
immune receptor repertoires. Buckley and Rast (2012)  demonstrate 
lineage-specific properties among expanded sea urchin TLRs. Their 
findings indicate that: (1) some antigen binding sites may be co-
evolving with variable ligands, (2) TLR subfamilies are utilized dif-
ferently between larval and adult coelomocytes, and (3) sea urchin 
TLRs most likely represent immune surveillance molecules. Satake 
and Sekiguchi (2012) review the evolution and functional diver-
sification of TLRs among deuterostomes, highlighting a reduced 
repertoire in the tunicate, Ciona intestinalis. Only two TLRs can 
be detected in this species, with presumed hybrid functionality in 
vitro (Sasaki et al., 2009). Interestingly, neither TLR1 nor TLR2 
recognizes bacterial lipopolysaccharide (LPS), suggesting that 
Ciona utilizes other mechanisms to detect LPS or that an acces-
sory molecule(s) is involved.

Drosophila melanogaster (fruit fly) uses complex alternative RNA 
splicing to diversify the Down’s syndrome cell adhesion molecule 
(DSCAM), a multiexonic receptor implicated in neuronal pattern-
ing (Shi and Lee, 2012). Some DSCAM isoforms serve as PRRs in 
peripheral hemocytes and exhibit increased specificity for distinct 
targets (Watson et al., 2005; Brites et al., 2008; Chou et al., 2009). 
These findings are reminiscent of the fibrinogen-related proteins 
(FREPs) (Adema et al., 1997; Zhang et al., 2004), which consist of 
fibrinogen and immunoglobulin superfamily-related domains that 
can undergo somatic mutation and gene conversion. Individual 
somatic lineages expressing FREPs respond to specific parasite bur-
dens (Mone et al., 2010). Smith (2012) reviews Sp185/333 genes, a 
large family of innate receptors in sea urchin expressed in hemo-
cytes. Variation in genes encoding Sp185/333 receptors arises via 
complex DNA rearrangements and may be influenced by persistent 
antigenic sources (Buckley et al., 2008; Dheilly et al., 2009).

Not all immune receptors are restricted to foreign determinants 
(Rabinovich and Croci, 2012). Some glycans can be found on both 
host and microbial surfaces (Davicino et al., 2011). Vasta et al. 
(2012) describe an apparent paradox among galectins, which until 
recently were considered essential in self-recognition (Rabinovich 
and Croci, 2012). Galectins now are considered PRRs that recognize 
related glycans on microbes (Sato et al., 2009). PRRs are thought 
to interact only with microbial products (Kawai and Akira, 2010); 
some, such as galectins, also may possess discriminatory proper-
ties (van Vliet et al., 2008). Galectin self-recognition may require 
interaction with accessory molecules on self-cells and warrants 
further investigation.

The role of PRRs in symbiotic relationships likely is ancient 
(Bosch, 2012), involving complex host-microbial interactions 
at the surface of mucosal tissues (Duerkop et al., 2009; Round 
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Views on the evolution of immunity have been redefined as  studies 
in protostomes, invertebrate deuterostomes, and various verte-
brates have elucidated molecular details of host defense (Litman 
and Cooper, 2007; Boehm, 2012). Diverse species possess vast 
repertoires of immune related defenses, which have evolved into 
sophisticated, integrated networks (Rast and Messier-Solek, 2008; 
Messier-Solek et al., 2010). Certain components of immune defense 
represent either homologous structures or reflect novel approaches 
to confronting pathogens and other environmental influences [e.g., 
VLRs in agnathans (Boehm et al., 2012)]. Disparate diversification 
mechanisms and exceptional sophistication in immune mediators 
in some species blur distinctions between innate and adaptive 
immunity, the latter of which is viewed traditionally as a verte-
brate adaptation (Litman et al., 2005; Messier-Solek et al., 2010; 
Boehm, 2011) associated with extensive somatic diversity, antigen-
specific affinity maturation, and memory (Flajnik and Kasahara, 
2010; Boehm, 2012). Innate immunity, specifically the recognition 
of microbe-associated molecular patterns by pattern recognition 
receptors (PRRs), has taken center stage owing to its capacity to 
shape adaptive immunity (Schenten and Medzhitov, 2011). PRRs 
[e.g., toll-like receptors (TLRs)], also contribute significantly to 
immune homeostasis (Medzhitov, 2010; Carvalho et al., 2012). In 
this special issue we explore topics that are continuing to reshape 
our interpretations of immune evolution.

Historically, transplantation immunology framed our under-
standing of immunological recognition and the interplay between 
immunoglobulin domain-containing receptors, co-receptors, and 
the major histocompatibility complex (MHC) (Brent, 2003). These 
earlier concepts were extended to address graft rejection in jawless 
vertebrates as well as select invertebrates (Finstad and Good, 1964; 
Hildemann and Thoenes, 1969; Mayer et al., 2002; Little et al., 2005; 
Kvell et al., 2007). Today, various models of allorecognition are 
recognized, some of which are restricted to certain phyla (Buss, 
1987), and can be traced to the ancestors of sessile invertebrates 
(Dishaw and Litman, 2009). Broad rules govern discrimination 
between conspecifics (Rosengarten and Nicotra, 2011). Nydam 
and De Tomaso (2011) update our understanding of the evolu-
tion of allorecognition, emphasizing commonality in the systems 
that generate polymorphisms, and discuss how genetic diversity 
is maintained.

Extensive variation in immune genes traditionally has been 
equated with the immunoglobulin and T cell receptor gene loci 
in B and T lymphocytes, respectively, as well as in some MHC loci 
(Hughes, 2002). Recent studies in some invertebrate deuterostomes 
provide evidence for expansion and germline diversification of 
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organ. Immune systems appear to have evolved mechanisms that 
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former (Speckman et al., 2003; Lee and Mazmanian, 2010; Nyholm 
and Graf, 2012).

There has been a tendency to oversimplify or even ignore 
the broader roles of PRRs in host physiology. Arrieta and Finlay 
(2012) review the complex strategies that are used by gut bacteria 
to modulate immune homeostasis. The complex roles of adaptive 
immunity among vertebrates further complicates the roles of PRRs 
in homeostasis (Lee and Mazmanian, 2010; Hooper et al., 2012). 
Dishaw et al. (2012) argue that Ciona intestinalis, a protochordate, 
can help define host and microbe interactions at mucosal surfaces. 
Presumably, rules and relationships that govern homeostasis in 
this system may help reveal how perturbations can lead to a broad 
range of intestinal pathologies in higher vertebrates.

Specific molecules have been implicated in intestinal homeosta-
sis and include alkaline phosphatase-intestinal (Alpi), a member of 
the alkaline phosphatase (Alp) family. One possible role for these 
molecules is the detoxification of LPS, which in turn minimizes 
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et al. (2012) describe the complex evolutionary patterns of Alpi 
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host interactions.
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