymic emigrants;
SAHA, suberoylanilide hydroxamic acid.
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signaling) and proliferation; the association between T-cell anti-
gen specificity and proliferation; and the effect of antigenic
load on proliferation. In addition, evaluating immunoregulatory
dynamics, intracellular signaling, and full complexity of the
HIV-1-specific proliferative IL-2-producing response is critical.
In parallel to studies concerning CD8 T cells we must also investi-
gate the virus-specific CD4 T-cell compartment and acknowledge
that the quality/quantity/affinity/avidity/breadth of the MHC class
II/peptide: TCR interaction plays a role in the generation of effec-
tive balanced immunity. Furthermore, regarding the use of stan-
dardized novel methodology for assessing T-cell function, pheno-
type, specificity, and the immune correlates of non-progression
we should consider comparing novel CFSE proliferation assays
with conventional 3H-thymidine uptake assays, in addition to
assessing the kinetics of IL-2 production, utilization, and con-
sumption. In parallel, cytolytic capacity measured by the conven-
tional chromium (51Cr) release assay can be combined with newer
techniques to evaluate degranulation and cytotoxicity (namely
CD107a, perforin, and granzymes). Even with this plethora of
technology at our finger tips, the reliability of data will depend on
the quality of the sample (fresh versus cryopreserved cells) (Gotch
etal., 2005). Also, microarrays and GWAS necessitate well defined
patient cohorts and good quality mRNA and DNA samples. Future
development will also focus on combining flow cytometry and
mass spectrometry (cytometry by time-of-flight; CyTOF) (Ban-
duraetal.,2009; Bendall and Nolan, 2012). A recent study (Newell
et al., 2012) used this method to re-examine the functional and
phenotypic diversity of human CD8 T lymphocytes, and identi-
fied more than 200 functional phenotypes represented by distinct
CD8 T cell subsets (Chen and Weng, 2012). It is also extremely
encouraging that novel immune-monitoring models that inte-
grate multiple functions of epitope-specific CD8 T cells, which
differentiate non-progressive from progressive HIV-1 infection,
list the proliferative capacity of these cells as the strongest single
discriminant (Ndhlovu et al., 2013).
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