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The endothelial production of nitric oxide (NO) mediates endothelium-dependent vasore-
laxation and restrains vascular inflammation, smooth muscle cell proliferation, and platelet
aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and pro-
motes the development of cardiovascular disease. In endothelial cells, NO is generated by
endothelial nitric oxide synthase (eNOS) through the conversion of its substrate, l-arginine
to l-citrulline. Reduced access to l-arginine has been proposed as a major mechanism under-
lying reduced eNOS activity and NO production in cardiovascular disease. The arginases
(Arg1 and Arg2) metabolize l-arginine to generate l-ornithine and urea and increased expres-
sion of arginase has been proposed as a mechanism of reduced eNOS activity secondary
to the depletion of l-arginine. Indeed, supplemental l-arginine and suppression of arginase
activity has been shown to improve endothelium-dependent relaxation and ameliorate car-
diovascular disease. However, this simple relationship is complicated by observations that
l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthe-
sis. Accordingly, the subcellular compartmentalization of intracellular l-arginine into poorly
interchangeable pools has been proposed to allow for the local depletion of pools or pockets
of l-arginine. In agreement with this, there is considerable evidence supporting the impor-
tance of the subcellular localization of l-arginine metabolizing enzymes. In endothelial cells
in vitro and in vivo, eNOS is found in discrete intracellular locations and the capacity to gen-
erate NO is heavily influenced by its localization inside the cell. Arg1 and Arg2 also reside
in different subcellular environments and are thought to differentially influence endothe-
lial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling
enzyme, arginosuccinate lyase, co-localize with eNOS and facilitate NO release. Herein,
we highlight the importance of the subcellular location of eNOS and arginine transporting
and metabolizing enzymes to NO release and cardiovascular disease.

Keywords: eNOS, l-arginine, nitric, arginase, CAT-1, ASL, ASS, l-citrulline

ENDOTHELIAL DYSFUNCTION
The past three decades have provided unprecedented gains in our
understanding of vascular biology. It is now hard to conceive
of a time when the vascular endothelium was thought to be a
simple barrier, an inert layer of cells lining the lumen of blood
vessels. However this was the prevailing view prior to 1981 and the
world of vascular biology was irrevocably changed with Furch-
gott’s discovery of an ability of the endothelium to direct changes
in vasomotor function (1). In the time since, the depth and pace of
research to understand the myriad functions of the endothelium
has been remarkable. Not the least of these has been the discov-
ery of endothelial nitric oxide synthase (eNOS) (2–4), an enzyme
selectively expressed in the endothelial cells with the ability to
generate nitric oxide (NO) and thus regulate blood vessel tone
(5). Dysfunction of the vascular endothelium is considered to be
the harbinger of cardiovascular disease and precedes the develop-
ment of overt symptoms (6, 7). Given the importance of eNOS
and endogenous NO production to endothelial function, it is not

surprising that considerable effort has been focused on the mech-
anisms influencing eNOS activity in cardiovascular disease. The
primary enzymatic function of eNOS is to catalyze the NADPH-
dependent conversion of l-arginine into NO, a process shared by
the two other NOS isoforms (8). Once formed, NO has an expan-
sive array of cellular targets both locally in the endothelium to
influence inflammatory signaling, metabolism, exocytosis, prolif-
eration, motility, and survival, but also in adjacent cells such as
vascular smooth muscle cells to decrease vasomotor tone, prolif-
eration and migration, and in platelets to suppress aggregation
(9). Loss of these functions promotes increased inflammation,
thrombosis, high blood pressure, and vascular cell proliferation,
processes that are intimately involved in the development of
cardiovascular disease.

L-ARGININE
Because of the obligatory role of l-arginine in NO synthesis,
considerable attention has been focused on the importance of
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l-arginine availability in the vascular production of NO. Fuel-
ing this interest were early studies reporting that l-arginine could
directly stimulate EDRF/NO synthesis (10–12) and that compro-
mised endothelial function in cardiovascular disease states could
be improved by supplementation with l-arginine both in animals
(13–17), healthy humans (18) and those with high cholesterol
(19–21), cardiac transplantation (22), peripheral artery disease
(23), pulmonary hypertension (24), and angina (25). Consider-
able evidence pointed toward l-arginine deficiency being a major
rate limiting step in the synthesis of NO. However, the affinity
of eNOS for l-arginine is low (∼2–3 µM) (26) and the amount
of l-arginine in endothelial cells is hundreds of times higher
(∼840 µM) (27) suggesting that a substrate deficiency was an
unlikely unitary cause of eNOS dysfunction and that additional
mechanisms of dysfunction must exist.

SUBCELLULAR LOCALIZATION OF eNOS
The co-translational N -myristoylation (glycine 2) and post-
translational cysteine palmitoylation of eNOS (cysteines 15 and
26) enable membrane binding and the discrete subcellular target-
ing (28). In the endothelial cell, eNOS can be found predominantly
localized to the perinuclear Golgi (29) and microdomains of the
plasma membrane, including caveolae and lipid rafts (30, 31).
eNOS has also been reported in other compartments, such as
the mitochondria, the nucleus and the cytoskeleton (32, 33). The
importance of location to eNOS function and cellular NO release
was first demonstrated by mutations that prevent both myristoyla-
tion and palmitoylation resulting in an enzyme that is catalytically
competent in activity assays outside the cell, but exhibits dra-
matically reduced capacity to generate NO in intact cells (29).
Furthermore, the relative activity of eNOS varies depending on
its intracellular location with the highest activity observed from
eNOS at the plasma membrane, followed by outer membranes
of the cis-Golgi and very low activity in the cytosol, nucleus, and
mitochondria (32, 34, 35). Given the dramatic ability of subcellular
location to influence eNOS activity and NO release, it is not sur-
prising that compartmentalization has been proposed as a major
mechanism by which the local concentration of l-arginine can
influence NO release (36).

L-ARGININE TRANSPORTERS
The concentration of l-arginine in human plasma is ∼100–
200 µM (37) and higher concentrations, up to 840 µM (27) can be
found within the endothelial cell reflecting the existence of trans-
port processes. A number of distinct transmembrane transporters
exist on the plasma membrane of endothelial cells that mediate the
predominantly sodium independent import of l-arginine via y+
and y+l transporters. The major genes involved in y+ import are
CAT-1 (SLC7A1) and CAT-2 (SLC7A2), whereas for y+L import,
LAT1 (SLC7A7 and SLC3A2) and LAT2 (SLC7A6 and SLC3A2) are
required (36). The presence of CAT-1 in plasmalemma caveolae
and the ability of extracellular l-arginine to stimulate NO release
in cells with abundant l-arginine levels has led to the hypoth-
esis that l-arginine exists in poorly interchangeable subcellular
compartments and reaches eNOS in sufficient concentrations via
metabolite channeling (36). While there is suggestive data for the
existence of these pools (38), direct evidence and a mechanism for

l-arginine sequestration is lacking. A further wrinkle to this story
is that the cationic amino acid transporter, CAT-1 can stimulate
eNOS activity via direct binding rather than delivering abundant
l-arginine to its catalytic doorstep (39).

L-ARGININE RECYCLING
Endothelial cells can maintain their l-arginine levels despite the
continuous release of NO (40), suggesting the existence of mech-
anisms to recover substrate. Indeed, l-citrulline, the byproduct
of eNOS-dependent NO generation, can be converted back to l-
arginine via the sequential actions of arginosuccinate synthase
(ASS) and arginosuccinate lyase (ASL) (41). The co-localization
of ASS/ASL with eNOS in plasma membrane caveolae suggests
that l-arginine recycling from l-citrulline is a significant source
of NO (42, 43). The importance of this pathway is revealed by
impaired endothelium-dependent NO generation and increased
blood pressure in humans and mice with ASL deficiency (44).
Not only do ASL and ASS co-localize with eNOS, but they
have been shown to bind directly and regulate eNOS activ-
ity (44). A caveat to these studies is that only a fraction of
eNOS is present in plasma membrane caveolae and significant
amounts of eNOS can be found on endomembranes such as
the Golgi. It is not yet known if eNOS at the Golgi or other
organelles are regulated by arginine regulatory enzymes in the
same way as the plasma membrane/caveolae bound eNOS. l-
arginine can also be generated from the breakdown of pro-
teins via both proteosomal and lysosomal pathways, which lib-
erates l-arginine (45). The breakdown of proteins also liberates
asymmetric methylated arginines, monomethylarginine (MMA),
and asymmetric dimethylarginine (ADMA) which are potent
substrate inhibitors of eNOS activity. The methylation of pro-
teins is increased in cardiovascular disease, providing a source
for the increased levels of MMA and ADMA via proteolysis
(46). Methylated arginines are metabolized by the dimethylargi-
nine dimethylaminohydrolases (DDAH1 and DDAH2). DDAH is
found primarily in the cytosol (47) although there are reports
of expression in the mitochondria (47) and nucleus (48). Accu-
mulation of asymmetric methylated arginines results in a degree
of eNOS-inhibition that is proportional to the ratio of l-
arginine/methylated arginine. The inhibition of eNOS can be
relieved by supplementation with l-arginine leading to increased
production of NO and improvement of endothelial function
(49).

ARGINASES
Arginase I and Arginase II are homologous genes encoded by
different chromosomes that share the catalytic function of con-
verting l-arginine into urea and ornithine (50). A significant
difference between Arginase I and Arginase II is their distinct sub-
cellular distribution, with Arginase I detected predominantly in
the cytosol and Arginase II within the mitochondria (51, 52).
As enzymes that consume the substrate for eNOS, l-arginine,
the arginases have been proposed as endogenous antagonists of
eNOS. Increased expression and activity of Arginase I have been
implicated in numerous cardiovascular diseases including diabetic
retinopathy, asthma, coronary artery dysfunction during renovas-
cular hypertension, and sickle cell disease (53–57) and Arginase
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II has been shown to be specifically increased in retinopathy of
prematurity, human pulmonary arterial endothelial cells during
hypertension, atherosclerosis, and in diabetic renal injury (57–
60). Numerous studies have shown that increased expression of
arginase correlates with impaired NO synthesis and that inhi-
bition of arginase increases NO production (53, 61, 62). How-
ever, this seemingly simple relationship between eNOS and the
arginases is complicated by enzyme kinetics and l-arginine con-
centrations. The affinity of eNOS for arginine is relatively high
(K m = 3 µM), the affinity of arginase for l-arginine relatively low
(2 mM) and the concentrations of intracellular l-arginine (300–
800 µM) sufficient to support near maximal eNOS activity. Two
explanations have been proposed to explain the inhibitory actions
of arginase, one is the 1000-fold higher enzyme activity (V max)
and the other, the compartmentalization and regional deficiency
of l-arginine (63). Vascular dysfunction achieved through the
arginase-mediated depletion of l-arginine can be reversed with
l-arginine supplementation (64) but this also drives increased
arginase activity.

L-ARGININE SUPPLEMENTATION
The preceding evidence has emphasized the important role l-
arginine plays in the maintenance of endothelial and cardiovas-
cular function and is supported by studies showing that at least in
the short-term; l-arginine supplementation can increase endothe-
lial function and mitigate disease. However, more recent evidence
suggests that chronic long term supplementation offers little ben-
efit and may instead be harmful (65). The reasons for this are not
well understood and likely to be numerous. Chronic exposure to
high levels of NO can desensitize NO signaling, impair l-arginine
import and increase vascular lesions and mortality (66–69). In
contrast, inhibition of endogenous NO can increase sensitivity to
NO donors and collectively this suggests that there is pushback
when “pushing” NO signaling. Chronic supplementation with l-
arginine can also influence other pathways including the greater
activation of iNOS (70) which unlike eNOS, is primarily con-
strained by substrate availability, and the increased expression
and catalytic activity of the arginases due to their higher K m.
A consequence of increased arginase activity is the production of
ornithine and attendant elevation of l-proline and the polyamines
which can promote cell proliferation and maladaptive vascular
remodeling (71).

CONCLUSION
l-Arginine is a semi-essential amino acid with a number of
important roles in the endothelium including the ability to drive
NO production. The compartmentalization of arginine metab-
olizing and transporting enzymes has important ramifications
for endothelial function and cardiovascular health. l-arginine
transporters and recycling enzymes have been found in the same
intracellular location as eNOS, and some have been found to
directly bind eNOS. However, whether this proximity is necessary
for providing eNOS with ready access to l-arginine is question-
able. Catalytically inactive forms of ASL and substrate-inhibition
of CAT-1 do not prevent the ability of these enzymes/transporters
to stimulate NO release and this suggests they instead play a struc-
tural role in the activation of eNOS. The arginases, which compete
for and metabolize l-arginine, particularly when l-arginine is in
high abundance, do not reside in the same intracellular locations
as eNOS (and presumably do not physically associate) and thus are
unlikely to exclusively regulate l-arginine content in pools accessi-
ble to eNOS. Instead a more important role of the arginases may be
to generate l-proline and polyamines that can negatively impact
endothelial and vascular function. The accumulation of asym-
metric methylated arginines occurs at the major sites of protein
degradation, the proteasome and lysosome, and like the cytosolic
DDAH, they are not thought to be in close proximity to eNOS.
Frequently underappreciated is the important role eNOS subcel-
lular location has on NO release. Targeting eNOS to the plasma
membrane supports the highest levels of NO production followed
by the Golgi and the cytoplasm (35). Rendering eNOS insensi-
tive to calcium overrides the effects of intracellular location on
eNOS activity and suggests that local calcium and not l-arginine,
is the major determinant of efficient NO release (32, 72). While
compartmentalization may not be a critical mechanisms by which
l-arginine influences eNOS activity, its ability to increase NO
release is well documented. However, the failure of supplemen-
tal l-arginine to improve cardiovascular health may be considered
another lesson learned of why too much of a good thing can be
bad. Chronic high levels of NO can result in the refractoriness of
its targets to respond and is well documented in vascular smooth
muscle. Mechanisms that temporarily restrict eNOS activity such
as caveolin-1 or the location of eNOS on membranes of the Golgi
enable efficient production of NO in the right amount at the right
time for the right response.
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