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The intestine is exposed continuously to complex environments created by numerous
injurious and beneficial non-self antigens. The unique mucosal immune system in the
intestine maintains the immunologic homeostasis between the host and the external envi-
ronment. Crosstalk between immunocompetent cells and endogenous (e.g., cytokines and
chemokines) as well as exogenous factors (e.g., commensal bacteria and dietary materi-
als) achieves the vast diversity of intestinal immune functions. In addition to their vital
roles as nutrients, vitamins now also are known to have immunologically crucial func-
tions, specifically in regulating host immune responses. In this review, we focus on the
immunologic functions of vitamins in regulating intestinal immune responses and their
roles in moderating the fine balance between physiologic and pathologic conditions of the
intestine.
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INTRODUCTION
The primary physiologic function of intestine is to serve as the
chief site of nutrient absorption into the body. However, intestinal
tissues also comprise a unique immune system that can discrimi-
nate between pathogens and harmless or beneficial antigens such
as commensal microorganisms and dietary constituents (1). To
prevent unnecessary inflammatory responses and hypersensitivity
to harmless or beneficial materials, the intestinal immune system
usually becomes unresponsive to these factors through the induc-
tion of oral tolerance (2). At same time, the intestinal immune
system acts as the first line of defense against pathogens. For
the coordinated operation of this complex network, the intesti-
nal immune system is customized with cooperative immuno-
competent cells, including the specialized antigen-sampling M
cells; antigen-presenting cells [e.g., dendritic cells (DCs) and
macrophages]; IgA-producing plasma cells (PCs); polarized CD4+

T cells such as regulatory T (Treg), Th1, Th2, and Th17 cells; mast
cells; and innate lymphoid cells (1, 3, 4). Accumulating evidence
has demonstrated that the disruption of oral tolerance underlies
pathogenic conditions such as intestinal inflammation and food
allergy (5).

Coordination of the numerous diverse intestinal immunolog-
ical functions is achieved through the immunological crosstalk
among immunocompetent cells via endogenous molecules (e.g.,

cytokines and chemokines). In addition to these endogenous
factors, components of the gut environment, such as commensal
bacteria and dietary materials, influence intestinal immunological
functions. Recent advances in genetic identification have revealed
that commensal bacteria play an important role in the develop-
ment and maintenance of not only intestinal or mucosal immunity
but also the host immune system [reviewed in Ref. (6)]. Although
the underlying molecular and cellular mechanisms are not fully
understood, nutritional components derived from the diet, either
directly absorbed or metabolized or synthesized de novo by com-
mensal bacteria, clearly are essential and influential exogenous
factors for the development, maintenance, and regulation of the
intestinal immune system (7, 8). This idea is underscored by the
fact that nutrient deficiencies often are associated with impaired
intestinal immunity (9). For instance, a recent study shows that
angiotensin I converting enzyme 2 regulates intestinal amino acid
metabolism and consequently affects the ecology of commensal
bacteria, which leads to the transmittable colitis (10). Another
recent study has demonstrated that commensal bacteria from
kwashiorkor, a form of acute malnutrition that occurs by inad-
equate intake of dietary protein, perturb the metabolism of amino
acids and carbohydrates (11).

Vitamins are organic compounds that the host organism can-
not synthesize in sufficient quantities and that therefore need to
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be supplied exogenously by the diet or commensal bacteria. Some
vitamins (e.g., vitamin B family and vitamin C) are water-soluble,
whereas others (e.g., vitamins A, D, E, and K) are hydrophobic.
Both hydrophilic and hydrophobic vitamins and their metabo-
lites have diverse functions in many biologic events, including
immunologic regulation. Indeed, vitamin deficiency results in
high susceptibility to infection and immune diseases (12). Previ-
ously vitamins were thought to regulate the immune system in an
indiscriminant manner, but accumulating evidence has revealed
specific functions of individual vitamins and their metabolites in
immune responses.

In this review, we discuss recent progress regarding our under-
standing of the immunologic functions of particular vitamins
and their contributions toward maintaining the immunologic
balance between physiologic and pathologic conditions of the
intestine.

VITAMIN A REGULATES CELL TRAFFICKING AND
DIFFERENTIATION IN THE INTESTINE
Vitamin A, especially its metabolite retinoic acid (RA), has
emerged as a critical mediator of mucosal immune responses
[reviewed in Ref. (13)]. Vitamin A is a fat-soluble essential
micronutrient obtained from diets as all-trans-retinol, retinyl
esters, or β-carotene and is metabolized into retinol in tissues
(14). Retinol then is converted mainly to the all-trans isoform
of RA through oxidation by alcohol dehydrogenases (ADH) and
retinaldehyde dehydrogenases (RALDH) (Figure 1).

The importance of vitamin A in the regulation of intesti-
nal immunity has long been indicated. Indeed, vitamin A defi-
ciency leads to increased susceptibility to various pathogens and

FIGURE 1 | Regulation of cell trafficking, differentiation, and function
by the vitamin A metabolite retinoic acid. CD103+ dendritic cells (DCs)
express retinaldehyde dehydrogenases (RALDH) by GM-CSF, IL-4, TLR
ligand, and retinoic acid (RA), which enable them to convert vitamin A into
RA. RA then induces CCR9 and α4β7 integrin in T and B cells, causing them
to migrate into the intestine. In addition, retinoic acid affects cell
differentiation, such as the preferential differentiation of T cells into
regulatory T (Treg) cells and B cells into IgA-producing plasma cells (PCs). RA
also enhances IL-22 production from γδT cells and innate lymphoid cells.

vitamin A supplementation reduces the morbidity and mor-
tality due to infectious diseases (e.g., diarrheal infections and
measles) (15). During the past few years, our molecular and
cellular understanding of the roles of vitamin A in the regu-
lation of intestinal immunity has increased greatly. A key dis-
covery was that RA regulates cell trafficking by inducing the
expression of the gut-homing molecules α4β7 integrin and
chemokine receptor CCR9 on lymphocytes and thus determin-
ing the gut tropism of these cells (16, 17). Epithelial cells and
DCs, especially CD103+ DCs, in the intestine uniquely express
RALDH and thus are capable of synthesizing RA; therefore
the lymphocytes activated by intestinal DCs and epithelial cells
express α4β7 integrin and CCR9, which allow them to return
to the intestinal compartment (Figure 1). In agreement with
this understanding, vitamin-A-deficient mice lack T cells and
IgA-PCs in the intestine (16, 17). Several lines of evidence
have demonstrated that GM-CSF induces the RALDH expres-
sion in DCs and RA itself, IL-4, and MyD88-mediated toll-like
receptor pathway enhance the induction of RALDH expression
(Figure 1) (18, 19).

Retinoic acid plays an important role in determining not only
the gut tropism of lymphocytes activated in the intestine but also
cell differentiation. For example, through the cooperative effects
of TGF-β, RA promotes class switching of IgM+ B cells to those
expressing IgA (Figure 1). Therefore, antagonism of RA results
in reduced IgA production (17, 20). Another study demonstrated
that Runx proteins mediate effects downstream of RA and TGF-β1
signaling in IgA class switching (21).

In addition to the effects of RA on DCs and B cells, RA affects
T cell differentiation. Indeed, preferential differentiation of T cells
into Treg cells is mediated by CD103+ DCs that are capable of
producing RA and activating latent TGF-β (22–24). Reciprocally,
RA failed to enhance differentiation of naïve T cells into Th17
cells in the absence of DCs (25). In this regard, DCs in the intesti-
nal lamina propria of vitamin-A-deficient mice reportedly show
impaired production of IL-6, a cytokine that is essential in the
differentiation of Th17 cells (26) although there are controversial
reports on the production of IL-6 by MLN-DCs from vitamin-A-
deficient mice (27). On the other hand, RA–RA receptor α signal
in T cells requires T cell effector responses regardless T cell sub-
sets (26), which is in line with a previous report that Th17 cells
require a low concentration of RA (20). In agreement with these
functions of RA, vitamin-A-deficient mice have decreased num-
bers of both Treg and Th17 cells in the intestine mainly due to
the defect of T cell trafficking into the small intestine (25, 26,
28). In addition, segmented filamentous bacteria, Th17-inducing
commensal bacteria, is decreased in vitamin A-deficient condi-
tion by high levels of mucin by goblet cells, which also leads to
the impaired Th17 cell differentiation (29). Taken together, intrin-
sic and extrinsic factors for T cell differentiation are affected by
the RA.

In addition to conventional αβ T cells, a recent study has
demonstrated that RA enhanced IL-22 production by γδT cells
and innate lymphoid cells, which are involved in the attenuation of
intestinal inflammation (30). RA also affects non-lymphoid cells
in the lymph node initiation. Indeed, RA produced by neurons

Frontiers in Immunology | Mucosal Immunity July 2013 | Volume 4 | Article 189 | 2

http://www.frontiersin.org/Mucosal_Immunity
http://www.frontiersin.org/Mucosal_Immunity/archive


Kunisawa and Kiyono Vitamins modulate intestinal immunity

adjacent to the lymph node anlagen induced CXC13 expression in
stromal organizer cells and consequently led to the initial cluster-
ing of lymphoid tissue inducer cells (31). Therefore, RA has diverse
functions in the regulation of versatile immunological events
including cell trafficking, differentiation, cytokine production, and
lymphoid organogenesis.

The various roles of RA in the mucosal immune system, espe-
cially regulating cell trafficking into the intestine, enable us to con-
sider clinical applications of this metabolite. In general, parenteral
immunization fails to achieve efficient antigen-specific immune
responses in the intestine because it does not induce the neces-
sary gut-homing molecules for the migration of antigen-sensitized
immune cells into the intestine. A recent study demonstrated
that the addition of RA at the time of subcutaneous vaccina-
tion increased the accumulation of antigen-specific T cells and
IgA-producing PCs in the intestine and concurrently induced
protective immunity against intestinal pathogens (e.g., Salmo-
nella) (32). These findings suggest that exogenous RA treatment
might be used to stimulate the production of gut-migrating Treg

cells for the control of intestinal inflammation and allergy. Addi-
tional investigation into the immune functions of RA is war-
ranted to advance potential clinical applications of this vitamin
A metabolite.

MEMBERS OF THE VITAMIN B FAMILY CONTROL CELL
METABOLISM AND ACTS AS LIGANDS IN THE REGULATION
OF INTESTINAL IMMUNITY
Initially thought to be a single vitamin, vitamin B currently is
recognized as a family comprising eight different members. All
B vitamins are water-soluble, and they are involved in various
pathways of cell metabolism. Among the B vitamins, vitamin B6
is essential for metabolism of nucleic acids, amino acids, and
lipids and thus influences cell growth. Consequently, vitamin B6
deficiency leads to various impairments of immunity, such as
lymphoid atrophy and reduced numbers of lymphocytes (33);
conversely, vitamin B6 supplementation bolsters these weakened
immune responses (34). A previous study suggested the involve-
ment of the lipid mediator sphingosine 1-phosphate (S1P) in
vitamin-B6-mediated immune regulation. S1P has been shown
to regulate cell trafficking, especially cell egress from organized
lymphoid tissues in both systemic (e.g., thymus, bone marrow,
and lymph nodes) and mucosal (e.g., intestine) compartments
[reviewed in Refs. (35, 36)]. The cell trafficking is determined by
the S1P gradient that is achieved through the coordinated pro-
duction of S1P and its degradation, which is mediated by S1P
lyase and S1P phosphohydrolase (35). S1P lyase requires vita-
min B6 as a co-factor for the degradation of S1P (37), and the
administration of a vitamin B6 antagonist impair S1P lyase activ-
ity and thus create an inappropriate S1P gradient. These defects
lead to impaired trafficking of lymphocytes from lymphoid tis-
sues and consequently reduced numbers of lymphocytes in the
periphery (38, 39).

Like vitamin B6, vitamin B9 (that is, folate or folic acid) is
essential for nucleic acid and protein synthesis (40), and inade-
quate levels of vitamin B9 dramatically alter the immune response.
Previous studies suggested that vitamin B9 deficiency inhibits the

FIGURE 2 | Vitamin B9 is required for the survival of regulatoryT cells
and subsequent maintenance of immunologic homeostasis in the
intestine. Once naïve T cells differentiate into regulatory T (Treg) cells, they
express folate receptor 4 (FR4), and require vitamin B9 for their survival.
The absence of sufficient amounts of vitamin B9 induces the apoptosis of
Treg cells, with decreased expression of Bcl-2 and subsequent increased
intestinal inflammation.

activity of CD8+ T cells and NK cells; in turn, this inhibition is
associated with decreased resistance to infections (41).

Folate receptor 4, a vitamin B9 receptor, is highly expressed
on the surfaces of Treg cells (42), implying a specific function
of this vitamin in these cells. In particular, our recent study
revealed that vitamin B9 is crucial in the maintenance of Treg

cells (43). In the absence of vitamin B9, naïve T cells can differ-
entiate into Treg cells, but differentiated Treg cells fail to survive
owing to the decreased expression of anti-apoptotic molecules
(e.g., Bcl-2) (Figure 2). As a result, mice maintained on a vitamin-
B9-deficient diet have decreased numbers of intestinal Treg cells
(43). As a result, the impaired survival of Treg cells in these mice
leads to their increased susceptibility to intestinal inflammation
(Figure 2) (44).

A recent study demonstrated an additional function of the
vitamin B family in the control of immune responses via mucosa-
associated invariant T (MAIT) cells. MAIT cells are unconven-
tional T cells that express a semi-invariant αβ T cell receptor that is
restricted by the MHC class I-related molecule MR1; these cells are
mostly found in the intestine, liver, and lung (45). Because MAIT
cells can react rapidly to bacterial infections (e.g., Escherichia coli,
Klebsiella pneumoniae, and Mycoplasma tuberculosis), it was sup-
posed that the antigen presented to MR1 was bacteria-derived
molecules. However, a recent study clarified that, in fact, bacteri-
ally produced metabolites of vitamin B9 and vitamin B2 bound
to MR1 are presented as antigen to MAIT cells (46). Furthermore,
like vitamin B2 derivatives, the vitamin B9 metabolite 6-formyl
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FIGURE 3 | Vitamin D mediates innate and acquired immunity. The active
form of vitamin D, it metabolite 1,25-dihydroxyvitamin D, inhibits the
maturation of dendritic cells (DCs) and their production of IL-12 but
simultaneously promotes their production of IL-10. In addition, T cells respond

directly to 1,25-dihydroxyvitamin D for their preferential differentiation into Treg

cells. As a component of innate immunity, 1,25-dihydroxyvitamin D promotes
the production of anti-microbial peptides (AMP) by macrophages and Paneth
cells.

pterin binds to MR1 but, unlike vitamin B2 derivatives, fails to
activate MAIT cells (46). These findings suggest that, depending
on their metabolism by commensal bacteria and presentation by
MR1, members of the vitamin B family can act either as positive
or negative regulatory ligands for MAIT cells.

VITAMIN D IS AN INHIBITOR OF IMMUNE RESPONSES
In its typical role of maintaining optimal concentrations of serum
calcium, vitamin D is essential to a healthy mineralized skeleton
(47). In addition to its effects on calcium and bone metabolism,
vitamin D – especially its metabolite 1,25-dihydroxyvitamin D
[1,25(OH)2D] – is an important regulator of the immune sys-
tem, and its deficiency is linked to aberrant immune responses,
including intestinal inflammation (48). Regarding a possible
mechanism linking vitamin D and intestinal inflammation,
1,25(OH)2D may be important in the creation of an immunologic
regulatory or suppressor environment. For example, 1,25(OH)2D
inhibits the maturation of DCs and the production of their effec-
tor cytokine, IL-12, and simultaneously promotes the production
of their inhibitory cytokine, IL-10, thus regulating T cell func-
tion and development (Figure 3) (49). In addition, T cells directly
respond to 1,25(OH)2D, with preferential differentiation into Treg

cells (Figure 3) (50).
Furthermore, vitamin D enhances innate immunity (Figure 3).

More than 25 years have passed since the anti-microbial func-
tion of 1,25(OH)2D against Mycobacterium tuberculosis in human
monocytes was reported (51). Subsequent studies have revealed
the molecular and cellular mechanisms underlying this anti-
microbial activity. Once they are activated through Toll-like recep-
tors, macrophages–monocytes express CYP27B1, a key enzyme
in the synthesis of 1,25(OH)2D (52), and the vitamin D recep-
tor (VDR) (53). These changes lead to intracrine synthesis of
1,25(OH)2D, which enhances the gene expression mediated by vit-
amin D and the VDR axis. VDR-mediated genes include the anti-
microbial molecules cathelicidin (LL-37) and β-defensin 2 (54).
Similar 1,25(OH)2D-induced production of these anti-microbial
molecules occurs in epithelial cells (55) and Paneth cells (56). In

addition, 1,25(OH)2D stabilizes tight-junction structures between
epithelial cells in the intestinal tract (57). Together, these diverse
functions of vitamin D contribute to the creation of the first line
of defense against pathogens without the induction of aberrant
inflammatory responses.

CONCLUSION
Clinical evidence has long indicated that inadequate vitamin
intake disrupts host immunity, thus predisposing humans to
infectious and inflammatory diseases. Accumulating evidence
has revealed the molecular and cellular mechanisms underlying
myriad functions of vitamins in innate and acquired immune
responses. These findings clarify the beneficial roles of vitamins
in the maintenance of immunologic homeostasis and inform
the design of vitamin analogs as pharmacologic agents for the
generation and maintenance of a healthy immune condition. The
complex functions of vitamins in the regulation of the immune
system merit continued investigation, and these research efforts
likely will enable scientists to refine our understanding of the
mechanisms underlying the immunologic roles of various vit-
amins and to advance the development of vitamin-dependent
therapeutic agents for the control of infectious and immune
diseases.
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