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The capacity to probe antigen specific T cells within the polyclonal repertoire has been
revolutionized by the advent of recombinant peptide:MHC (pMHC) technology. Monomers
and multimers of pMHC molecules can enrich for and identify antigen specific T cells to
elucidate the contributions ofT cell frequency, localization, andT cell receptor (TCR) affinity
during immune responses. Two-dimensional (2D) measurements of TCR–pMHC interac-
tions are at the forefront of this field because the biological topography is replicated such
thatTCR and pMHC are membrane anchored on opposing cells, allowing for biologically per-
tinent measures ofTCR antigen specificity and diversity. 2D measurements ofTCR-pMHC
kinetics have also demonstrated increased fidelity compared to three-dimensional surface
plasmon resonance data and are capable of detecting T cell affinities that are below the
detection level of most pMHC multimers. Importantly, 2D techniques provide a platform to
evaluate T cell affinity and antigen specificity against multiple protein epitopes within the
polyclonal repertoire directly ex vivo from sites of ongoing immune responses.This review
will discuss how antigen specific pMHC molecules, with a focus on 2D technologies, can
be used as effective tools to evaluate the range ofTCR affinities that comprise an immune
response and more importantly how the breadth of affinities determine functional outcome
against a given exposure to antigen.
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DETECTION OF ANTIGEN SPECIFIC T CELLS
The ability to mount an effective immune response is essential
to the survival of a living organism. Adaptive immunity in par-
ticular allows vertebrates a defense mechanism against countless
pathogens. Antigen receptors on lymphocyte surfaces allow for
recognition of a specific target, leading to activation and subse-
quent expansion of effector cells. This process is heavily dependent
on affinity and on/off rate binding kinetics of the receptor for anti-
gen. Though it is generally accepted that the highest affinity and
thus most fit lymphocytes are selectively expanded (1, 2), the exact
affinities of lymphocytes needed for an optimal immune response
are still unknown.

During the course of a B cell response, somatic hypermutation
in the germinal center allows for editing of the B cell receptor
(BCR) to improve the affinity of the responding cells. This process
involves the introduction of random mutations in the antigen
binding site that can result in enhanced recognition of the target
antigen. B cell affinity maturation allows higher affinity cells to
outcompete less fit, lower affinity clones. While T cells also selec-
tively expand responders based on specificity for antigen, T cells
do not undergo receptor editing to improve the specificity of the
response. Of interest, some reports have shown that mature T
cells can re-express V(D)J recombination machinery and facilitate
rearrangement of the T cell receptor (TCR) (3, 4). As the concept
of TCR editing in the periphery may require further investigation,
this review will assume that the TCR is fixed once the T cell has
matured and entered the periphery. From the predetermined TCR

repertoire, mature T cells are still able to generate diverse anti-
gen specific polyclonal responses. This leads to the questions of
what affinity range defines an optimal T cell response and what
technology is best suited to evaluate this aspect of T cell diversity.

One way to detect diversity of the TCR repertoire is through
the analysis of antigen driven changes in Vβ chain usage and
complimentary determining region (CDR3) sequences during the
course of an immune response. The αβ chains of the conventional
TCR are encoded by V, D, J genes. Recombination of these gene
segments concomitant with nucleotide insertions and imprecise
joining events yields highly diverse T cell receptors. The CDR3
region, formed from the joining of the αβ TCR chains, directly
contacts the antigen in the binding groove and thus reflects the
antigen specificity of the clone (5). Studies show that during the
course of an immune response, certain Vβ chains are preferentially
expanded to create a unique signature of antigen specificity and
clonal dominance of an immune response (6–8). Spectratyping
or immunoscope analysis is a technique in which the sequence
length of the CDR3 is derived from the DNA of bulk clonal popu-
lations typically identified by Vβ usage (9). CDR3 sequence length
has been used to subset and characterize T cell clonal populations
for specific antigens (10, 11). Tracking CDR3 lengths and Vβ pro-
files can also provide insight in monitoring disease progression
and for diagnostic purposes (12–15). Though repertoire analyses
via these methods have revealed useful information, they lack the
fine resolution to assess the diversity of a T cell clonal response.
For example, these methods are primarily done on bulk cellular
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populations resulting in conclusions based on a population aver-
age rather than on individual clones. More recent inquiries have
shown this critical limitation fails to identify the paired TCRα

and β chains responsible for the antigen recognition (16) and as
a result, attempts to modify the techniques for single-clone analy-
sis are being pursued (17). Future research combining single-cell
analyses of TCRαβ chain usage along with functional readouts and
kinetic measurements will greatly enhance our knowledge of the
T cells that comprise the polyclonal repertoire.

The detection of antigen specific T cells concomitant with
the characterization of their functional responsiveness has been
key to providing insights into the factors that promote patho-
genic specific and protective immunity. Historically, the tracking
of antigen specific T cells in a polyclonal environment has been
performed with functional assays assessing proliferation, produc-
tion of cytokines, cytotoxic mediators, and protein markers of
cell activation. These indirect markers are important for char-
acterizing T cell phenotype but may poorly represent the entire
polyclonal repertoire because detection depends on antigen dose
utilized in the assay as well as the efficiency of the assay itself.
Stimulation with high dose, cognate antigen may negatively bias
T cell detection toward a low affinity profile by eliminating the
higher affinity clones though activation induced cell death (18),
while low dose cognate antigen may selectively detect cells with
higher affinity TCR. Therefore, a direct means for quantifying
antigen specific T cells utilizing recombinant cognate or vari-
ant peptide:MHC (pMHC) molecules could provide more sen-
sitive analytical tools for assessing the complexity of the entire
responding T cell population (19).

The development of recombinant pMHC molecules for detec-
tion of a myriad of MHC class I and II epitopes from both
foreign (bacteria, viruses, and parasites) and self proteins (tumors
and targets of autoimmune attack) provide a method for spe-
cific assessment or targeting of the T cell repertoire. Multimers of
pMHC, especially the biotin:streptavidin-based pMHC tetramer
technology, provide accessible tools to determine the frequency
of antigen specific T cells via flow cytometry (19) and to deplete
antigen specific T cells in vivo (20, 21). Importantly, tetramers are
useful for enumerating and enriching antigen specific T cells. The
fluorophore attached to tetramers can allow for the “pull down”
or enrichment of antigen specific cells from a polyclonal popula-
tion for downstream applications such as determining precursory
frequency of tetramer positive cells (22, 23). The efficiency of
detection by multimers is due to the aggregation of TCR:antigen
interactions that increase avidity and circumvent the short half
life of interactions between TCR and pMHC (19, 24). MHC class
I and II tetramers are the most commonly utilized multimer
largely because monomers and dimers exhibited insufficient bind-
ing kinetics for TCR to facilitate detection by flow cytometry and
were less stimulatory than tetramers (25). Advancements on mul-
timer technology have been focused on increasing avidity through
creation of progressively higher order oligomers, most notably the
commercially available 5-armed pentamers (26–28) or 10-armed
dextramers (29, 30). Despite the increased avidity provided by
these reagents, multimers of higher order magnitude beyond pen-
tamers provide, at most, modest increases in sensitivity of T cell
detection (29, 30), possibly due to the physical constraints needed

for multiple simultaneous TCR–pMHC interactions (31). Even in
the case of pMHC tetramers, it is unlikely that all four monomers
bind simultaneously due to steric hindrances (25, 32).

The efficiency of pMHC molecules to detect antigen specific
T cells is also dependent on peptide orientation within the MHC
groove. Peptide-MHC anchor residues, which typically lie at posi-
tions 1, 4, 6, and 9 of the core peptide for MHC class II, are key
to the stability of the peptide within the MHC. Variations in the
amino acid residues that contact MHC, termed MHC variant pep-
tides, can weaken or stabilize the interaction between TCR and
pMHC (33–36). Though MHC variant peptides have been used to
stabilize interactions with MHC to enhance T cell detection, these
modifications could confound downstream analyses. For instance,
these changes could modify the secondary structure, altering the
TCR contact residues (37, 38) and may impact accurate kinetic
and functional analysis. Furthermore the non-covalent interac-
tions between peptide and MHC class II are of particular concern
because the binding groove is open at both ends and can allow
for the peptide to slide into different binding registers and influ-
ence TCR detection of the pMHC complex (39). For example,
we and others identified three to four peptide registers in the well
described OVA323–339 17-mer peptide (40, 41) that have made uni-
form recombinant pMHC monomer production and especially
the creation of tetramers somewhat difficult (41). One method to
improve the tetramer production is through the use of a limited
set of linker amino acids used to covalently attach peptide to the
N-terminus of the MHC class II molecule (42). In addition, mul-
tiple binding registers can be limited by creating a disulfide bond
or “lock” engineered via a cysteine residue on the peptide and on
the MHC as reported for insulin B9–23, OVA323–339, and HA126–138

peptides (41, 43). Despite the effective use of recombinant pMHC
and tetramers for the identification of antigen reactive T cells,
their use as direct measures of TCR frequency and affinity during
an immune response can be problematic.

MEASURING TCR AFFINITY FOR pMHC
A critical determinant for an antigenic response is the strength of
signal derived through the TCR (44, 45). Although many factors
contribute to the translation of signals into a biological response
(i.e., costimulation (46), duration of signal (47, 48), etc.), affinity
is a major parameter that establishes and controls the contribu-
tion of all additional factors in this response. Characterization
of T cell response dynamics requires methods to obtain biophys-
ical measures of affinity and kinetic on/off rates between TCR
and recombinant pMHC. Many of the models describing T cell
activation have been postulated based on kinetic-binding data
from three-dimensional (3D) and two-dimensional (2D) binding
assays.

Purified TCR and pMHC proteins can be used to study binding
kinetics in 3D using techniques such as surface plasmon reso-
nance (SPR). In this case, TCR and pMHC protein interactions
occur in a fluid filled 3D space and affinity is measured in terms
of the molar concentration needed to generate binding; TCR-
pMHC affinity can range from 1 to 100 µM while the half life
of the interaction can range from 10 to 100 s (49–52). SPR analysis
provided the biophysical basis for models correlating TCR bind-
ing kinetics and T cell triggering in order to explain the functional
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differences seen between agonists, weak agonists, and antagonists
(53–55). The most popular models are the kinetic proofreading
and kinetic discrimination models, which ascribe optimal T cell
responses to binding kinetics that allow sufficient time for TCR
triggering (53, 54, 56, 57). Ligands that stimulate outside of this
optimal time range, i.e., too long or too short, will not lead to a pro-
ductive response according to these models. Despite the accuracy
of these models in predicting agonist responses, several instances
were identified where the biophysical measures did not relate to T
cell activation state, particularly in response to weaker ligands (51,
57–62). These exceptions raised questions regarding the accuracy
of 3D kinetic measurements derived from purified molecules to
reflect the kinetics of proteins within the membrane environment.
3D assays are also limited in their ability to assess the full scope of
a response due to the difficulty in purifying TCR from all partici-
pating antigen specific T cells. Therefore, alternative technologies
are needed to probe the breadth of a polyclonal T cell response.

Analysis of receptor/ligand interactions using 2D technologies
provides a physiologically relevant context in which to assay TCR
affinity and the scope of polyclonal T cell responses because the
TCR and pMHC are bound within cell membranes. Therefore
these assays, namely the fluorescent based assays of FRAP and
FRET, as well as the mechanical based micropipette techniques,
biomembrane force probe and flow cell, can potentially better
interrogate T cell kinetics with pMHC (63–69). The interactions
between pMHC and TCR were found to occur more rapidly when
analyzed in 2D rather than 3D, lending support to the serial trig-
gering model where high affinity interactions generate fast off
rates and rapid on-rates amenable for sampling multiple pMHC
(69, 70). For the most part, one cannot readily convert the 2D area
based measurements to 3D volume based affinities and on rates.
A conversion of affinity from 2D FRET data to 3D measurements
was suggested based on approximations of the contact area and
intercellular volume between the T cell and surrogate APC bilayer
(66). The approximations of contact area and intercellular volume
are difficult to attain for T cells, which possibly explains why there
is a discrepancy between the converted 3D K d and SPR values for
the MCC agonist and T102S weak agonist peptides. In contrast, the
2D and 3D half-life measurements are comparable because they
are reported in units of time, yet in 2D, the time of interaction is
more rapid than found in 3D analyses (66, 70).

We have focused on the mechanical 2D micropipette adhe-
sion frequency assay as it provides a novel platform for evaluating
T cell antigen specificity, frequency, and cross reactivity between
epitopes within a polyclonal repertoire. Importantly, small num-
bers of T cells can be individually analyzed directly ex vivo from
the blood and sites of ongoing immune responses. This assay
allows for the visualization of TCR binding events with pMHC
on opposing cells via a modified inverted microscope (Figure 1).
The T cell and pMHC coated red blood cell are placed on oppos-
ing micropipettes and moved in and out of contact by means of
a piezoelectric actuator for a defined contact and retraction cycle
that will facilitate a binding event at equilibrium (71). A bind-
ing event is seen as distension of the RBC membrane on the video
monitor as the cells are moved out of contact. The concentration of
pMHC monomer coating on the RBC is optimized to yield an aver-
age binding frequency between 10 and 90% for several repeated

FIGURE 1 |The basic 2D micropipette adhesion frequency assay
system. The foundation for this system is an inverted microscope. The
stage has been modified with a metal adapter (1) to rest a media filled
chamber containing the T cells and pMHC coated RBCs above the 100× oil
immersion objective lens. The stage is also fitted with course
micromanipulators (2) allowing for the movement of the micropipettes (3)
within the chamber. The micropipettes are attached to a hydraulic pressure
system (not shown) by means of a micropipette holder (4) allowing for
individual cells to be aspirated and held within the chamber. A piezoelectric
actuator is attached to one micropipette holder such that it can be moved in
and out of contact with the opposing cell.The DAQ, digital acquisition board,
converts the cyclical digital signal from a computer program to an analog
voltage signal that drives the piezoelectric actuator. Cells can be visualized
on the video monitor and adhesion events can be subsequently recorded.

contacts (usually 50 contacts). The micropipette assay is suffi-
ciently sensitive to measure the binding of a single receptor-ligand
bond, a feature that cannot be achieved with pMHC multimer
technology. The higher sensitivity of the micropipette assay is not
based on increased valency but likely due to the 2D orientation
of the pMHC and TCR incorporated within the cell membranes.
This closely replicates the interaction as it would occur between
two cells and allows for measurement of TCR: pMHC kinetic para-
meters in a biologically relevant context. The effective 2D binding
affinity,with a detection range from high to low,10−2 to 10−7 µm4,
is a composite term that incorporates the affinity (K a) and the con-
tact area (Ac) between the T cell and surrogate APC. Derivation
of the effective 2D binding affinity (AcK a) requires quantifica-
tion of the receptor density (mr), the ligand density (ml), and
the frequency of adhesion (Pa) between the cells as represented by
AcK a=−ln(1− Pa)/mrml (71, 72). The adhesion frequency assay
is the fundamental model of 2D mechanical assays where binding
frequencies can be used to derive affinities and on/off rate kinetic
readouts (73). The biomembrane force probe is a modified adhe-
sion frequency assay that can allow for detection of individual
bonds with increased sensitivity for detecting faster on/off rates
and it can be modified to readout the effects of force on the bond
between TCR and pMHC (73). Furthermore, the 2D micropipette
system can be altered to permit visualization of functional fluo-
rescent readouts such as calcium signaling, which has already been
integrated into the FRET based 2D assays (66). The capacity of
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multiple readouts and increased sensitivity with the 2D mechanical
tools is evidence for the power/significance of these techniques.

BREADTH OF AFFINITY IN THE POLYCLONAL REPERTOIRE
The affinity of TCRs for antigen can be discussed at both the single
clone and population levels. A single TCR clone expands into mul-
tiple daughter cells that will possess a measurable but narrow range
in affinity despite expressing an identical TCR. A polyclonal popu-
lation of cells will possess a wider range or distribution of affinities
comprised of all TCR clones activated to expand in response to any
specific antigenic stimuli. Additionally, TCRs by their very nature
are degenerate or crossreactive and can interact with many differ-
ent peptide antigens. The estimated α:β TCR diversity is ∼1018,
a seemingly large number that is significantly reduced to several
hundred millions of T cells during thymocyte maturation (74, 75).
Even with these reduced numbers, T cells still possess the ability to
respond to most possible antigens. Therefore, the ability of a single
TCR to recognize multiple antigens, albeit with varying degrees of
affinity, is critical to increase the number of T cells that recognize
each antigen.

The concept of TCR degeneracy is demonstrated by the capacity
of monoclonal TCRs to recognize MHC variant peptides or altered
peptide ligands, defined as epitopes with modified affinity for cog-
nate TCR (76, 77). They also provide insight into the effective
affinity range recognized by a single TCR. For instance, OT-I CD8+

TCR transgenic T cells exhibit a Vα2/Vβ5 rearranged TCR that
recognizes the cognate SIINFEKL (OVA) peptide on H2-Kb with
a high 2D effective affinity (∼10−3 µm4). Modifying this peptide
sequence changes the affinity of OT-1 TCR for pMHC generating
a breadth of affinities (70) that can alter downstream functional
outcomes to yield agonist (A2, 2D affinity of ∼10−4 µm4), weak
agonist (G4 and E1, 2D affinity of ∼10−5 µm4), or antagonist (V-
OVA and R4, 2D affinity of ∼10−6 µm4) responses (70). Overall
the OT-1 TCR exhibits an approximate, 1000-fold range in affini-
ties depending on the peptide being presented by MHC class I.
Additional T cells will have to be analyzed to determine whether
this breadth of the 2D affinity range is characteristic of all CD8+

or CD4+ T cells.
The identification that a single TCR can exhibit a broad range

of affinities to different peptide antigens led to the study of the
array of affinities found within a polyclonal CD4+ T cell response
against one peptide antigen. The breadth of 2D effective affini-
ties for a single antigen within a polyclonal population exhibited
a Gaussian distribution possessing a defined mean and standard
deviation. For example, CD4+ T cells primed with the LCMV
(lymphocytic choriomeningitis virus) GP61–80 peptide epitope,
showed between a 100- and 1000-fold range of affinities by the
2D micropipette assay with a mean of 4.21± 1.48× 10−4 µm4

(78). A similar distribution and range with a lower mean affin-
ity 1.63± 0.48× 10−5 µm4 was also observed for the polyclonal
response against the myelin oligodendrocyte glycoprotein self anti-
gen MOG35–55 (78). As one would expect, the analysis of a single
TCR does not replicate the affinity range found within a poly-
clonal population. It is currently unclear how well conclusions
made based on monoclonal models informs on the polyclonal
response to the same antigen (79). This is affirmed by compar-
ing the 2D affinities between the monoclonal CD4+ SMARTA

T cell clone and the polyclonal CD4+ T cell population. Both
populations are specific for the same GP66–77: IAb antigen, but
the monoclonal SMARTA population only represents a fraction
of the affinity breadth seen in the polyclonal response. In this
case, the monoclonal cells have a mean affinity of ∼10−3 µm4

which is ∼10-fold higher than the mean polyclonal affinity of
∼10−4 µm4 [Figure 2A adapted from Ref. (48, 78)]. Although
the SMARTA TCR is monoclonal, it is interesting that this TCR
exhibits a range of affinities, albeit more narrow than the respond-
ing polyclonal T cells. An affinity range can even be detected

FIGURE 2 | Range ofTCR affinities for an individual pMHC in a
polyclonal repertoire. (A,B) Gaussian distributions were modeled for the
described T cells by utilizing previously published effective 2D affinity
means and standard deviations using the equation
P (x )=1/[σ× sqrt(2π)×e∧(−(X−µ)∧2/(2s∧2)] where P (x ) is the probability
density function or distribution, σ is the standard deviation, X is the variate
or bin interval, and µ is the mean log of the TCR affinities. (A) The
monoclonal SMARTA T cells and the polyclonal GP61–80 population both
recognize GP66–77: IAb. The 2D micropipette adhesion frequency assay was
used to determine the mean effective 2D affinities and standard deviations
as previously reported (48, 78). Gaussian distributions indicated that
SMARTA T cells exhibit a higher log of affinity µm4 (−2.7+0.39) ∼10-fold
higher than the polyclonal T cell populations (−3.5+0.63), indicating that
monoclonal population underrepresented the polyclonal affinity range. (B)
The 2D micropipette adhesion frequency assay was used to ascertain the
mean effective 2D affinities and standard deviations for the polyclonal
GP61–80 repertoire (unsorted) and FACS sorted GP66–77: IAb tetramer positive
and negative populations (78). Gaussian distributions indicated that both
the tetramer positive (∼peak at −3.0) and tetramer negative (∼peak at
−5.0) populations under represented the range of affinities exhibited by the
polyclonal (unsorted) repertoire.
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among TCRs expressed on a single T cell because FRET analy-
ses with the 5C.C7 CD4+ TCR have shown a 250-fold 2D affinity
range for MCC between microclusters of the same cell (66). Fur-
thermore, monoclonal models are often thought to represent the
highest affinity TCRs within a polyclonal response, which is not
necessarily the case. Clones are often selected in vitro for opti-
mal growth, effector function, and reagent availability for tracking
the TCR in vivo. For example, we have found that the transgenic
2D2 TCR, widely used for the study of demyelinating autoimmune
disease, is of low affinity for its antigenic ligand yet shows mea-
surable reactivity through proliferation and cytokine production
assays (48, 80).

While the ability to track antigen specific T cells within a poly-
clonal repertoire has been revolutionized by the use of pMHC
tetramers recent investigations call into question the fidelity of
these reagents to sufficiently capture all participating effectors in
an immune response. Our laboratory and others have shown a
discrepancy in the use of tetramers to determine the breadth of
CD4+ T cell responses. Tetramers will not detect T cells where
the affinity of the TCR for antigen is below the avidity threshold
needed for binding. We have estimated this 2D effective affin-
ity cutoff to be between 10−5 and 10−4 µm4 for MHC class II
restricted T cells; it is more difficult to define for MHC class I
based tetramers as CD8 significantly contributes to the overall sta-
bility and binding while CD4 does not (48, 78, 81). Analysis of
the tetramer positive subset of polyclonal GP66–77 reactive T cells
showed enrichment for higher affinity T cells with a mean 2D
affinity of ∼10−3 µm4 as compared to the affinity of the intact
polyclonal T cell population of ∼10−4 or the tetramer negative
T cells ∼10−5 µm4 (78). Of interest, the tetramer positive and
negative cells are a subset of the overall polyclonal affinity reper-
toire [Figure 2B, adapted from Ref. (78)]. For both the self and
pathogen specific CD4+ T cell response, the percentage of tetramer
reactivity was lower and did not correlate to the percentage of
cytokine responders or the frequency of antigen specific T cells
measured by the 2D micropipette adhesion frequency assay (78).
Therefore, the sole use of tetramers to monitor the antigen speci-
ficity, frequency, magnitude, and affinity of a polyclonal repertoire
in order to predict the overall composition of an immune response
appears somewhat limited, missing the contribution of the lower
affinity T cells.

Underestimating the contribution of low affinity T cells is a
significant issue for models of autoimmune disease where nega-
tive selection likely enriches for a low affinity repertoire reactive
against self antigen. Our studies with MOG35–55 specific CD4+

T cells indicated that tetramer generally reacted with 7–10% of T
cells within the target organ, while functional effector responses
and 2D affinity analysis detected much higher levels of cells (78). In
the 2D2 TCR transgenic model of EAE, the 2D2 T cells promoted
spontaneous paralytic disease (4%) or spontaneous optic neuri-
tis (35%) (80). This TCR has very low affinity for antigen (48)
and does not interact with MOG-specific tetramers and there-
fore contrasts with data suggesting low affinity or low avidity T
cells are less pathogenic. Furthermore, retrogenic derived mono-
clonal TCR models suggest that TCR of low avidity can support
the development of spontaneous EAE in the absence of higher

avidity T cells (82). The challenge in studying the contributions
of low affinity T cells has been the lack of reagents to do so. The
2D adhesion frequency assays gives us one such tool to character-
ize lower affinity T cells alongside the higher affinity contributors
within a polyclonal population.

BENEFITS OF AN INCLUSIVE RESPONSE
To date, current models of T cell clonal expansion suggest that
high affinity T cell clones are preferentially enriched over low
affinity clones (83–85). As a result, many current T cell thera-
peutic initiatives seek to elicit or artificially create high affinity T
cells to enhance pathogen specific and anti-tumor responses (86).
However, recent investigations have shown that T cells manipu-
lated to have supraphysiological affinity were unexpectedly less
potent effectors than lower affinity counterparts due to triggering
of inhibitory mechanisms (87, 88). It would therefore be plausible
that an effective immune response may benefit from a balance of
high, intermediate, and low affinity T cell responders.

Polyclonal TCR affinity composition can be shaped by TCR
activation thresholds. For example, CD27 costimulation has been
shown to support the emergence of lower affinity CD8+ T
cells that mediate greater protection against reinfection with
an influenza variant (89). Similarly, clones with low functional
avidity have been shown to be important in the maintenance
of an effective anti-tumor response (90). Although affinity was
not the sole focus of this study, reduction of p56Lck expres-
sion significantly decreased T cell sensitivity to activation which
mimics a lower affinity response. These low affinity effectors
were less susceptible to an exhausted phenotype and medi-
ated better protection in subsequent rechallenge. Such investi-
gations provide evidence for why low affinity clones may exist
within the repertoire and how therapeutics to limit them may be
shortsighted.

The role for low affinity T cell populations can be obscured
by the nature of the assay used to analyze the response. In a
study examining the therapeutic efficacy of tumor vaccines, high
affinity clones (as determined by SPR) responded optimally in
in vitro assays, but intermediate affinity clones mediated the
best anti-tumor responses in vivo (91). Similarly, a study eval-
uating optimal T cell responses to peptide in the 5C.C7 model
(85, 92) showed that intermediate affinity clones mediated the
most optimal in vivo responses while high affinity clones demon-
strated the strongest response in vitro. Future studies may ben-
efit from understanding the interplay of individual T cell affin-
ity subsets in the overall efficacy of tumor and pathogen spe-
cific responses. These findings underscore the potential role for
lower affinity effectors in an immune response and therefore they
should be an important consideration in the design of therapeutic
interventions.

Understanding how T cell affinity mediates protective immu-
nity also has important implications for vaccine design because
recent studies have shown the priming agent and the adjuvant
can alter the CD4+ TCR affinity composition. In one study,
vaccinations using either cytochrome C peptide or whole pro-
tein were compared (93). Though both vaccination regimens
generated diverse clonal responses, peptide vaccines elicited high
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affinity dominated responses while protein vaccines generated a
repertoire inclusive of both low and high affinity responses. The
maintenance of low affinity effectors was found, at least in part,
to require CD27–CD70 signaling. Another study demonstrated
the ability of vaccine adjuvants to affect the affinity composi-
tion of T cells generated in response to pigeon cytochrome C,
PCC (94). All the adjuvants tested were effective in enhancing a
PCC-specific T cell response, but alum, IFA, and CFA induced
lower avidity responses while CpG and monophosphoryl lipid
A generated higher avidity responses as determined by pMHC
tetramer and CDR3 spectrotyping. This observation suggests that
adjuvants could differentially influence recruitment into the poly-
clonal response. The effect was dependent on the dispersive ability
of the adjuvant and activation of different TLRs that resulted in
changes in CD4+ T cell recruitment and/or migration. It is worth
noting that even adjuvant choice can affect the balance of low
and high affinity clonotypes (94, 95) and should be furthered
explored with 2D assays. The application of 2D based pMHC
technologies to these questions will allow us to uniquely explore
the breadth of TCR affinities and redefine our understanding of
the dynamic interplay between TCR affinity subsets within the
polyclonal repertoire.

CONCLUSION
The use of pMHC technology is at the forefront of monitoring
antigen specific immune responses. We promote 2D mechanical
based assays with purified pMHC for several reasons. First, they
display increased sensitivity for detecting antigen specific T cells
when compared to functional responses or pMHC tetramer based
assays. Secondly, the polyclonal repertoire can be monitored with-
out purification of individual TCRs because the analysis is carried
out using intact T cells. Lastly, 2D assays provide a more accurate

representation of the relationship between T cell affinity and func-
tional responsiveness. The findings to date have highlighted the
presence of antigen specific CD4+ T cells exhibiting a range of
affinities from low to high in both autoimmune and pathogen
specific models. Low affinity, tetramer negative populations elicit
effector functions and expand in response to antigen suggesting
their capacity to contribute to adaptive immune responses. The
idea that lower affinity T cells effectively compete within and con-
tribute to the effector T cell repertoire at the very least modifies
our view that high affinity T cell clones would dominate the lower
affinity counterparts. Future work is needed to examine how affin-
ity of the initial TCR:pMHC interaction contributes functionally
to the initiation, maintenance, and/or resolution of a polyclonal
immune response. In addition, we need sensitive techniques that
allow for analysis of TCR crossreactivity and in the case of autoim-
munity, epitope spread to new antigens. At this point in time,
2D based assays together with recombinant pMHC molecules
are useful tools available to characterize individual T cell affin-
ity contributions to the breadth of an immune response. Potential
clinical outcomes for this research include the use of TCR affin-
ity as a biomarker to monitor disease progression and to provide
information for the development of high efficacy antigen specific
therapies.
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