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In addition to their well-established role(s) in the pathogenesis of gastrointestinal
(Gl)-related inflammatory disorders, including inflammatory bowel disease (IBD) and
inflammation-associated colorectal cancer (CRC), emerging evidence confirms the critical
involvement of the interleukin-1 (IL=1) cytokine family and their ligands in the maintenance
of normal gut homeostasis. In fact, the paradigm that IBD occurs in two distinct phases
is substantiated by the observation that classic Il-1 family members, such as Il=1, the Il-1
receptor antagonist (Il-1Ra), and I[-18, possess dichotomous functions depending on the
phase of disease, as well as on their role in initiating vs. sustaining chronic gut inflammation.
Another recently characterized I1-1 family member, 133, also possesses dual functions in
the gut. Il=:33 is upregulated in IBD and potently induces Th2 immune responses, while
also amplifying Th1-mediated inflammation. Neutralization studies in acute colitis mod-
els, however, have yielded controversial results and recent reports suggest a protective
role of Il=33 in epithelial regeneration and mucosal wound healing. Finally, although lit-
tle is currently known regarding the potential contribution of =36 family members in Gl
inflammation/homeostasis, another Il-1 family member, 11-:37 is emerging as a potent anti-
inflammatory cytokine with the ability to down-regulate colitis. This new body of information
has important translational implications for both the prevention and treatment of patients
suffering from IBD and inflammation-associated CRC.
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BACKGROUND AND INTRODUCTION

STRUCTURE AND FUNCTION OF THE INTESTINAL GUT MUCOSA

The gastrointestinal (GI) tract, with its epithelial barrier con-
sisting of a total surface area of approximately 200 m?, is man’s
most widely exposed organ system to the external environment.
The intestinal barrier represents a functional unit responsible
for two main tasks crucial for survival of the individual: allow-
ing nutrient absorption, and defending the body from pene-
tration of unwanted, often dangerous, macromolecules. In fact,
the gut mucosa is a multi-layered system consisting of an exter-
nal “anatomical” barrier and an inner “functional” immunolog-
ical barrier. Commensal gut microbiota, a mucous layer, and
the intestinal epithelial monolayer constitute the anatomical bar-
rier. The deeper, inner layer consists of a complex network of
immune cells organized in a specialized and compartmental-
ized system known as gut-associated lymphoid tissue or GALT.
GALT represents both isolated and aggregated lymphoid folli-
cles and is one of the largest lymphoid organs, containing up
to 70% of the body’s total number of immunocytes, and is
involved in responding to pathogenic microorganisms and pro-
viding immune tolerance to commensal bacteria. The ability of
GALT to interact with luminal antigens rests on specific mucosal
immune cells (i.e., dendritic cells and M-cells), primarily localized
to Peyer’s patches within the ileum, that are intimately positioned

at the mucosal-environmental interface and internalize microor-
ganisms and macromolecules. These specialized immune cells
have the ability to present antigen to naive T-lymphocytes, which
subsequently produce cytokines and activate mucosal immune
responses, when needed. From the intracellular point of view,
inflammasomes are a group of protein complexes that assem-
ble upon recognition of a diverse set of noxious stimuli and
are now considered the cornerstone of the intracellular surveil-
lance system. They are able to sense both microbial and damage-
associated molecular patterns (DAMPs) and initiate a potent
innate, anti-microbial immune response (1). The interaction of
these components sustains the maintenance of the delicate equi-
librium needed for intestinal homeostasis. Many factors can alter
this balance, including alterations in the gut microflora, modi-
fications of the mucus layer, and epithelial damage, leading to
increased intestinal permeability and translocation of luminal
contents to the underlying mucosa (2). The integrity of these
structures is necessary for the maintenance of normal intesti-
nal barrier function. Dysregulation of any of the aforementioned
components have been implicated not only in the pathogenesis
of inflammatory bowel disease (IBD), but many other GI disor-
ders, including infectious enterocolitis, irritable bowel syndrome,
small intestinal bowel overgrowth, and allergic food intolerance
(3-5).
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THE TOLL/IL-1 RECEPTOR SUPERFAMILY IN THE GI TRACT

The role of the Toll/IL-1 Receptor (TIR) superfamily and their
respective ligands, of which interleukin-1 (IL-1)-like molecules
belong, is well established in the pathogenesis of several autoin-
flammatory and chronic immune disorders (6). However, the
emerging concept that Toll-like receptors (TLRs), as well as IL-
1 and its related cytokine family members, also play a critical
role in health and the maintenance of immune homeostasis is
gaining increasing acceptance. The GI system, in fact, represents
one of the best examples of where these opposing mechanisms
simultaneously take place (7). A large body of literature exists
that support the contribution of various TLRs and IL-1 family
members, particularly IL-1 and IL-18, to the pathogenesis of IBD,
such as Crohn’s disease (CD) and ulcerative colitis (UC), as well
as Gl-related cancers. However, while selective blockade of pro-
inflammatory cytokines is one of the most effective strategies to
down-regulate mucosal inflammation in IBD (8), Phase I clinical
trials using strategies to neutralize either IL-1 or IL-18 have failed
to show significant efficacy in treating patients with UC and CD,
respectively. One potential cause for this failure is the dichoto-
mous functions of these IL-1 family members in inducing disease
pathogenesis, while simultaneously promoting protection, within
the intestinal gut mucosa.

In fact, new insights into the role of cytokine-driven path-
ways in mucosal immunity have been described based on sev-
eral recent studies in animal models of acute intestinal injury,
repair, and chronic inflammation. Information derived from these

studies reveal that intestinal homeostasis and inflammation are
driven by cellular elements and soluble mediators that mediate
both processes, with several cytokines exhibiting opposing roles,
depending upon the specific setting. This concept is most strongly
supported by members of the IL-1 family of cytokines in the patho-
genesis of IBD (Table 1) (9-22), where the same cytokine can
possess both classic pro-inflammatory properties, as well as protec-
tive, anti-inflammatory functions, which is primarily dependent
on the presence of receptor-bearing cells during the host’s disease
state. Related to this notion is the dogma that chronic intestinal
inflammation characteristic of IBD develops through two distinct
phases (21). Early disease refers to the initial events that take place
when homeostatic mechanisms initially fail and acute inflamma-
tory responses cannot be resolved. In contrast, late disease refers to
the period when adaptive immunity has been irreversibly primed
toward a specific effector phenotype. During these distinct stages
of disease progression, innate cytokines play diverse, and often
times, dichotomous roles (21).

As such, aside from the established pro-inflammatory prop-
erties of IL-1a, IL-1f, IL-18, and their downstream signaling
molecules shared with TLR family members, such as nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-kB) and
myeloid differentiation primary response 88 (MyD88), a growing
body of evidence indicates that these mediators are necessary for
the maintenance of mucosal homeostasis by effectively handling
microbiota, as well as by protecting and restoring the integrity of
the epithelial barrier (23-25). While little is known regarding the

Table 1 | Role of IL-1 cytokine family members in IBD and in Gl-related cancers.

Common IL-1 family Ligand-binding Disease association Potential role in IBD Potential role in Gl-related cancers
name name chain
[l ILTF1 ILIR type | CD, UC Protective during early Induction of tumor growth, metastasis
phase of inflammation formation, and angiogenesis in gastric,
liver, colon, and pancreatic cancer
1B IL1F2 ILIR type | CD, UC Protective during early Induction of tumor growth, metastasis
phase of inflammation formation, and angiogenesis in gastric,
liver, colon, and pancreatic cancer
ILIRa ILTF3 ILIR type | uc Potential dual role Protective
18 IL-1F4 Il-18Ra CD Protective during early Protective in inflammation-associated
phase of inflammation colon cancer
I-36Ra IL-1F5 |L:IRrp2 Unknown Unknown Unknown
IL-36a IL1F6 IL-IRrp2 Unknown Unknown Unknown
37 IL1F7 Il-18Ra Unknown for human Protective (correlates with Expressed in colon cancer cells
IBD, antagonist for DSS breakdown of intestinal
colitis barrier)
368 I1F8 IL-IRrp2 Unknown Unknown Unknown
36y IL1F9 ILIRrp2 Unknown Unknown Unknown
I-38 IL1F10 |L=IRrp2 Unknown Unknown Unknown
33 IL1F11 ST2 uc Protective Possible support of tumor formation and

progression
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potential contributions of other IL-1 family members, such as IL-
36, IL-36Ra, IL-37, and IL-38, in chronic intestinal inflammation
and gut health, the evolving literature regarding the role of IL-
33, the most recently described IL-1 family member is, at present,
ambiguous and may reflect yet another example of an innate-
type cytokine that possesses multiple functions depending on
the immunological status and genetic susceptibility of the host.
Although one of the first observations of IL-33-dependent func-
tions in the gut was potent epithelial proliferation and mucus
production (26), suggesting the promotion of mucosal repair and
healing, dysregulated or uncontrolled IL-33 production may also
lead to more pathogenic features characteristic of IBD, including
epithelial barrier dysfunction, chronic, relapsing inflammation,
and formation of fibrotic lesions (27, 28).

In the present review, we will comprehensively evaluate the role
of IL-1 family members and their associated ligands in modulat-
ing mucosal homeostasis and chronic inflammation within the

GI tract, as well as touch on the potential contribution of these
important receptor-ligand pairings to GI tumorigenesis and can-
cer. Moreover, we speculate about the potential implications of the
opposing functions of IL-1 family members for treating chronic
intestinal inflammation and inflammation-associated colorectal
cancer (CRC), as well as in designing more efficacious strategies for
the prevention and treatment of these devastating GI pathologies.

PATHOGENIC ROLE OF CLASSIC IL-1 FAMILY MEMBERS IN
CHRONIC INTESTINAL INFLAMMATION AND
INFLAMMATION-ASSOCIATED CRC

PATHOGENIC EFFECTS OF IL-1c, IL-18, AND IL-1RA DURING CHRONIC
INTESTINAL INFLAMMATION

IL-1a and IL-1P (IL-1F1 and F2, respectively) are derived from
different genes, but are functionally similar, and both bind to the
IL-1R type I (IL-1RI) (Figure 1). This is followed by recruitment
of the co-receptor chain, IL-1R accessory protein (IL-1RAcP), and
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FIGURE 1 | Receptor-ligand pairing of IL-1 family members. Productive
pairings of ligand, binding receptor, and accessory protein for the I1-1
(upper left), I-18/1L-37 (upper right), 1l-33 (lower left), and 11-36/1L-38 (lower
right) systems. The overall bioactivity of Il=1 family agonists is dependent
on the prevalent isoform and receptor binding domain/accessory protein
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present on effector cells. Promiscuous receptor/co-receptor binding of
agonists and antagonists imply that IL=1 family members cannot be
considered in isolation, but in the context of other IL=1 family members
that can influence their overall integrative effects and impact on disease
pathogenesis.
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areceptor complex is formed. The IL-1R complex can then recruit
the adaptor protein, MyD88, to the TIR domain, after which sev-
eral kinases are phosphorylated, NF-kB translocates to the nucleus,
and the transcription of several inflammatory genes takes place
(Figure 2). Although they exhibit similar biological activities, IL-
la and IL-1P differ in the manner in which they are processed and
secreted. IL-1a is localized in the cytosol or cell membrane and
is believed to regulate the intracellular environment (29), but can
also be secreted into the extracellular compartment and serve as
a soluble mediator (30). In contrast, IL-1p is first cleaved to its
mature active form and then secreted extracellularly. Patients with
infectious or inflammatory conditions exhibit elevated plasma
concentrations of IL-1p but not IL-1a, suggesting a systemic role
for IL-1B (30). With the sole exception of IL-1 receptor antagonist
(IL-1Ra), each member of the IL-1 family is first synthesized as a
precursor molecule without a clear signal peptide for processing
and secretion. IL-1a, similar to the newest member of the IL-1
family, IL-33, has the ability to bind its precursor form to IL-1Rs
and trigger signal transduction. Moreover, both IL-1f and IL-33
are also considered “dual-function” cytokines in that, in addition to
binding to their respective cell surface receptors, their intracellular
precursor forms have the ability to translocate to the nucleus and
can influence subsequent downstream transcription (31, 32). In
general, the nuclear function of IL-1a or IL-33 is transcription of

pro-inflammatory genes. In contrast, the precursor forms of IL-1§
and IL-18 do not bind to their respective receptors, are not active,
requiring cleavage by either intracellular caspase-1 or extracellular
neutrophilic proteases (6).

The biologic effects of IL-1 are regulated by naturally produced
inhibitors, including IL-1Ra (IL-1F3), that binds to the IL-1RI
and is specific for preventing the activity of IL-la and IL-1f,
without possessing any agonist function (6, 33). In addition, bind-
ing to the IL-1 receptor type II (IL-1RII), expressed mostly on
macrophages, neutrophils, and B cells, does not result in produc-
tive signaling due to the lack of a cytoplasmic domain, for which
docking of MyD88 cannot take place. IL-1RII binds IL-1f with
a greater affinity than IL-1RI and works as a decoy receptor by
sequestering IL-1B, thereby operating as a functional IL-1 antago-
nist. Because IL-1RACP is recruited to the IL-1RII-IL-1B complex,
the decoy receptor also serves to sequester the accessory receptor
from participating in IL-1 signaling through IL-1RI (6). Finally,
an additional tactic that IL-1Rs use to regulate the activity of IL-1
is by proteolytic cleavage of their extracellular domains. Shedding
of IL-1RII results is the soluble form of IL-1RII (sIL-1RII) that
has an increased affinity for IL-1p compared to IL-1a and IL-1Ra
(34-38), thereby contributing to the antagonism of IL-1 by pref-
erentially neutralizing IL-1p’s bioactivity. In addition, an alternate
form of IL-1RACP also exists that consists of only its extracellular
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FIGURE 2 | Common signaling pathway for Toll/IL-1R (TIR) family I-:36. The TIR domain is essential for recruitment of cytoplasmic adapter
members. TLRs possess significant homology to Il-1R family members and proteins, which in turn initiates downstream signaling cascades. PAMPS,
share a similar cytoplasmic TIR domain with receptors of IL:-1, IL:18, 1L-33, and pathogen-associated molecular patterns.
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domain; this soluble IL-1RAcP has the ability to associate with
ligand-bound sIL-1RII, which results in an increased affinity of
binding to both IL-1a and B, further establishing sIL-1RII as a
potent inhibitor of IL-1 (39). Conversely, similar to its membrane
bound form, sIL-1RI retains that ability to bind IL-1a and IL-1Ra
with greater affinity than IL-1f, and can therefore be regarded as
promoting a pro-inflammatory phenotype by sequestering IL-1Ra
and limiting its anti-inflammatory effects on IL-1RI-bearing tar-
get cells, and by facilitating free IL-1f to bind to cell surface IL-1RI
to promote pro-inflammatory immune responses (36, 38, 40, 41).
Therefore, from a clinical perspective, the balance between IL-1
agonists, antagonists, and the amount of surface as well as soluble
IL-1Rs affect the overall degree and severity of inflammation in
several diseases, including IBD.

Gut mucosal inflammation is characterized by infiltration of
neutrophils and mononuclear cells, which upon activation, are
important sources of cytokines and other inflammatory media-
tors. IL-1a and IL-1P play key roles in intestinal inflammation,
as they are produced early and induce the production of many
other cytokines, amplifying their pro-inflammatory action (6). A
marked increase in IL-1 production by isolated lamina propria
mononuclear cells (LPMCs), most prominently from tissue histi-
ocytes or macrophages, and by intestinal mucosal tissues has been
reported in patients with active IBD by several groups (13, 42—44).
Furthermore, tissue levels of IL-1 also closely correlate with the
degree of observed mucosal inflammation and necrosis (9).

One of the earliest bodies of work dissecting the role of IL-
1 in experimental colitis was performed using a rabbit immune
complex-mediated model that possesses some features of UC (9,
12, 45, 46). Results from theses studies have provided insight
into the bi-directional effects of an innate-type cytokine (i.e.,
IL-1). In this model, both IL-1a and IL-1P are increased in the
inflamed intestinal tissues and display pro-inflammatory proper-
ties, as neutralization by either endogenous or exogenous IL-1Ra
administration resulted in significant amelioration of colitis (12,
45, 46). Despite these findings, administration of recombinant
IL-1P had a similar beneficial effect, indicating that IL-1f is nec-
essary for mucosal protection and maintenance of homeostasis
in this model (9). In fact, the currently accepted paradigm is
that an imbalance of pro- and anti-inflammatory mediators, as
exemplified by the IL-1/IL-1Ra system, is a key mechanism in the
pathogenesis of IBD (47).

Interleukin-1 receptor antagonist, primarily produced by
intestinal epithelial cells (IECs) and LPMCs within the gut mucosa
(48), regulates the bioactivity of IL-1 and a marked decrease in
the mucosal IL-1Ra/IL-1 ratio was found in both CD and UC
patients when compared to control subjects (13). In this study,
the IL-1Ra/IL-1 ratio correlated closely with the clinical sever-
ity of disease and was specific for IBD since this trend was not
observed in patients with self-limiting colitis. Although the pre-
cise mechanism(s) as to why this imbalance occurs in IBD is not
specifically known, several groups have reported an association
between carriage of the IL-1RN allele 2 (IL-1RN*2) of the IL-1Ra
variable number of tandem repeats (VNTR) polymorphism and
low production of IL-1Ra, as well as increased severity of disease
in UC patients of several ethnic backgrounds (49-51). Finally, as
indicated earlier, the expression and presence of cell surface and

soluble IL-1Rs can affect the severity and overall disease pheno-
type that manifests in patients with IBD. In a study that surveyed
circulating plasma and colonic tissue levels of IL-1a, IL-18,IL-1Ra,
sIL-1RI, and sIL-1RII from IBD patients and controls, it was found
that sIL-1RI served as a systemic biomarker of disease activity in
CD patients, while local shedding of the functional antagonist,
sIL-1RII, was associated with decreased colonic inflammation in
CD, but not in UC, patients (52).

Taken together, the pathogenesis of chronic intestinal inflam-
mation is characterized by a robust elevation of IL-1 family mem-
bers promoting agonist activity, including IL- 1o and IL-18, whose
primary source are LPMCs of myeloid lineage. A recent study,
however, also provides evidence that during acute experimental
colitis, IL-1a is potently produced by the intestinal epithelium
(53). At the same time, production of IEC- and LP macrophage-
derived IL-1Ra is not adequate to overcome the overwhelming
pro-inflammatory effects of IL-1, resulting in perpetuation of
chronic intestinal inflammation. This deficit in IL-1Ra can be due
to carriage of a genetic polymorphism that infers low production,
particularly in UC patients. Aside from IL-1 ligands, another facet
of overall IL-1 biology to consider in a disease setting is the contri-
bution of IL-1Rs. Within the gut mucosa, almost all cell types have
the ability to respond to IL-1ligands and express IL-1RT and II. The
ability of these cells to shed soluble forms of IL-1Rs have indicated
that sIL-1RI plasma levels may serve as a biomarker for disease
activity and local sIL-1RII is associated with decreased colonic
inflammation, specifically in CD patients. To date, however, a com-
prehensive study as to the precise distribution of IL-1Rs, including
their co-receptors, their cellular sources, and potential trigger(s)
to induce shedding during chronic intestinal inflammation, has
not been performed. The results derived from these studies would
provide critical information regarding the precise contribution of
different IL-1R-bearing gut mucosal cell types during the course
of disease, as well as aid in the design of more effective therapies
to restore the IL-1/IL-1Ra imbalance (Figure 3).

PATHOGENIC EFFECTS OF IL-1c, IL-18, AND IL-1RA IN GI-RELATED
CANCERS

In addition to their contribution to chronic intestinal inflamma-
tion, IL-1 has also been implicated in tumorigenesis and tumor
progression in the GI tract. Cancer cells can directly produce IL-1
or can induce cells within the tumor microenvironment to do so
(54).1IL-1B is upregulated in colon cancer, and patients with IL-1f-
producing tumors generally possess a bad prognosis (55-57). The
expression patterns of IL-1, in general, vary since it is expressed
in either an autocrine or paracrine fashion (58). Co-culture stud-
ies on human melanocytic cells showed that IL-1a and IL-1 B
exhibit autocrine behavior by stimulating tumor cells themselves
to invade and proliferate, or exert paracrine effects on stromal cells
in the microenvironment. The exact mechanism(s) by which IL-1
promotes tumor growth remain unclear, although it is believed to
act primarily in an indirect fashion. In human colon cancer lines,
IL-1 induces expression of metastatic genes, such as matrix met-
alloproteinases (MMPs), and stimulates nearby cells to produce
angiogenic proteins and growth factors (59), including vascular
endothelial growth factor (VEGF), IL-8, IL-6, tumor necrosis fac-
tor (TNF), and transforming growth factor (TGF)B (30, 60-62).
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Further studies in IL-1 transgenic mice demonstrate the necessity
of IL-1 in tumor growth, metastasis, and angiogenesis (62, 63).
Sawai et al. (64) evaluated the role of IL-1 in metastatic and non-
metastatic human pancreatic cancer cell lines and showed that
metastatic lines demonstrate increased IL-1RI expression com-
pared to non-metastatic cell lines, and exposure to IL-1a results in
increased a6- and Pl-integrin subunit expression, whereas IL-1a
exposure to non-metastatic lines has no effect. Additionally, IL-1a
induces adhesion and invasion into laminin in human metastatic
cell lines, but not in non-metastatic cell lines. This study high-
lights the importance of IL-1a for invasiveness and angiogenic
properties in vitro, and confirms that only those cancer cell lines
that show highly metastatic properties express IL-1a. mRNA (65).
These findings have also been confirmed for colon and gastric can-
cers. Human colon cancer-derived IL-1a induces angiogenesis by
its action upon the microenvironment, and thereby contributes
to metastasis (66). Along this same line, a significant correlation
between IL-1a expression and metastasis in human gastric carci-
nomas has also been established (67, 68). Moreover, increased IL-1
production by gastric epithelial cells leads to gastric inflammation
and the development of gastric dysplasia and cancer, as demon-
strated in IL-1 transgenic mice (69). In fact, the administration of
IL-1Ra has been proposed as a therapeutic regimen for different
neoplasias (63).

Similar to IL-1, several lines of evidence point to the involve-
ment of the another IL-1 family co-receptor member, single Ig
IL-1R related molecule (SIGIRR), also known as Toll/IL-1R 8
(TIR8), in colitis-associated cancer in mice (70). SIGIRR/TIR8

is an orphan receptor that inhibits signaling from IL-1R/TLR
complexes, possibly by trapping IL-1R-associated kinase (IRAK)-1
and TNFR-associated factor (TRAF)6 (71, 72), and is character-
ized by the presence of a single immunoglobulin domain in its
extracellular region, a conserved TIR domain, and a 95-amino-
acid long tail with inhibitory properties (73, 74) (Figure 1).
SIGIRR/TIR8 is expressed in several tissues, especially in the diges-
tive tract, and cell-type expression is particularly high in epithelial
cells (74, 75). SIGIRR/TIR8 functions as a negative regulator
for LPS and IL-1 signaling through its interaction with TLR4
and the IL-1R complex (76). Accordingly, there is evidence for
anon-redundant regulatory role of this molecule in inflammation
within the GI mucosa (75). Tir8 deficient mice exhibit dramatic
intestinal inflammation (colitis) in response to dextran sodium
sulfate (DSS) administration in regard to weight loss, intestinal
bleeding, and mortality, and show increased susceptibility to car-
cinogenesis in response to azoxymethane (AOM)/DSS administra-
tion (70). This increased susceptibility to colitis-associated cancer
in Tir8 deficient mice is linked to increased permeability and
local production of prostaglandin E2 (PGE2), pro-inflammatory
cytokines, and chemokines. In fact, colonic epithelial cells from
Tir8 deficient mice display commensal bacteria-dependent home-
ostatic defects, as shown by constitutive upregulation of pro-
inflammatory genes, and increased inflammatory and tumorigenic
responses to DSS and AOM/DSS challenge, respectively (77).
As such, gut epithelial-specific expression of the Tir8 transgene
reduces colonic epithelial cell survival, abrogates the hypersen-
sitivity of Tir8 KO mice to DSS-induced colitis, and reduces
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AOM/DSS-induced tumorigenesis (77). These findings have been
confirmed in Apc™™ ( mice, a spontaneous ileal polyposis model.
Introduction of Tir8 deficiency into the Apc™™( mice leads to
increased loss of heterozygosity of Apc and colonic microade-
noma formation. Importantly, the increased tumorigenesis in
Apc™™ (/Tir8~'~ mice is dependent on the presence of the com-
mensal flora, underscoring the role of dysregulated commensal
bacteria-TLR signaling in colonic tumor initiation (78).

The impact of the relationship between the gut microbiota
and IL-1 family members on colitis-driven CRC also involves
the inflammasome. Inflammasomes comprise, in essence, a multi-
protein platform for the activation of inflammatory caspases, of
which caspase-1 appears to play adominant role (79). They include
a sensor protein, an adaptor protein [apoptosis-associated speck-
like protein (ASC) containing a caspase activation and recruitment
domain (CARD)], and an inflammatory caspase. Sensor pro-
teins belong to two families of proteins: the nucleotide-binding
oligomerization domain (NOD)-like receptor (NLR) family and
the pyrin and hemopoietic expression, interferon-inducibility,
nuclear localization (HIN) domain-containing protein (PYHIN)
family. Tight control of caspase-1 activation by inflammasomes, in
particular of NOD-like receptor family pyrin domain-containing
3 (NLRP3, also referred to as Nalp3, CIAS1, or Cryopyrin), is crit-
ical since the processing and release of IL-18 and IL-18, as well as a
subset of leaderless proteins that facilitate tissue repair, are directly
regulated by caspase-1 (80). Homotypic interactions between the
pyrin domain in the N-terminus of NLRP3 and the bipartite
adaptor protein ASC (encoded by Pycard) bridge the association
of caspase-1 to NLRP3 in the inflammasome. Mice lacking the
inflammasome adaptor protein ASC and caspase-1 demonstrate
increased disease outcome, morbidity, histopathology, and polyp
formation in the AOM/DSS model of CRC (81). The increased
tumor burden correlates with attenuated levels of IL-1f and IL-
18 at the tumor site. In particular, leucine-rich-repeat-containing
NiIrp3~/~ mice show an increase in acute and recurring coli-
tis and colitis-associated cancer, although the disease outcome
is less severe in Nlrp3~/~ mice than in Pycard~'~ or Caspl™'~
animals. No significant differences have been found in disease
progression or outcome in NLR family CARD domain-containing
protein 4 (Nlrc4)™/~ mice compared to similarly treated wild-
type (WT) animals. Bone marrow reconstitution experiments
show that Nirp3 gene expression and function in hematopoietic
cells, rather than IECs or stromal cells, is responsible for pro-
tection against increased tumorigenesis (81). These data suggest
that the inflammasome functions as an attenuator of colitis and
colitis-driven CRC. Taken together, the imbalance of IL-1 agonists
with IL-1 antagonists and their associated receptors/co-receptors
within the GI tract may not be limited to promoting inflammatory
processes, but may also be important in tumorigenesis and tumor
progression (Figure 4). Re-establishing this balance may represent
a new therapeutic target in the treatment of GI-related cancers.

IL-18 IN CHRONIC INTESTINAL INFLAMMATION

IL-18 (IL-1F4) was initially characterized as a novel IFNy-inducing
factor in mice infected with Propionibacterium acnes and sub-
sequently challenged with a sublethal dose of LPS; as such, this
factor was originally coined IFNy inducing factor or IGIF (82).

FIGURE 4 | Role of IL-1 family members in colon cancer. Similar to
chronic intestinal inflammation characteristic of IBD, an imbalance between
protective and pathogenic Il=1 family members is also an important
mechanism leading to intestinal tumorigenesis and the development of
Gl-related cancers. In fact, ILl-1 cytokines play an important role in
sustaining tumor growth by stimulating growth factor production and
modulating host immune responses against tumor cells. While the roles of
classic Il=1 family members, such as Il-1 and Il:18, have been firmly
established, only speculation can be made on other, newer IL-1 family
members, such as 11-:33, 11-36, and IL-37.

After cloning, IL-18 was shown to induce IFNY in the presence of
a mitogen or IL-2, and these effects were shown to be indepen-
dent of IL-12 (83). IL-18 is widely expressed throughout various
organ systems in the body and in cells of both hematopoietic and
non-hematopoietic cell lineages (e.g., macrophages, dendritic cells,
Kupffer cells, keratinocytes, osteoblasts, adrenal cortex cells, IECs,
microglial cells, and synovial fibroblasts) (14, 84-90). Within the
gut mucosa, IL-18 is primarily produced by IECs, tissue histiocytes
(or macrophages), and dendritic cells (14, 15, 91). IL-18 exerts its
biological effects through binding to the IL-18R complex, which is
a heterodimer consisting of an a chain (IL-18Ra or IL-1R related
protein 1,IL-1Rrp1), that is responsible for extracellular binding of
IL-18, and a non-binding, signal-transducing § chain (IL-18Rf or
Accessory Protein Like, AcPL) (Figure 1). Both chains are members
of the IL-1R family and are required for functional IL-18 signal-
ing, that similar to IL-1, occurs through MyD88/IRAK, leading
to the downstream activation of NF-kB (92-95) (Figure 2). The
IL-18R complex is expressed on a variety of cell types, including
T- and B-lymphocytes, macrophages, neutrophils, natural killer
cells, endothelial cells, and smooth muscle cells (96-99). It can be
upregulated on naive T cells, Thl cells, and B cells by IL-12 (93,
100). In contrast, T cell receptor ligation in the presence of IL-4
results in downregulation of the IL-18R complex (101). Although
initially described as a Thl polarizing cytokine, IL-18 has been
shown to be a pleiotropic cytokine that can mediate both Th1-
and Th2-driven immune responses (102, 103).
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An additional family member that affects the overall bioactivity
of IL-18 is the IL-18 binding protein (IL-18BP), a naturally occur-
ring, soluble protein that effectively inhibits IL-18 by preventing
its interaction with the endogenous receptor (Figure 1) (104). The
human IL-18BP gene encodes at least four distinct isoforms (IL-
18BPa-d), which are derived by alternative splicing (105). IL-18BP
isoforms a and ¢ neutralize the biological activity of IL-18, whereas
b and d do not (106). The high affinity of IL-18 to the IL-18BP has
a significant impact on its overall bioactivity and clinical relevance
during disease states as ligand passing of IL-18 from the IL-18BP to
its cell-bound receptor does not occur due to this unusually tight
binding (104, 106, 107). Thus, the IL-18/IL-18BP system possesses
several biological activities that underscore the potential for IL-18
to serve as a key mediator in the pathogenesis of several chronic
inflammatory disorders, including IBD.

Our group and others were the first to report that IL-18 is
upregulated in patients with IBD, particularly in CD (14, 15). IL-
18 is present in the serum of CD patients, and bioactive IL-18
expression along with IL-18-induced cytokines are increased in
mucosal biopsies of patients with IBD compared to controls, in
involved vs. non-involved lesions, and in chronic advanced com-
pared to early asymptomatic disease (14, 15, 91). Interestingly,
immunohistochemistry (IHC) studies of colonic tissues derived
from IBD patients and controls reveal a distinct pattern of IL-18
expression that may uncover potential IL-18-dependent mecha-
nisms involved in maintaining gut health and in the pathogenesis
of chronic intestinal inflammation (14) (Figure 3). In these stud-
ies, a dramatic shift in IL-18 expression is observed within the gut
mucosa of CD patients as inflammation became more severe. In
non-involved areas, IL-18 is immunolocalized almost exclusively
to the epithelium, similar to that found in uninflamed tissues from
the resected healthy margins of colon cancer patients. As disease
severity increases, IL-18 expression switches from the epithelium
to the lamina propria, specifically in cells morphologically consis-
tent with tissue histiocytes/macrophages, wherein the most severe
cases lack epithelial-derived IL-18. This trend appears to be spe-
cific for CD as IL-18 expression in UC patients is limited to the
epithelium, independent of disease severity (14).

The IL-18 BP is also differentially expressed in intestinal tissues
from IBD patients. Intestinal endothelial cells and macrophages
are the major source of IL-18BP in the submucosa, and in CD,
an increased number of IL-18BP-expressing macrophages and
endothelial cells, specifically isoforms a, ¢, and d, has been detected
(105). The presence of IL-18BP in CD lesions suggests neutraliza-
tion of IL-18 activity, unless patients with active CD preferentially
undergo differential splicing to produce more of the inactive iso-
forms (b and d) than the a and ¢ bioactive isoforms. These patients
would then have a reduced ability to regulate IL-18 activity dur-
ing the course of the disease. In fact, free IL-18 is still observed
in specimens from active CD and highlights the complexity of
regulating bioactivity of IL-18. The importance of the IL-18BP in
regulating IL-18 has also been reported in pediatric IBD patients,
particularly in CD (108). IL-18BP does not sequester all free IL-18,
which is increased not only local gut tissues, but also in the serum
of children with active CD.

Although the majority of studies characterizing IL-18 and IL-
18BP in IBD have been mostly descriptive in nature, they have laid

the foundation that underscores the importance of the balance
between IL-18 and IL-18BP in gut health and the pathogene-
sis of chronic intestinal inflammation, particularly in patients
with CD. Similar to assessing global IL-1 bioactivity, expression
of the IL-18R/co-receptor system on effector target cells should
also be considered when evaluating the overall biological effects of
IL-18. To date, a comprehensive study has not been performed
to measure IL-18Rs and/or co-receptors in either CD or UC
patients. However, polymorphisms in the IL-18 accessory pro-
tein (IL-18RACcP/IL-18RAcPL/IL-18Rp),as well as IL-18, have been
linked to IBD susceptibility (109-111). In fact, IL-18 expression is
reportedly altered by a number of polymorphisms including three
single-nucleotide polymorphisms (SNPs) in the IL-18 promoter at
positions -137, -607, and -656, relative to the transcriptional start
site (112). Transcription analysis of the first two polymorphisms
showed that they cause altered transcription factor binding and
gene expression (112). Similarly, SNP rs917997 correlates with
altered expression of IL-18Rf and is strongly associated with IBD
and celiac disease (111, 113).

Animal models of IBD have provided a critical tool to mecha-
nistically determine the potential role of IL-18 during the patho-
genesis of colitis (120). Initial studies, in fact, support a pathogenic
role for IL-18. In mice with either 2,4,6-trinitrobenzene sulfonic
acid (TNBS)- or DSS-induced colitis, intestinal IL-18 levels of both
macrophage and epithelial cell origin were found to be markedly
elevated (114, 115). IL-18 expression, in co-operation with IL-12,
leads to the expansion of Th1 CD4™ T cells (116) and production
of the prototypic Thl cytokines, IFN(, and TNF (117). Further
evidence that IL-18 plays an important role in the chronic phase
of intestinal inflammation was demonstrated using a T-cell depen-
dent adoptive transfer model, wherein local administration of
an adenovirus expressing anti-sense IL-18 mRNA had the abil-
ity to effectively treat colitis in recipient SCID mice (118). In fact,
neutralization or targeted gene deletion of IL-18 results in amelio-
ration of both chemically- and immunologically-mediated colitis
(117-120), which may occur through a mechanism wherein local
TNF production is dampened (114). Moreover, transgenic over-
expression of IL-18 is associated with exacerbated colitis, which
displays a marked infiltration of mucosal macrophages (121).
The cellular re-distribution of IL-18, from IECs to gut mucosal
macrophages, may be responsible for the pro-inflammatory role
that IL-18 appears to play during chronic inflammatory responses
within the gut mucosa. Using the SAMP1/YitFc (SAMP) model of
spontaneous CD-like ileitis (122), our group previously reported
that the mouse IL-18 gene is located within an interval on chro-
mosome 9 that confers genetic susceptibility to disease in these
mice (123). Similar to human CD, SAMP mice display a dramatic
shift in the cellular source of IL-18 as disease becomes more severe,
from IECs to LPMCs (124). The temporal and spatial expression
of IL-18, in regard to the cellular source, as well as the presence or
absence of specific IL-18R bearing cells, may explain the observed
differential effects of IL-18 during the innate, early phases, vs.
the later, chronic stages, of IBD. Together, these data indicate that
IL-18 represents a central mediator in the pathogenesis of intesti-
nal inflammation and is able to play very different roles during
the inflammatory process depending on the host’s inflammatory
state. As such, therapeutic strategies to alter IL-18 bioactivity need
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to be carefully addressed to determine the appropriate dose (low
vs. high) and most beneficial time (early vs. late) to neutral-
ize endogenously produced IL-18 during chronic inflammatory
diseases, including IBD (Figure 3).

IL-18 IN INFLAMMATION-ASSOCIATED GI-RELATED CANCERS

Aside from its established role in mucosal innate and adaptive
immunity within the GI tract, IL-18 has also been identified as
a mediator that both promotes and suppresses the process of
oncogenesis (Figure 4). Although discussed in detail later in this
review, IL-18’s protective effects include the ability to induce cell
death and tumor regression through NK cell activation (125).
In experimental cancer models, IL-18 expression in tumor cells
has been shown to enhance both specific and non-specific anti-
tumor immune responses (126, 127). On the other hand, IL-18
mRNA expression and serum levels correlate with the develop-
ment and progression of gastric cancers (128), and may be associ-
ated with esophageal carcinoma. IL-18 upregulates expression of
VEGEF (129) and thrombospondin (130), suggesting its effective-
ness in promoting angiogenesis. IL-18 also promotes metastasis
by inducing cell adhesion molecules (131) and MMPs (132), while
facilitating immune evasion by increasing the expression of Fas
ligand on tumor cells (133). Similar to IBD, polymorphisms in the
IL-18 promoter region are also strongly associated to GI-related
cancers. In particular the rs917997 genotype appears to correlate
with patient risk of reflux progressing to Barrett’s and esopha-
gus adenocarcinoma (134, 135). IL-18 promoter polymorphisms
are also associated with an increased risk for the development of
gastric and colorectal cancers (136, 137).

PROTECTIVE ROLE OF CLASSIC IL-1 FAMILY MEMBERS IN
MAINTAINING INTESTINAL HOMEOSTASIS AND GUT
HEALTH

PROTECTIVE EFFECTS OF IL-1c, IL-1B, AND IL-1RA

As previously mentioned, initial studies using a rabbit model of
colitis revealed the potential dual role of IL-1 as a classic pro-
inflammatory cytokine (12, 46, 138) as well as a mediator that has
beneficial effects, particularly the IL-1f isoform, promoting gut
mucosal protection (45). Interestingly, protection by IL-18 is only
achieved with administration of low dose IL-1f, and only when
given 24 h, but not 30 min, before the induction of colitis. Such
protective effects of low dose IL-1 have also been shown in other
disease models, such as arthritis (139) and sepsis (140). Similarly,
in a mouse model of DSS-induced colitis, neutralization of IL-
1 activity during the acute phase of disease was associated with
exacerbated severity of inflammation and delayed recovery from
injury (23). No effect was observed during the chronic stage of
colitis, suggesting that IL-1 may have opposing effects during the
progression of colitis by inferring protection during early, acute
inflammation, but exerting more pro-inflammatory functions in
later stages during the chronic phase of disease (Figure 3).

An alternative hypothesis to support the dichotomous role of
IL-1 in IBD is that IL-1a and IL-1B possess opposing roles dur-
ing the progression of chronic intestinal inflammation. In support
of this concept, a recent study by Bersudsky et al. demonstrates
that the precursor form of IL-1a, derived primarily from damaged
IECs following DSS-induced colitis, can act as a classic alarmin

by initiating and sustaining colitis, while IL-1a¢ KO mice show
little disease with increased recovery (53). Conversely, myeloid
cell-derived IL-1p in the same colitic model induces the restitution
and repair of IECs and improves gut barrier function during the
recovery phase of acute inflammation. Furthermore, while specific
blockade of IL-1a leads to amelioration of colitis, administration
of IL-1Ra or anti-IL-1f antibodies do not effectively treat DSS
colitis (53). Taken together, understanding the potential opposing
roles of IL-1 agonists, such as IL-1a and IL-1f, during the initia-
tion and progression of chronic intestinal inflammation, will shed
further light on precise therapeutic modalities that will lead to
more efficacious treatment of patients with IBD (Figure 3).

IL-18-DEPENDENT PROTECTION DURING INTESTINAL INFLAMMATION
Based on more recent studies, results point to the possibility of IL-
18 possessing dichotomous roles during the progression of IBD,
which may be related to phase of disease, as well as the cellular
sources of both ligand and receptors/co-receptors (25). In fact, at
the onset, or initiation of intestinal inflammation, IL-18 derived
from IECs may exert a protective role, facilitating tissue repair and
promoting mechanisms to induce homeostasis. In support of this
concept is the observation that IL-18 and IL-18R KO mice are more
susceptible to acute DSS colitis than their WT littermates (141).
In addition, epithelial-derived IL-18 is critical for the protection
from DSS colitis conferred by NLR-mediated signaling, as shown
in studies utilizing mice deficient in Nlrp3 (142).

In fact, similar to IL-1, emerging evidence highlights the con-
trol of IL-18 activation and the overall regulation of intestinal
mucosal immune responses exerted by the inflammasome (80).
As mentioned earlier, tight regulation of caspase-1 activation by
inflammasomes is critical since the processing and release of IL-1§
and IL-18 are directly regulated by caspase-1 (80). IL-18 is upreg-
ulated at the site of inflammation in DSS-exposed WT, but not
in Nlrp3~/=, Pycard~'~, and Casp1~/~, mice (142). Nlrp3, Asc
and Caspase-1/11 KO mice are also hyper-sensitive to acute DSS
colitis, with low colonic IL-18 levels associated with disease sus-
ceptibility, while administration of exogenous IL-18 ameliorates
colitis severity (142). Nevertheless, Bauer et al. (143) demonstrated
that Nlrp3 KO mice are protected from DSS-induced colitis, sug-
gesting that DSS itself may activate the NLRP3 inflammasome.
These results support that concept that different inflammasomes
may exert differential and redundant effects on the develop-
ment and progression of inflammation that may be additive or
divergent, resulting in a hierarchical combinatorial net effect on
intestinal inflammation (144). Thus, activation of a particular
inflammasome in hematopoietic cells, such as dendritic cells and
macrophages, may result in local release of IL-1f and/or IL-18
that induces inflammatory changes, such as secretion of IFNy,
while IL-18 secretion from IECs, through a different inflamma-
some, may play a local role in tissue regeneration and wound
mucosal healing in response to injury. Such differential and cell-
specific contributions of inflammasome signaling remain to be
demonstrated experimentally. Moreover, inflammasomes are able
to induce pyroptosis in damaged or infected IECs, which may affect
tissue regeneration and consequently, the level of microbial influx
into the LP and its effects on the severity of colitis (80). These
effects may be induced by different inflammasomes and introduce

www.frontiersin.org

July 2013 | Volume 4 | Article 181 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive

Lopetuso et al.

IL=1 family in the gut

a complex net effect based on temporal and microanatomical vari-
ations. However, mutations in the inflammasome pathway may
also affect colitis differently, depending on the composition of the
commensal microbiota that is present in the host since the inflam-
masome is a critical regulator of colonic microbial ecology (145).
This observation also underscores the role of the commensal flora
in intestinal immune homeostasis and further demonstrates the
complexity of the gut mucosal immune system.

PROTECTIVE ROLE OF IL-18 IN GI TUMORIGENESIS

In contrast to its established, pathogenic role in tumorigenesis,
IL-18 has been shown to represent a key protective cytokine
in the development of inflammation-associated CRC using the
AOM/DSS-induced model of colitis-associated cancer (146). An
association between chronic inflammation and tumor develop-
ment and progression is well established and as such, it is not
surprising that a cytokine that has protective properties against
inflammation can also reduce tumorigenesis associated with
chronic inflammation. In fact, IL-18 and IL-18R KO mice are
known to be highly susceptible to both DSS-induced colitis and
colorectal tumorigenesis (147). In addition, MyD88 KO mice,
which are defective in both IL-18 and IL-18 production, exhibit
increased colonic epithelial proliferation, damage and colorec-
tal tumorigenesis (147). Furthermore, administration of exoge-
nous IL-18 can alleviate the severity of colitis and colitis-induced
tumorigenesis in caspase-1/11 and Nlrp3 KO mice (148). In con-
trast, ILIR KO mice show equal numbers of colorectal tumors in
the CRC AOM/DSS model, highlighting the unique and essential
role of IL-18 during intestinal tumor progression (148). As such,
and taking into consideration the previous discussion regard-
ing IL-18’s pathogenic role in CRC, the contribution of IL-18 in
tumorigenesis and the development of intestinal-specific cancer
is clearly dichotomous. However, based on the current data, it
appears that, similar to the role of IL-1 family members in intesti-
nal inflammation, IL-18 primarily infers protection during early
events leading to the development of GI cancers, including epithe-
lial repair processes (147) and anti-tumor immune responses (126,
127), while during later stages, IL-18 supports events sustaining
tumor growth [e.g., angiogenesis (129) and metastasis (130)].

IL-37

IL-37 (IL-1F7) was first identified in 2000 and is one of the most
recently characterized members of IL-1 family (149). In general,
IL-37 has been shown to have potent anti-inflammatory properties
and there is currently intense interest in elucidating its precise role
in chronic intestinal inflammation and inflammation-associated
CRC. Its relationship to IL-18 is that it binds to IL-18Ra, but
unlike IL-18, it does not bind to the IL-18RP subunit or the
accessory protein, IL-1RAcP (150-152) (Figures 1 and 2). Data,
however, specifically investigating IL-37b, which is the most abun-
dant form of IL-37 and the most studied, its binding to IL-18Ra,
and whether IL-37 represents a competitive antagonist for IL-
18 and its functions, remains unclear. An alternative hypothesis
is that the IL-37b/IL-18Ra complex uses an accessory protein,
such as SIGIRR/TIR8 (153), thereby activating a yet unknown
anti-inflammatory pathway (Figure 1). It has also been suggested
that IL-37 may bind weakly to the IL-18BP and render the IL-18Rf
useless for IL-18 by co-receptor competition (152) (Figure 1).

In addition, recent studies have shown that the mature form of
IL-37b may also translocate to the nucleus, similar to IL-1a and
IL-33, and possess a regulatory role in gene transcription (154).
At present, five splice variants (IL-37a-f) have been identified in
humans; however, none of these variants are present in mice. Splice
varianta, b,and care expressed in lymph nodes, thymus, bone mar-
row, lung, testis, placenta uterus, skin, and colon; in addition, these
variants are expressed in variety of immune cells, such as NK cells,
monocytes, and stimulated B cells, while isoforms d and e are only
expressed in testis and bone marrow (155). As mentioned earlier,
IL-37b is the most abundant isoform and, relevant to the present
review, is expressed in the cytoplasm of plasma cells in epithelial
crypts, in the lamina propria of normal colon, and in the stroma
of colon carcinomas. As with other IL-1 family members, IL-37 is
synthesized as a precursor molecule that is cleaved by caspase-1 to
its mature form (151).

In regard to its role in the pathogenesis of chronic intesti-
nal inflammation and inflammation-associated CRC, very lit-
tle has been reported at present (Table 1). In vitro studies on
macrophages and epithelial cells overexpressing IL-37b, as well
as in vivo experiments in transgenic mice overexpressing human
IL-37b, show reduced DC activation and decreased production
of pro-inflammatory and Th1/Th17 cytokines, including IL-1B,
IL-6, IFNy, and IL-17 following LPS stimulation. In vivo stud-
ies suggest that these effects may be mediated through the Smad3
pathway (156). In addition, IL-37b-tg mice exposed to DSS further
upregulate IL-37b expression after epithelial injury and display a
significant reduction in the severity of colitis compared to WT
controls (16). IL-37 is also expressed in the colorectal carcinoma
cell line, CCL-247, and in the stroma of colon cancer tumors,
wherein IHC revealed intense staining in plasma cells of both nor-
mal and diseased colon, suggesting a potential role of IL-37 in
antibody production, B-cell activation, and in colon tumorigene-
sis (151). Therefore, while initial reports indicate that IL-37 may
play an anti-inflammatory role in acute colitis (Figure 3), further
studies are warranted to elucidate the precise role in both chronic
intestinal inflammation as well as inflammation-associated CRC
(Figure 4).

DICHOTOMOUS ROLE OF IL-33, THE NEWEST MEMBER OF
THE IL-1 FAMILY, IN INTESTINAL INFLAMMATION AND
MUCOSAL WOUND HEALING

IL-33, also known as IL-1F11, is a protein with dual function
that can act both as signaling cytokine as well as an intracel-
lular nuclear factor (157) (Table 1). In the GI tract, IL-33 is
primarily expressed in non-hematopoietic cells, including fibrob-
lasts, adipocytes, smooth muscle cells, endothelial cells, and IECs
(26, 158, 159), but is also present in cells of hematopoietic ori-
gin, particularly in restricted populations of professional anti-
gen presenting cells, such as macrophages and DCs (26). IL-33
exerts its biological effects through binding to its receptor, IL-
1 receptor-like 1 (IL1RL1), also known as ST2 (26, 28), and in
the presence of IL-33, ST2 pairs with its co-receptor, IL-1RACP,
and signals through mitogen-activated protein kinase (MAPK)-
and NF-kB-dependent pathways (26, 160) (Figure 2). Similar to
IL-18Ra, the co-receptor SIGIRR/TIR8 can also dimerize with
ST2 and likely acts as a negative regulator of the IL-33/ST2
signaling pathway, ultimately reducing IL-33’s biological effects
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(161) (Figure 1). To date, a very limited amount of information is
available regarding the biologic and pathophysiologic relevance of
IL-33 isoforms/splice variants, ST2 splice variants, and alternative
ST2/SIGIRR signaling.

IL-33 IN MAINTAINING GUT HOMEOSTASIS

In regard to its role in the GI tract, emerging evidence suggests that
IL-33 plays a critical role in maintaining normal gut homeostasis.
IL-33 enhances mucosal defenses against intestinal parasites and
bacteria, as described for Toxoplasma gondii (162), Pseudomonas
aeruginosa (163), and Leptospira (164) infection, indicating a pri-
mary role in mucosal protection. In addition, one of the earliest
observations regarding the biological activity of IL-33 was its abil-
ity to promote epithelial proliferation and mucus production (26),
which are obvious functions involved in epithelial restitution and
repair, as well as overall mucosal wound healing and protection.
Similar to IL-1a, increasing evidence also indicates that IL-33 can
function as a prototypic “alarmin,” passively released upon cel-
lular damage, stress, or necrosis, and able to serve as a danger
signal/alarmin to alert the immune system of a local threat, such
as trauma or infection (159, 165-167). In this setting, IL-33 has
the ability to signal local, innate immune responses in an effort to
mount an effective, physiological inflammatory reaction in order
to restore normal gut homeostasis.

IL-33 has also been shown to activate mast cells, which are dis-
tributed throughout barrier tissues, such as the skin and mucosa,
including the intraepithelial space of the intestine. Mast cells are
classically considered important late-stage effector cells during
Th2-associated immune responses, such as host responses against
parasitic helminths in mucosal tissues (168). However, recent
studies show that mast cells are able to initiate and orchestrate
type 2 immunity against helminth infection through the regula-
tion of tissue-derived cytokines. In fact, mast cell-deficient mouse
strains and mice treated with the mast cell stabilizing agent, cro-
molyn sodium, show dramatically reduced Th2 priming and type
2 cytokine production and harbor an increased burden of para-
sites following infection with the GI helminthes, Heligmosomoides
polygyrus bakeri and Trichuris muris. In addition, early production
of the tissue-derived cytokines IL-25, IL-33, and thymic stromal
lymphopoietin (TSLP), is significantly diminished in mast cell-
deficient mice. Finally, repair of mast cell deficiency increases
production of IL-25, IL-33, and TSLP, restores progenitor cell
number and Th2 priming, and reduces intestinal parasite bur-
den. These data reveal the important link between IL-33 and an
innate IgE-independent role for mast cells in orchestrating type 2
immune responses. Mast cell degranulation, which is crucial for
the activation of dendritic cells and recruitment of neutrophils
and T cells to the site of infection (169—171), is also needed for the
enhanced expression and production of the tissue-derived IL-25,
IL-33, and TSLP, which are required for the optimal orchestra-
tion and priming of type 2 immunity (172, 173) and are obvious,
apparent events important in intestinal mucosal protection against
infection.

IL-33/ST2 AXIS IN IBD

In regard to chronic intestinal inflammation, it is now well estab-
lished, and confirmed by several groups, that increased IL-33
expression is associated with IBD when compared to healthy

controls, particularly in UC patients (17-20). In addition, a poten-
tial genetic predisposition to dysregulated IL-33/ST2 function may
exist as a recent study describes the novel observation of associ-
ation between the rs3939286 IL-33 polymorphism and IBD, and
between the ILIRL1 rs13015714 and CD, in a well-characterized
Italian cohort of adult and early onset IBD patients (155). The
distribution of IL-33 expression in the gut mucosa is primarily
localized to non-hematopoietic cells, particularly IECs (17, 18, 20)
and myofibroblasts (19). In addition, ex vivo studies on isolated
intestinal mucosal cell populations and immunolocalization on
full-thickness intestinal tissues show that IL-33 is also expressed
by a wide variety of cell types (17, 19, 22), such as fibroblasts,
smooth muscle cells, endothelial cells (26, 174), and adipocytes
(17,158).Inactive UC,IL-33 islocalized to, and potently expressed
by, IECs, as well as infiltrating LPMCs, belonging to the mono-
cyte/macrophage and B-cell lineages (17-19). It has also been
originally reported by Kobori et al. (19), and later confirmed
(22), that IL-33 is expressed in activated subepithelial myofibrob-
lasts (SEMFs) situated below ulcerative lesions in UC, but not in
CD, patients supporting a potential functional role for IL-33 in
ulcer/wound healing, which may be different in UC compared to
CD (Figure 3).

Similar to IL-33, its receptor, ST2, is also increased in the intesti-
nal mucosa of IBD patients (17, 18). Importantly, the intestinal tis-
sue expression pattern of ST2 is different in healthy mucosa com-
pared to that found in chronically inflamed IBD patients, wherein
ST2 is abundantly expressed in macroscopically non-inflamed
colon epithelium, while during chronic inflammatory processes
characterizing either UC or CD, its expression is lost/decreased
and redistributed (28). This epithelial-derived tissue expression
for ST2 appears to be IBD-specific since non-specific colitis (e.g.,
diverticulitis and infectious colitis) do not present with this same
expression pattern (17). Taken together, considering the potential
role of IL-33 in promoting mucosal protection, as well as its tissue
distribution in IBD, it is tempting to speculate that the primary role
for IL-33 is, in fact, to induce epithelial restitution and repair and
mucosal healing (27). In addition, further analysis has shown that
the ST2 variant for which expression is altered in the epithelium
of IBD patients is ST2L, IL-33’s signaling transmembrane recep-
tor (18, 28). As such, it is possible that impaired epithelial ST2L
expression, specifically in IBD patients, may represent an inher-
ent epithelial defect or a negative feedback response to chronic
exposure of elevated IL-33 concentrations. One cannot rule out,
however, that IL-33 may have pathogenic, as opposed to protec-
tive, effects by indirectly damaging or disrupting epithelial barrier
function through, for example, recruitment of neutrophils and
eosinophils, as well as consider its effects in mounting potent Th2,
Th17,and potentiate Th1, immune responses that can amplify and
sustain chronic intestinal inflammation. In fact, the dichotomous
role of IL-33 has been best characterized in the intestine, where
it can possess both protective and pro-inflammatory functions,
depending upon the immunological status of the host and/or the
type and phase of the ongoing inflammatory process (21, 28).

ROLE OF IL-33 IN EXPERIMENTAL MODELS OF ACUTE COLITIS

Interestingly, investigation into the role of IL-33 in the
development of intestinal inflammation using an acute model
of DSS colitis has generated mixed results, and likely reflects the
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dichotomous roles of IL-33 in both inducing inflammation as
well as promoting epithelial restitution/repair and mucosal heal-
ing. In fact, DSS administration to IL-33 deficient mice results in
less severe colitis than in WT controls, with decreased granulo-
cyte infiltration (175), while exogenous administration of IL-33 to
DSS-treated mice further aggravates colitis and induces the influx
of neutrophils (176), suggesting a pathogenic role of IL-33, at least
in an acute inflammatory setting. Although it is unclear as to what
factor(s) precisely regulate IL-33 in the gut, it has recently been
shown that severe colonic inflammation with a marked increase
in IL-33-producing macrophages results after DSS administration
to mice expressing a truncated form of the receptor for TGFB,
supporting a pathogenic function for IL-33 during acute colitis
and indicate a direct effect of TGFB on macrophages to limit IL-33
expression (177). Imaeda et al. also reported an exacerbation of
DSS-induced colitis upon treatment with IL-33, hypothesized to
occur by IL-33-dependent induction of pathogenic Th2 cytokines;
although in the same mice, IL-33 restores goblet cells that were
found to be depleted in IL-33-untreated mice (178). In addition,
during the recovery phase of DSS-induced colitis, while weight
recovery is markedly delayed in IL-33 deficient mice, no signifi-
cant difference in colonic inflammation is observed between these
mice and WT littermates (175). The authors propose that in this
particular model, IL-33 plays an important role in driving acute,
innate immune responses, but is dispensable in the maintenance
of chronic intestinal inflammation. Alternatively, the possibility
exists that the delayed weight recovery observed in IL-33 deficient
mice, but not in WT littermates, is due to the lack of IL-33-driven
epithelial regeneration and restoration of barrier function leading
to a dampened ability for mucosal healing.

In fact, as opposed to their results obtained from IL-33 treat-
ment in acute DSS colitis, Grof et al. showed that IL-33 adminis-
tration during repeated, chronic cycling of DSS causes a reduction
of colitis, suppresses IFNy, and decreases bacterial translocation
(176), supporting a protective role of IL-33 that the authors sug-
gest may occur by switching from Thl- to Th2-driven immune
responses. These results are supported by a recent study using
the TNBS-induced model of colitis (179). Although the afore-
mentioned study utilized an acute, 4-day protocol, exogenous
administration of IL-33 was shown to ameliorate TNBS-induced
colitis and induce the production of Th2-type cytokines (179).
In addition, the protective effect of IL-33 was diminished after
depletion of T-regulatory cells (Tregs). The authors propose that,
mechanistically, IL-33 has an indirect effect on the development
of Foxp3™ Tyegs by increasing the expression of epithelial-derived
TSLP and retinoic acid, which promotes the activation of CD103*
DCs (180) and leads to the induction of Foxp3™ Treg develop-
ment (181). The ultimate IL-33-induced expansion of Foxp3™
Thegs facilitates the observed decrease in the severity of colitis.

ROLE OF IL-33 IN EXPERIMENTAL CHRONIC INTESTINAL
INFLAMMATION

In SAMP mice, IL-33 expression patterns in the gut mucosa and
within the systemic circulation of IBD patients were confirmed
(17). IL-33 gut mucosal tissue levels in SAMP mice progressively
increase over time and demonstrate a positive correlation with
ileal inflammation, with epithelial cells exclusively expressing full-
length IL-33 (17). Although the precise, mechanistic role of IL-33

has not yet been addressed in the SAMP model, preliminary studies
blocking IL-33 signaling by administration of an antibody against
ST2 indicate a pathogenic role during the chronic phase of disease
development (182, 183). In fact, neutralization of IL-33 inter-
feres with the massive influx of eosinophils into the gut mucosa
(183) and potently decreases fibrosis and fibrogenic gene expres-
sion (182), characteristic of SAMP mice. Interestingly, although
blockade of IL-33 has a significant effect on decreasing the overall
severity of ileal inflammation in SAMP mice, the magnitude of
this reduction is approximately 30%, which may reflect a need for
optimizing treatment dosage or alternatively, represents an oppos-
ing effect of interfering with epithelial repair and mucosal healing.
Investigation is further warranted to study the role of IL-33 during
the early, acute phase of SAMP ileitis, as well as the specific role of
epithelial-derived IL-33 and IL-33’s direct effects on the intestinal
epithelium.

IL-33 AND ST2 IN INTESTINAL FIBROSIS

Although the role of IL-33 has not yet been fully investigated in the
pathogenesis of intestinal fibrosis, several lines of evidence indi-
cate that the IL-33/ST2 axis may represent an important mediator
in this process. Within the gut mucosa, SEMFs have been reported
as a primary source of IL-33, specifically in UC patients where
they are situated below ulcerative mucosal lesions (19, 22). In
fact, Sponheim et al. observed that a prominent feature of IBD-
associated IL-33 expression is the accumulation of both fibroblasts
and myofibroblasts in ulcerations of UC lesions (22). Although,
the association and localization of IL-33-producing SEMFs with
mucosal ulcerations suggests an important role in wound healing,
one cannot rule out its potential role in gut-associated fibrosis,
particularly in the setting of cycling of chronic tissue damage and
repair, characteristic of IBD. Taken together, there is clear evidence
of the IL-33/ST2 axis in maintaining normal gut homeostasis, par-
ticularly in promoting mucosal wound healing and repair. When
dysregulated, this important ligand-binding pair can also play
a critical role in the progression of chronic inflammation and
fibrosis, leading to such GI-related disorders as IBD.

EMERGING ROLE OF THE IL-33/ST2 AXIS IN GI-RELATED CANCERS

Finally, based on the established role of IL-1 family members in
Gl-related cancers, the possibility exists that IL-33 can likewise
play an important role in GI-associated tumor formation. In fact,
a recent study has reported elevated IL-33 levels in the serum of
gastric cancer patients that correlates with several poor prognos-
tic factors, including depth of invasion, distant metastasis, and
advanced stage, but not with the classic tumor markers, CEA and
CA 19-9 (184). Of note, however, no significant difference in IL-
33 expression was found between four gastric cancer cell lines and
the normal gastric cell line, GES-1, which may indicate that IL-33
expression can either be modulated by local environmental fac-
tors and/or produced by other cells responding to gastric cancer
epithelial cells. As such, the initial observation of increased, cir-
culating IL-33 levels in gastric cancer patients may be related to
the progression of the cancer. In addition, based on IL-33’s ability
to shift host immune responses to a Th2 phenotype, downregula-
tion of tumor-specific immune responses can occur by inhibiting
tumor antigen presentation (185, 186). From this point of view, IL-
33 may represent one of the effective weapons tumor cells utilize
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in order to create an ideal environment to obtain, and maintain,
optimal growth conditions, further supporting the role of the IL-
33/ST2 axis in tumor formation and the progression of cancer
(Figure 4).

POTENTIAL CONTRIBUTION(S) OF THE IL-36-RELATED CYTOKINES IN
GUT HEALTH AND DISEASE

In the last two decades, human genome sequence analysis has
helped to identify new members of the IL-1 family. Three new
members IL-36a, B, and y, previously known as IL-1F6, IL-
1F8, and IL-1F9, respectively, have been shown to bind to a
heterodimeric receptor, IL-36R, also known as IL-1 receptor-
related protein 2 (IL-1Rrp2), in a manner similar to the binding
of IL-1a and IL-1f to IL-1RI. Consistent with the promiscu-
ous nature of IL-1 family members, the IL-36 complex then
recruits IL-1RAcP, thereby activating downstream NF-kB and
MAPK pathways (187, 188). Interestingly, IL-36 family members

also includes a receptor antagonist, IL-36Ra, similar to IL-1Ra, sug-
gesting significant homology between these two IL-1 subfamilies
(Figure 1).

At present, there are no known reports regarding the associa-
tion between IL-36 and chronic intestinal inflammation, including
IBD, as well as inflammation-associated CRC. Most of the pub-
lished studies concerning IL-36 and disease pathogenesis come
from either the psoriatic or pulmonary literature. In skin, all
three IL-36 agonist ligands are highly expressed in psoriatic skin
lesions (189-191). Johnston et al. has shown that TNF and IL-17
stimulation of human keratinocytes can induce IL-36, and IL-
36 can, in turn, stimulate production of anti-microbial pep-
tides and MMPs in human epidermal cells (192). Muhr et al.
confirmed these findings and demonstrated that IL-17 potently
induces greater amounts of IL-36 in keratinocytes obtained
from psoriatic patients compared to healthy controls (193). Oth-
ers have described increased expression of TNF and IL-6 in
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FIGURE 5 | Working hypothesis summarizing opposing functions of IL-1
family members within the gut mucosa. The balance between
pro-inflammatory and protective cytokines is crucial for the maintenance of
gut homeostasis. Damage to the epithelium (e.g., ulcer formation) and other
pro-inflammatory stimuli, including PAMPs derived from luminal antigens and
the local intestinal microflora, induce the expression of IL-1 family members
that are subsequently released by necrotic IECs as potential alarmins (e.g.,
I:33 and IL-1a). Depending on the cellular source and presence of
receptor-bearing effector cells, I-18 can possess very different functions
within the gut mucosa. I:33 may also act on various immune cell populations,
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EPITHELIAL
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including macrophages, and T- and B-cells, eliciting a pro-inflammatory
response and promoting Th2 immunity. Concomitantly, Il-33 can also induce
epithelial proliferation and repair, and overall wound healing by acting directly
or indirectly on IECs and SEMFs. Alternatively, chronic mucosal damage,
granulomatous inflammation, and dysregulated activation of mesenchymal
cells, such as SEMFs and fibroblasts, can lead to fibrosis and the formation of
intestinal fibrotic lesions. Therapeutic interventions should consider all of the
aforementioned processes and whether targeting specific I1L=1 family
members may be more efficacious during active disease vs. maintaining
remission.
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IL-36-stimulated keratinocytes, suggesting a mutual regulation
of these inflammatory mediators (194). Recent studies have also
supported an important role of IL-36y in various lung patholo-
gies. IL-36y expression is reported to be increased in mice after
allergen challenge, and intratracheal administration of IL-36y
leads to airway hyper-responsiveness, neutrophil accumulation
and pro-inflammatory cytokine production (195-197). In addi-
tion, IL-36 signaling promotes Th1 polarization of naive CD4* T
cells (198) and induction of Th17 immune response in lung disease
(196, 199). Finally, increased IL-360 expression was reported in
eosinophilic esophagitis, indicating a possible role of IL-36 in Th2-
type immune responses (200). Taken together, these data imply
an important pro-inflammatory role for IL-36 ligands in chronic
immune disorders, although it is unclear at present whether IL-
36 is prone to promoting Thl, Th2, and/or Th17 immunity
and whether, like other IL-1 family members, IL-36 may possess
dichotomous functions in the setting of health and disease states.
In addition to the three described IL-36 agonists, the IL-36Ra and
IL-38, previously known as IL-1F5 and IL-1F10, respectively, also
bind to the IL-36R; however, differently from IL-36a, §, and v,
IL-36Ra and IL-38 both serve as antagonists for the biological
activities of IL-36 (187, 188, 190, 201). Interestingly, IL-36Ra has
been shown to possess an anti-inflammatory effect localized to the
brain and mediated through a unique TIR8/SIGIRR-dependent
pathway (202).

On the basis of the limited availability of published data and
preliminary findings, IL-36 may potentially play an important role
in chronic inflammatory disorders, including IBD. Investigation
into the role of the IL-36 family of cytokines in chronic intesti-
nal inflammation and inflammation-associated CRC, in fact, is an
active area of research that may uncover further pathogenic mech-
anism(s) involved in GI-related pathologies and may provide the
foundation for IL-36 to serve as a potential therapeutic target in
the near future.

CONCLUSION

The present review provides evidence that members of the
IL-1 family of cytokines possess dichotomous, often opposing
functions in both the maintenance of normal gut homeosta-
sis and in the pathogenesis of chronic intestinal inflammation
and inflammation-associated CRC. We hypothesize that their
effects vary, depending on the phase of disease (early vs. late),
as well as the inflammatory state (acute vs. chronic) of the
host. In general, early activation of the intestinal epithelium
by pathogenic organisms and/or other noxious environmen-
tal antigens elicits the production of epithelial-derived IL-
1 family members, including intracellular (ic)IL-1Ra, IL-la,
IL-18, and IL-33. Epithelial disruption often occurs, facilitating
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