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Nitric oxide (NO) generated through L-arginine metabolism by endothelial nitric oxide syn-
thase (eNOS) is an important regulator of the vessel wall. Dysregulation of this system
has been implicated in various pathological vascular conditions, including atherosclerosis,
angiogenesis, arteriogenesis, neointimal hyperplasia, and pulmonary hypertension. The
pathophysiology involves a decreased bioavailability of NO within the vessel wall by com-
petitive utilization of L-arginine by arginase and “eNOS uncoupling.” Generation of NO
through reduction of nitrate and nitrite represents an alternative pathway that may be uti-
lized to increase the bioavailability of NO within the vessel wall. We review the therapeutic
potential of the nitrate/nitrite/NO pathway in vascular dysfunction.
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INTRODUCTION
The Nobel Prize in physiology or medicine was awarded to Drs.
Furchgott, Ignarro,and Murad in 1998 for their work in identifying
nitric oxide (NO), previously recognized as endothelium-derived
relaxing factor, as a biologic mediator of the cardiovascular sys-
tem. Since that time, NO has been extensively researched and has
been linked to numerous physiological and pathological processes
within the cardiovascular system. Vascular dysfunction is the
root cause of a variety of important disease processes, including
myocardial infarction, stroke, peripheral vascular disease, pul-
monary hypertension, and wound healing. This constellation of
pathology imposes a significant financial burden on the healthcare
system and produces significant morbidity and mortality in those
affected. The underlying pathophysiology of vascular dysfunction
occurs in numerous forms, and often involves a combination of
dysregulated endothelial cell NO production, increased prolifera-
tion and migration of smooth muscle cells, increased formation of
intimal and medial plaques, impaired collateral vessel generation,
and reduced angiogenesis.

THE L-ARGININE/NITRIC OXIDE PATHWAY
Three nitric oxide synthases (NOSs), nNOS (neuronal), iNOS
(inducible), and eNOS (endothelial), were identified and initially
thought to be the sole producers of NO within the cardiovas-
cular system (1). Both nNOS and eNOS are calcium-dependent
and constitutively active, while iNOS is induced under inflamma-
tory conditions and is calcium-independent. All three isoforms
metabolize l-arginine, NADPH, and oxygen to l-citrulline, NADP,
and NO (2) (Figure 1). l-arginine may alternatively be metab-
olized by arginase to l-ornithine and urea. When the supply
of l-arginine is limited, metabolism via arginase may effectively
reduce production of NO (3).

It has been suggested that the shunting of l-arginine away from
the NOS/NO pathway toward the arginase/l-ornithine pathway

contributes to certain vascular pathology (4–7) (Figure 2). Expres-
sion of arginase in the vascular wall is induced under pro-
inflammatory conditions, as well as by reactive oxygen species
(ROS) and reactive nitrogen species (RNS) (8). Increased arginase
activity has been associated with hypertension and coronary vas-
cular dysfunction (9–11). Also, direct vascular injury induces a
local inflammatory response. Arginase is upregulated in the ves-
sel wall after balloon injury in the rat carotid injury model.
Polyamines generated through the l-ornithine pathway form the
building blocks necessary for smooth muscle cell proliferation
and neointimal hyperplasia of the vessel wall (12). Peyton et al.
(13) demonstrated that selective inhibitors for arginase attenuate
neointimal hyperplasia in the rat carotid injury model.

Endothelial NOS is highly expressed in endothelial cells at
baseline. Its metabolism of l-arginine to NO is thought to be a
major contributor to plasma nitrite levels, which play an impor-
tant role in baseline vasodilation (14, 15). In addition to regulating
baseline vasomotor tone, eNOS is thought to help limit platelet
adhesion and thrombosis (16, 17). After vessel injury iNOS is
upregulated in arterial smooth muscle cells and eNOS is upregu-
lated in the endothelium resulting in increased NO production
(18). Under pathological conditions, the increased NOS activ-
ity may not translate into increased NO production. Reduced
NO bioavailability through eNOS “uncoupling” is a contributing
factor to reduced local NO in atherosclerosis, pulmonary hyper-
tension, and vessel injury (7, 19). Tetrahydrobiopterin (BH4) is an
essential cofactor for the enzymatic production of NO via NOSs
(20). Uncoupling occurs under conditions of reduced BH4 avail-
ability where eNOS produces superoxide anions rather than NO
(21, 22) (Figure 3). In addition, ROS are produced by NADPH
oxidase and XOR (23, 24). ROS have been recognized as con-
tributing to vascular dysfunction, through mechanisms including
endothelial dysfunction, vascular smooth muscle cell growth, lipid
peroxidation, and inflammation (25). An alternative source of
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FIGURE 1 | L-Arginine is metabolized in endothelial cells via
endothelial nitric oxide synthase to nitric oxide, which then acts
downstream to reduce platelet adhesion, decrease leukocyte
adhesion, inhibit smooth muscle proliferation and migration, and

induce vasodilation. Acetylcholine, adenosine triphosphate, adenosine,
bradykinin, and histamine all act on different receptors to generate
downstream prostacyclin, which acts as a redundant system to induce
vasodilation and platelet inhibition (112).

NO under these conditions may help restore the NO deficiency
attributed to uncoupling.

NITRATE/NITRITE REDUCTION TO NITRIC OXIDE
While nitrate and nitrite were long thought of as stable end-
products of NO metabolism, recent evidence supports nitrate
and nitrite as potential sources of NO under appropriate con-
ditions (12, 26–29) (Figure 4). As opposed to the NOS enzymes,
which require oxygen as a substrate for NO generation, nitrite-
generated production of NO has been shown to occur more readily
under acidic and hypoxic conditions (113, 30–32). Nitrate/nitrite
reduction has been shown to occur via deoxygenated hemoglo-
bin, myoglobin, enzymatic, and non-enzymatic means (33–37).
A class of molybdenum-containing enzymes, including xanthine
oxidoreductase (XOR), aldehyde oxidase (AOX), and sulfite oxi-
dase (SUOX), have been identified as enzymes that may facilitate
the reduction of nitrate and nitrite to NO at the molybdenum-
containing site (38). We and others have shown that XOR in
particular is present within the vessel wall and tissue and con-
tributes to NO production in intimal hyperplasia, pulmonary
hypertension, and ischemia-reperfusion (12, 26, 39).

While l-arginine is a significant contributor to plasma nitrite
production through the l-arginine/NOS/NO/nitrite pathway,
plasma nitrite levels are also dependent on oral consumption

of nitrate and nitrite (40). The Mediterranean diet, which has
been associated with a lower risk of atherosclerosis and coro-
nary artery disease, adds credence to the importance of oral
nitrate/nitrite-derived NO in vascular biology (41, 42). The
Mediterranean diet, known for its high content of nitrate-rich
leafy green vegetables, has also been found to lower the blood pres-
sure of healthy volunteers (40, 43). The nitrate/nitrite/NO pathway
through oral ingestion is thought to rely on a symbiotic relation-
ship with natural oral flora. Nitrate is concentrated within the
salivary glands and salivary bacteria reduce nitrate to nitrite in the
oral cavity (44). Once nitrite reaches the stomach, it is reduced to
NO by protonation due to the stomach’s low pH (45). NO then
may act locally by enhancing mucosal blood flow to the stomach
(45–47). Nitrite is also absorbed in the stomach where it enters the
blood stream (48). Due to its relative stability, nitrite then has the
ability to circulate to other areas in the body and undergo reduc-
tion to NO under acidic and hypoxic conditions (33). Acting in
this way, circulating nitrite has been described as a “storage pool”
for NO within the body (27).

Historically, there has been concern that oral nitrate/nitrite
consumption may increase the risk of some cancers, including
esophageal, stomach, and colon cancer. Some epidemiological
studies have suggested that high oral intake of nitrate/nitrite cor-
relates with increased risk of gastrointestinal malignancy, though
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FIGURE 2 | L-arginine may be competitively metabolized by arginase to L-citrulline and urea, reducing production of nitric oxide and contributing to
vascular dysfunction.

accuracy in calculating dietary exposure is difficult (49). Nitrosy-
lation of secondary amines via nitrite occurs readily under acidic
conditions, such as in the stomach, resulting in N-nitrosamines.
Around 300 N-nitrosamines have been identified as carcinogenic
(50). The National Toxicology Program (51) of the US Department
of Health and Human Services found no evidence of carcino-
genic activity in mice and rats after 2 years of exposure to oral
sodium nitrite. The International Agency for Research on Cancer
(52), a division of the World Health Organization, evaluated the
evidence concerning dietary consumption of nitrate/nitrite and
carcinogenicity in their monographs. The IARC concluded that
inadequate evidence exists in humans and experimental animals
for the carcinogenicity of nitrate in food and drinking water and
limited evidence exists to suggest carcinogenicity of nitrite in food
and drinking water (52). The IARC did, however, recognize that
sufficient evidence exists in experimental animals to suggest the
carcinogenicity of nitrite in combination with amines or amides
and that nitrite in food is correlated with stomach cancer (52).
Ongoing research will help elucidate the specific conditions in
which N -nitrosamines may be carcinogenic in humans.

Multiple investigations have demonstrated that the
nitrate/nitrite/NO pathway has vasoactive properties in the sys-
temic and pulmonary circulations. Infusion of nitrite into the fore-
arm brachial artery increased local blood flow and decreased blood
pressure at rest and during exercise in humans (33). The infu-
sion correlated with an increase in erythrocyte iron-nitrosylated

hemoglobin, suggesting that hemoglobin may play a role in trans-
porting NO through the bloodstream. Dietary supplementation
has the potential to achieve similar results systemically. Larsen et al.
(43) used a 3-day dietary supplementation of nitrate (0.1 mmol/kg
body weight) in healthy volunteers and showed an increase in
plasma nitrate (178 ± 51 vs. 26 ± 11 µM) and nitrite (219 ± 105
vs. 138 ± 38 µM). After 3 days, the volunteers also had a decrease
in diastolic and mean blood pressure by 3.7 mmHg and 3.2 mmHg,
respectively. In a similar study using a Japanese diet high in
nitrate, Sobko et al. (53) demonstrated an increase in both sali-
vary and plasma levels of nitrate and nitrite. These volunteers
had an average 4.5 mmHg drop in diastolic blood pressure after
10 days. Dietary nitrate may also effect the pulmonary circulation.
In mice exposed to hypoxia to induce pulmonary hypertension,
dietary nitrate reduced vascular remodeling and right ventricu-
lar hypertrophy through pulmonary vasodilation (26). Inhaled
nitrite is an alternative delivery method that has the potential to
induce pulmonary vasodilation while minimizing systemic effects.
Nebulized sodium nitrite reduced hypoxia-induced pulmonary
hypertension in lambs by 65% with no drop in systemic blood
pressure (54).

NITRIC OXIDE AND THE VESSEL RESPONSE TO INJURY
Nitric oxide has been shown to serve many vasoprotective prop-
erties that occur after vessel injury, including reduction of platelet
deposition, decrease in leukocyte adhesion, inhibition of smooth
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FIGURE 3 | Endothelial nitric oxide synthase uncoupling results in reduced production of nitric oxide as well as production of superoxide anions.
NADPH oxidase and xanthine oxidase also contribute to production of superoxide anions.

muscle cell proliferation and migration, and induction of vasodi-
lation (55). One of the initial responses to endothelial disruption
is platelet activation and plug formation. NO and NOS expression
are associated with decreased platelet adhesion at the vessel wall
(56, 57). NO has been shown to be a potent inhibitor of platelet
adhesion, reducing thrombosis within the vessel lumen (58, 59).
NO mediates platelet adhesion though upregulation of platelet-
soluble guanylate cyclase production of cyclic GMP. Nitrate and
nitrite-supplemented diets increase bleeding times in mice, and
there is an inverse relationship between blood nitrate/nitrite lev-
els and platelet function (60). After platelet deposition, neu-
trophils and macrophages begin to infiltrate the vessel wall. NO
inhibits leukocyte adhesion and the subsequent vessel inflam-
matory response after injury (61, 62). Once the inflammatory
response sets in, smooth muscle cells infiltrate the medial layer
and begin proliferating. The resulting thickened medial layer nar-
rows the lumen and stiffens the vessel wall. NO acts to reduce
the smooth muscle cell response in multiple ways. NO was first
recognized as the substance responsible for calcium-dependent
relaxation of the vascular smooth muscle cells (63). NO upregu-
lates soluble guanylyl cyclase within cells and leads to increased
cyclic GMP. Cyclic GMP then interacts with protein kinases to
lower cytoplasmic calcium,which results in vasodilation (64). Also,
it has been shown in culture that NO reversibly arrests the cell cycle
of vascular smooth muscle cells (65). NO inhibits smooth muscle
proliferation within the vessel wall via a p21 dependent mechanism

(66–68). Overall, NO reduces smooth muscle cell migration and
proliferation, which can lead to atherosclerosis and neointimal
hyperplasia (69).

NITRIC OXIDE AND ATHEROSCLEROSIS
Atherosclerosis resulting in coronary artery disease and stroke are
the leading causes of death in the developed world (70). Athero-
sclerotic plaques are formed when the endothelial layer is damaged
and cholesterol accumulates within the vessel wall. Macrophages
are recruited to the site of injury, form foam cells, and release
cytokines leading to an inflammatory response (71). Smooth
muscle cells then migrate and proliferate within the vessel wall,
eventually leading to an organized plaque (72). Repeated vessel
wall injury causes thrombosis and narrowing of the lumen, which
leads to ischemia of the tissue bed supplied by the vessels.

While atherosclerosis is a multifactorial process, dysregula-
tion of the arginine/NOS balance contributes to the development
of atherosclerotic disease (73). For instance, iNOS inhibition in
the apolipoprotein E knockout mouse model for atherosclero-
sis accelerates the progression of atherosclerotic disease in these
mice (74). Restoring the balance of NO production at multi-
ple points along the pathway reduces formation of atheroscle-
rotic plaques. l-Arginine supplementation has been shown to
improve vasodilation in cholesterol-fed rabbits and monkeys and
reduce the progression of atherosclerosis (75–77). Also, exogenous
expression of iNOS in the arteries reduces the injury response
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FIGURE 4 | Nitrite reduction by xanthine oxidoreductase, myoglobin, hemoglobin, and protonation results in nitric oxide production, especially under
conditions of hypoxia and acidemia.

and atherosclerotic development (78). Furthermore, supplemen-
tal oral nitrite has also been shown to be beneficial in reducing
vessel inflammation and endothelial dysfunction in mice treated
with a high cholesterol diet (79).

NOS enzyme dysregulation results not only in reduced NO
availability, but also increased superoxide anions and arginase
activity, both of which are detrimental to maintaining healthy
vasculature (80, 81). Oxidized low-density lipoproteins (OxLDL)
caused by the interaction between LDL and superoxide anions
correlate with atherosclerotic disease (82). OxLDL is taken up
by macrophages, which forms foam cells on the vessel wall (73).
OxLDLs also have been shown to induce apoptosis of endothe-
lial cells and impair endothelium-dependent arterial relaxation
within atherosclerotic vessels (83–85). On the contrary, NO has
been shown to inhibit apoptosis in endothelial progenitor cells
caused by oxidized low-density lipid proteins (86).

NITRIC OXIDE AND PERIPHERAL ARTERIAL DISEASE
Nitric oxide is an important regulator of the tissue response to
peripheral arterial disease and lower extremity ischemia, specifi-
cally enhancing arteriogenesis, angiogenesis, and progenitor cell
migration (4, 87, 88). Arteriogenesis is a recognized phenome-
non that involves the enlargement of pre-existing collaterals as
a result of increased sheer stress, often in response to stenotic
or occluded primary vessels. Angiogenesis, on the other hand,
is induced by vascular endothelial growth factor and occurs in

response to tissue ischemia (89). As a result, new capillaries are
formed (90). Endothelial NOS knockout mice show impaired arte-
riogenesis, angiogenesis, and pericyte recruitment after femoral
artery ligation. All three processes are reversed in this model by
intramuscular injection of adenovirus encoding eNOS, suggesting
that NO is an important mediator of these processes during lower
extremity ischemia (91).

In addition to eNOS-generated NO, the nitrite/NO path-
way is functional in the peripheral vasculature. Intraperi-
toneal (IP) nitrite injections have been shown to improve
tissue perfusion through increased collateral vessel develop-
ment in the murine femoral ligation model of acute limb
ischemia (92). IP delivered nitrite also improved angiogenesis
and cutaneous flow in rat ischemic myocutaneous flaps, reduc-
ing tissue death via a nitrite/NO pathway (93). Nitrite ther-
apy, delivered even in a delayed fashion, augments arteriogen-
esis in the mouse hindlimb ischemia model (94). Additionally,
dietary nitrate supplementation increased capillary and bone-
marrow derived progenitor cell density in ischemic hind-limbs,
a process that was inhibited with antiseptic mouthwash (95).
Antiseptic mouthwash reduces the concentration of the oral
bacteria responsible for nitrate reduction to nitrite, thus dis-
rupting the nitrate-nitrite-NO pathway (96). In a small study
of healthy volunteers, antiseptic mouthwash increased systolic
and diastolic blood pressure by 2–3.5 mm Hg during a 7 day
course (97).
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NITRIC OXIDE AND NEOINTIMAL HYPERPLASIA
Neointimal hyperplasia is an exaggerated inflammatory healing
response after vascular injury. Of particular interest is neoin-
timal hyperplasia after balloon angioplasty and vascular stent
deployment, since this may limit therapeutic success. After vessel
injury, platelets adhere to the vessel wall denuded of endothelium
and generate a cascade of events leading to leukocyte chemo-
taxis, extracellular matrix modification, endothelial cell apop-
tosis, and vascular smooth muscle cell migration and prolif-
eration (55). NO has been shown to limit neointimal hyper-
plasia through multiple levels. Similar to atherosclerosis, NO
modulates neointimal hyperplasia through inhibition of platelet
aggregation, decreased leukocyte chemotaxis, and reduced vas-
cular smooth muscle cell proliferation while stimulating that of
endothelial cells (57–59, 62, 65, 67, 68, 98, 99). The effects of
NO may be limited by l-arginine shunting away from eNOS
to arginase under pathological conditions. Arginase metabolism
of l-arginine leads to the production of polyamines utilized in
cell proliferation, and the expression of arginase I is increased in
the proliferation of rat aortic smooth muscle cells (100). It has
been demonstrated that arginase I activity is increased within
the vessel wall after carotid balloon injury in rats, and that
inhibition of arginase decreases neointimal hyperplasia in that
model (13). Furthermore, Alef et al. (5) demonstrated that nitrite-
supplemented drinking water acts to reduce intimal hyperplasia
in the rat carotid injury model, and that this NO is generated
through XOR.

NITRIC OXIDE AND PULMONARY ARTERIAL HYPERTENSION
Pulmonary hypertension is a vascular disease characterized by
hypoxia, pulmonary vasoconstriction, increased vascular resis-
tance, vessel remodeling, thrombosis, and right ventricular strain
(7, 101). Multiple etiologies likely contribute to the development
of pulmonary hypertension, but all involve increased vascular
resistance as a prominent factor. NO, an important regulator of
pulmonary vascular resistance, acts as a vasorelaxing agent within
the pulmonary arterial system as well as a protective agent against
smooth muscle cell proliferation within the vascular wall (102,
103). It has been proposed that NO may act as a “hypoxic buffer”
that leads to vasodilation under hypoxic conditions, such as occurs

in pulmonary hypertension (104, 105). This theory proposes that
increased nitrite reduction to NO helps to counterbalance the
hypoxic pulmonary vasoconstriction by generating a vasodilatory
signal. Inhaled nitrite is being utilized in pulmonary hypertension
as a direct means of delivering NO to the pulmonary vascu-
lature (106). Also, dietary nitrite in mice increases pulmonary
dilation, inhibits vascular remodeling, and decreases right ven-
tricular hypertrophy. This effect was reduced in eNOS knockout
mice and after allopurinol treatment (26). In a rat model of
pulmonary hypertension, it has been shown that inhaled nitrite
reverses the effect of hypoxia-induced pulmonary hypertension
through creation of NO via XOR (103).

Investigation into the l-arginine/nitrite/NO pathway in pul-
monary hypertension has led to conflicting results as far as the
importance of this system. Variation in eNOS expression has been
observed in human tissue studies, despite consistently elevated
eNOS in animal studies (107–109). Inducible NOS has also been
shown to be increased in some studies (110). The upregulation of
the NOSs may be a compensatory response to upregulated arginase
activity. Like other vascular disorders, arginase activity has been
shown to be increased in pulmonary hypertension (111). Increased
arginase may have a dual role of decreasing l-arginine metabolism
to NO as well as polyamine-induced increases in smooth muscle
cell proliferation within the vessel walls (7).

SUMMARY
Nitric oxide is an important regulator of vascular function. An
imbalance in NO production in relation to ROSs, RNSs, and
other inflammatory mediators is associated with many forms of
vascular dysfunction, including atherosclerosis, peripheral arter-
ial disease, neointimal hyperplasia, and pulmonary hypertension.
The recently discovered nitrate/nitrite/NO pathway is an alter-
native means of delivering NO to areas of deficiency. In order
to harness this pathway as a therapeutic, efficient delivery to the
affected tissues must be accomplished. Because of its relatively
stable nature and the recognition that nitrate, nitrite, hemoglo-
bin, and myoglobin within the blood act as a ‘storage pool’ of NO,
a variety of potential delivery options to areas of vascular dys-
function exist, including dietary supplementation, inhalation, and
direct intravenous infusion.
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