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Chemokines and their cognate receptors have been identified as major factors initiating and
governing cell movement and interaction.These ligands and their receptors are expressed
on a wide variety of cells and act during steady-state migration as well as inflammatory
recruitment. CCR6 is a non-promiscuous chemokine receptor that has only one known
chemokine ligand, CCL20, and is present on B and T cells as well as dendritic cells (DCs).
Two CD4+ T cell populations with opposing functions present in the intestines and the
mesenteric lymph nodes express CCR6: the pro-inflammatory TH17 and regulatory Treg
cells. CCL20 is also present in the intestine and is strongly up-regulated after an inflam-
matory stimulus. Interestingly, this ligand is also expressed by TH17 cells, which opens up
the possibility of autocrine/paracrine signaling and, consequently, a self-perpetuating cycle
of recruitment, thereby promoting inflammation. Recently, CCR6 has been implicated in
inflammatory bowel disease (IBD) by genome wide association studies which showed an
association between SNPs in the genomic region of the CCR6 gene and the inflammation.
Furthermore, recent research targeting the biological function of CCR6 indicates a signif-
icant role for this chemokine receptor in the development of chronic IBD. It is therefore
possible that IBD is facilitated by a disordered regulation of TH17 and Treg cells due to
a disruption in the CCL20-CCR6 axis and consequently disturbed mucosal homeostasis.
This review will summarize the literature on CCL20-CCR6 in mucosal immunology and will
analyze the role this receptor-ligand axis has in chronic IBD.

Keywords: inflammatory bowel diseases,Th17 cells,Treg cells, CCR6, CCL20

CHEMOKINES: BIOCHEMISTRY AND FUNCTION
The chemokine family is a large collection of positively charged
small cytokines that have been shown to be important cues in
the chemotactic navigation of leukocytes to sites of inflamma-
tion (1, 2). In addition, they are recognized as molecules central
for the normal development of lymphoid tissues, immune cell
maturation/development, and immunological homeostasis (3).

Chemokines have a highly conserved, unique structure that
has allowed a comprehensive in silico detection of characteristic
patterns and a consistent classification in subfamilies (4). Four
conserved signature cysteine residues linked by one to three disul-
fide bonds typically characterize the molecules. Depending on the
position of two of the conserved cysteines near the N -terminus,
they are categorized as CC (Cysteine–Cysteine; cysteines adjacent
to each other) or CXC [cysteines separated by one non-conserved
amino acid (X)] chemokines. These subfamilies are also known
as β- and α-chemokines, respectively. Two further smaller classes
of chemokines termed C (γ−) and CX3C (δ−) chemokines exist
with only two and one members, respectively (4).

Chemokines are usually secreted from the cell after their syn-
thesis; but may become tethered to glycosaminoglycans (GAGs),

a family of sulfated polysaccharides which can be located in the
extracellular matrix or on the extracellular surface (5), or other
sulfated sugars to form a stable local chemokine gradient and sup-
port the binding of a cognate chemokine receptor. This form of
“haptotaxis,” the movement along stable, immobilized gradients,
has been described as the most likely physiological form (6) while
gradients relying on soluble chemokines can only be envisaged
as transient and short-lived in response to a local inflammatory
stimulus.

The classical chemokine receptor has seven hydrophobic trans-
membrane domains arranged as α-helices, an extracellular N -
terminus and intracellular C-terminus (7). After binding to the
cognate partner, signaling is transmitted by the G-proteins (8). Fol-
lowing ligand binding, the receptor is rapidly internalized, either
via clathrin-mediated or caveolae-dependent endocytosis, in a
process known as homologous desensitization, which protects the
cell from over-stimulation (9). In addition, chemokine receptors
are biochemically and functionally regulated by non-chemokine
ligands interacting with their own cognate receptors (e.g., opi-
oids/opioid receptors, vasoactive intestinal peptide, and its recep-
tors); a process known as heterologous desensitization (10, 11).

www.frontiersin.org July 2013 | Volume 4 | Article 194 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Mucosal_Immunity/10.3389/fimmu.2013.00194/abstract
http://www.frontiersin.org/Mucosal_Immunity/10.3389/fimmu.2013.00194/abstract
http://www.frontiersin.org/Mucosal_Immunity/10.3389/fimmu.2013.00194/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AdrianLee_2&UID=91491
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RAJARAMANERI&UID=58534
http://www.frontiersin.org/people/AlanLyons/100605
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=HeinrichKorner&UID=77529
mailto:heinrich.korner@utas.edu.au
http://www.frontiersin.org
http://www.frontiersin.org/Mucosal_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lee et al. CCR6 in intestinal immunology

Chemokine genes tend to be genomically clustered,with human
CXC chemokines located around chromosome 4q12–13 and CC
chemokines around chromosome 17q11.2. Each main grouping
tend to promiscuously share receptors of the same subtype (4).

THE CCL20-CCR6 AXIS
The cysteine–cysteine motif chemokine ligand 20 (CCL20) –
also known as liver- and activation-regulated chemokine (LARC),
macrophage inflammatory protein-3α (MIP-3α), and exodus-1 –
was discovered independently by three research groups using
bioinformatics techniques (12–14). The chemokine CCL20 is
encoded by the SCYA20 [small inducible cytokine family A (Cys–
Cys), member 20] gene (4). Unlike other CC chemokines, SCYA20
was localized to chromosome 2q33–q372 using a combination of
PCR analysis of single chromosome DNA hybrids, yeast artifi-
cial chromosome clones, and radiation hybrid mapping (4, 14).
The full length of human CCL20 cDNA contains 799 bp (4 exons
and 3 introns), encoding an open reading frame of 95 or 96 AA
(14–16). Since the putative cleavage site of this precursor protein
is between Ala-26 and Ala-27, the mature form is a polypeptide
with a length of 70 AA (14). Interestingly, two variants of CCL20
cDNA were detected in which the shorter, truncated isoform had
a deletion of three base pairs [one amino acid (Ala-27, GCA)] at
the N -terminus (15). As a result, the two forms, which probably
are the consequence of allelic polymorphism and use of different
splicing sites, have been termed the Ala-27 and Ser-27 forms of
CCL20. However, examination of the biological activity through
chemotaxis assays of both revealed only a negligible difference in
chemotactic profiles (15).

CCL20 is expressed in a variety of human tissues and by a
range of immune cells. Based primarily on early expression assays
utilizing Northern blots to detect CCL20 mRNA, constitutive
expression was ascertained to be predominantly in human organ-
associated lymphoid tissue (lungs, lymph nodes, appendix, etc.),
epithelial cells (including the intestines), and the liver; but surpris-
ingly, virtually non-existent in spleen or bone marrow (12, 14, 16,
17). The presence of CCL20 in these tissues where active sites of
inflammation and immune activation occur suggested that CCL20
was, to some extent, an inflammatory chemokine (12). Indeed,
inflammation-related cells which have been shown to secrete or
express CCL20 include endothelial cells (18, 19), neutrophils (20),
natural killer (NK) cells (21), TH17 cells (22), B cells (23), and a
variety of other immune cells [dendritic cells, DCs, Langerhan’s
cells (LCs), and macrophages] (13, 24).

THE COGNATE RECEPTOR OF CCL20: CCR6
As a unique feature among the CC chemokine family and consis-
tent with its location on chromosome 2, CCL20 has a sole known
receptor, CCR6 (25–27), and their interaction has been confirmed
when CCL20 was able to induce calcium mobilization in K562
cells transfected with CCR6; but not with any other chemokine
receptor CCR1–5 (27). In addition, 5 other CC chemokines tested
(CCL2–5 and CCL17) failed to bind to CCR6 (27).

Upon binding of CCL20 to CCR6, the receptor is inter-
nalized, exhibiting decreased cell surface expression of CCR6
on splenocytes and especially on B cells (18). The receptor is
found on a number of different immune cells, including CD34+

hematopoietic precursor-derived DCs (28), memory T cells (29),

and peripheral and memory B cells (18, 23, 30). Early investi-
gations into tissue expression were performed by Northern blot
analysis, revealing significant presence in human liver, appen-
dix, and lymph nodes, and minor presence in the thymus, testis,
and small intestine (27). CCR6 mRNA is up-regulated in T
cells by inflammatory stimuli (27). In B cells, it undergoes a
series of up- and down-regulation during B cell development
and activation (23, 31, 32). This suggests that CCR6 is involved
in both inflammatory and homeostatic roles in the immune
system (33).

CCL20 AND ITS RECEPTOR IN AN INFLAMMATORY
ENVIRONMENT
The up-regulation of CCL20 in inflammation has been docu-
mented well in the literature. Under experimental conditions, var-
ious cytokines (IL-1α, IL-β, IL-17, IL-21, IFN-γ, TNF-α) have been
found to induce CCL20 expression at various micro-anatomical
locations (34–36). In contrast, IL-4, IL-22, and IL-23 have been
reported to have a negligible inductive effect on CCL20 (34, 36)
and application of the anti-inflammatory cytokine IL-10 down-
regulates CCL20 expression (12) as does the addition of IFN-γ in
synoviocytes (36). By utilizing CCL20 promoter region luciferase-
reporter constructs transfected into HEK293T, Caco-2, and G-361
cell lines, researchers identified a NF-κB site upstream from the
transcription start site that was, at least in part, responsible for
the inflammatory responsiveness of CCL20 to TNF-α and IL-β
induction (37–39).

ROLE OF CCL20-CCR6 AXIS IN DEVELOPMENT OF THE
INTESTINAL IMMUNE SYSTEM
Northern blot analysis of CCL20 expression shows high constitu-
tive mRNA expression at mucosal sites such as the intestines, while
CCR6 mRNA is only expressed at low to moderate levels (27). In
a more detailed analysis of murine Peyer’s patches (PP), CCL20
mRNA was found to be concentrated in the overlying follicle asso-
ciated epithelium (FAE) whilst CCR6 mRNA could be detected
in the sub-epithelial dome (SED) on CD11b+CD11c+CD8a−

myeloid DCs (40). The latter expression was confirmed later
on protein level in a study using an eGFP-CCR6 knock-in
mouse strain (41). Furthermore, in the absence of CCR6, PP
were smaller than their WT counterparts, yet were unchanged
in absolute numbers and in proportions of lymphocytic sub-
populations (42). Interestingly, intraepithelial lymphocytes were
proportionally increased when compared to WT mice (42).

In a different study, a substantial expression of CCL20 was
detected in isolated lymphoid follicles (ILF) and a number of
developmental problems were noted in the intestinal lymphoid
tissues of CCR6-deficient mice such as smaller PP displaying a
reduced number of domes, and the absence of ILF (43). As a
consequence of these immunological deficiencies, CCR6−/− mice
show a diminished IgA response to rotavirus (33). Furthermore,
it has been shown that the absence of CCR6 reduced intestinal M
cell numbers (44, 45). Interestingly, because the bacteria Yersinia
enterocolitica utilize M cells to cross the intestinal lumen, CCR6-
deficient mice have increased resistance to this microorganism
compared to WT mice (46). Collectively, the above results point to
a role of the CCL20-CCR6 axis in structural and functional aspects
of the mucosal immune system of the intestines.
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DEFENSINS
A curious aspect of the CCL20-CCR6 axis in mucosal immu-
nity is the relationship between CCL20 and β-defensins, small
anti-microbial peptides found in epithelial tissue and at mucosal
surfaces after inflammatory stimulus such as TNF (47, 48). The
human polypeptide β-defensin (type 1 and 2) is able to bind to
CCR6 – potentially being capable of displacing CCL20 from its
receptor – and hence act as a chemoattractant for CCR6-bearing
immature DCs and various T cell subsets (49). This behavior
can be explained by the structural similarities between defensins
and CCL20. The two β-defensins each have a α-helix and three-
stranded β-sheets at their N -termini in an arrangement similar
to human CCL20. In turn CCL20 is able to display direct anti-
microbial activity in vitro (50). However, this aspect in CCL20-
CCR6 immunobiology has been challenged in recent years and
inconsistencies in the literature exist. Whilst human β-defensins
(hBDs) were chemotactic for macrophages, CCL20 failed to elicit
such migration in vivo or in vitro (51). This suggests that another
yet-to-be-identified receptor for β-defensins exists for chemoat-
traction. Indeed, a more recent study found that hBD-2 and -3
attracted human monocytes through interaction with CCR2 (52)
and hence, this raises a possible alternative to the β-defensin-CCR6
relationship (53).

BIOLOGY OF IBD AND MOUSE COLITIS MODELS
Crohn’s disease (CD) and ulcerative colitis (UC) are the two dom-
inant subtypes of inflammatory bowel disease (IBD). Both are
chronic inflammatory diseases of the intestinal tract; but while
CD can involve any part of the intestinal system and presents with
a transmural chronic inflammation spanning the entire intesti-
nal wall, UC is limited to the colon, commencing distally, and the
inflammation is confined to the mucosa and submucosa. The epi-
demiology of IBD shows a strong genetic predisposition for this
chronic immune response, compounded by environmental factors
such as microbiota and diet.

In humans, genome wide association studies (GWAS) have
identified a plethora of genetic loci associated with IBD (54–57).
These loci include genes that are associated with innate immune
responses, such as NOD2, autophagy, such as ATG16L1 and with
regulation of leukocyte migration such as the chemokine recep-
tor CCR6 (55). This indicates that both regulatory and functional
variations are associated with the generation of IBD. Furthermore,
it has been demonstrated that CCL20 expression is up-regulated
in human IBD biopsies predominately associated with FAE in a
TNF-dependent manner, thus indicating a potential location for
interaction between CCR6+ T cell subsets and DCs (58). Mouse
models of acute colonic inflammation, however, are conflicting
in their results. In the dextran sulfate sodium (DSS) model of
colitis, CCR6−/− mice developed less severe colitis compared to
WT mice (59), while in the 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-induced model, the clinical picture of colitis was stronger
(60). In a third widely used classical model of colitis induced by
T cell transfer, naïve T cells from CCR6−/− mice transferred into
Rag2−/−mice caused a very severe colitis compared to CCR6+/+

transferred T cells. In this model, CCR6−/− Treg cells displayed
less suppressive capabilities and reduced migration to the site of
inflammation compared to WT Treg cells. This indicates that the

protection from colitis is offered by a novel colon-homing, IL-
10-producing CCR6+ regulatory T cell population (61). These
results are in part explained by a recent report on the genera-
tion and education of a TH17 subset in the gut, which provided
an interesting insight into the regulation of these inflammatory
T cells (62, 63). Using a T cell-depletion model of colitis, it was
demonstrated that TH17 cells accumulated in great numbers in
the small intestine when a strong T cell receptor stimulus was
present. More importantly, it was established that this TH17 accu-
mulation was dependent on the CCL20-CCR6 axis and that these
TH17 cells, interestingly, acquired an immunosuppressive pheno-
type in the gut, rather than the typical inflammatory phenotype
associated with this cell subset (62). This was determined when
the accumulated TH17 cells were able to suppress CFSE-labeled
responder T cells (CD4+CD25−) in a suppression assay (in vitro)
and prevent the establishment of EAE in experimental transfer
models (in vivo). The likely mechanism of these cells is through
the secretion of the immunosuppressive cytokine IL-10 (62).

CCL20-CCR6 IN MUCOSAL TH17 AND Treg BIOLOGY
The role that the CCL20-CCR6 axis has to play in steady-state
dynamics is currently unclear; but the fact that opposing cell sub-
types (TH17 and Treg cells) express and respond to CCL20 hints at a
potential regulatory balance between immune activation and sup-
pression, and implies an intriguing feedback loop (64). Already,
CCL20 has been implicated in a network of effector and regu-
latory immune functions through the finding of CCR6 on the
opposing TH17 and Treg cells and CCL20 secretion from the for-
mer (22). Supporting the axis’ functionality, experimental models
of pathology have demonstrated the necessity for CCR6 in the
recruitment of these cell types to the sites of inflammation follow-
ing an up-regulation of CCL20 (65). In a Rag1−/− severe combined
immunodeficiency (SCID) model where CCR6−/− or WT TH17
cells were transferred in, a reduction in both TH17 and Treg cells
were seen in the recipient mice receiving the CCR6−/− cells. This,
interestingly, resulted in more severe colitis in these animals (66).
Paradoxically, mice deficient in CCR6 had an attenuated course of
inflammation in an experimental autoimmune encephalomyelitis
(EAE) model of disease (67). Collectively, these findings high-
light the dynamic balance that exists between TH17 and Treg cells
and how the chemokine axis may be fundamental to ascertain-
ing in which direction the balance is tipped. Some studies using
CCR6−/− mice seem to imply that CCR6 is functionally more
important to Treg cells than it is to TH17, resulting in more severe
pathology in these knockout mice (61, 68).

Examination of organs of 5- to 7-week-old naive BALB/c mice
determined that most TH17 cells are found in small intestine,
PP, and colon at immunologic steady-state. In contrast, the Treg

cells are predominantly found in the bone marrow, colon, and
peritoneal cavity (66). Interestingly, it appears that CCR6 is a
dominant receptor for the migration of TH17 cells to PP (but
not of Tregs). This was supported through a later study that found
the CCL20-CCR6 axis helps direct TH17 cells to the small intes-
tine upon immune system induction. Furthermore, IL-17 secreted
from TH17 cells up-regulates intestinal epithelial CCL20 which
helps recruit these cells via the CCL20-CCR6 axis. Curiously,
the CCR6-deficient mice had increased TH17 cells in the spleen
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and lymph nodes, suggesting that the effector cells are unable to
migrate from the sites of induction. This resulted in less intestinal
inflammation in these knockout mice as expected (62).

Quite a large number of effector TH17 cells can be found in the
small intestine under steady-state conditions and during inflam-
mation, compared to peripheral sites (62, 69). The precise roles
that TH17 cells and their cytokines play in mucosal immunity
have been the subject of a plethora of ongoing investigations. TH17
cells seem particularly important in mediating normal defense at
mucosal sites, as demonstrated in TH17- and IL-17-deficient mice
that showed marked susceptibility to oral Candidiasis compared
to WT counterparts (70). Additionally, in induced immunodefi-
ciency mice models, the absence of TH17 cells allowed a greater
dissemination of Salmonella typhimurium, from the gut to other
parts of the body (71). Indeed, the means of protection under
steady-state conditions appear to be through the cells’ ability to
organize the immunological and microbiological barriers against
potentially harmful pathogens (72). Therefore, the CCL20-CCR6
axis, which appears to be integral to TH17 homing and function,
is important for steady-state mucosal immunity in the gut.

The microbiological environment of the small intestines has
been shown to have a dominant reciprocal effect on TH17 cell
quantity with studies showing that intestinal microbiota are neces-
sary for steady-state colonization and maintenance of the cells (73,
74). In support of this observation, mice treated with antibiotics
had their intestinal TH17 cell population essentially ablated (73).
In addition, mice that were housed in a germ-free environment –
therefore lacking intestinal microbiota – not only had reduced
TH17 colonization but had a reciprocal increase in the FoxP3+

regulatory T cells suggesting that the microbiota influences the
TH17-Treg balance in the gut (74). Finally, the colonization of the
intestines by the TH17 subset is also functionally necessary as it
is associated with protection against intestinal pathogens such as
Citrobacter rodentium (73). Mice deficient for the TH17 subset-
associated pro-inflammatory cytokine IL-21 were consequently
protected against the development of DSS colitis and failed to
up-regulate other critical TH17-associated molecules such as IL-
17 and ROR-γt, which could be confirmed in the TNBS-induced
colitis model (75).

These findings imply that the CCL20-CCR6 axis, in conjunc-
tion with the microbiota, have dominant effects on regulating the
TH17-Treg balance and are therefore influencing the pathogenesis
of colitis. Future studies to explore this aspect can employ the use
of other mouse models to further clarify the relationship between
CCR6, TH17 cells, and colitis. One such model is the so-called

Winnie mouse strain (76, 77), which is a model of IBD, based on a
single point mutation of the Muc2 mucin gene generated by ENU
mutagenesis. This mutation results in a proportion of the MUC2
protein misfolding and accumulating in the endoplasmic reticu-
lum (ER) resulting in ER stress in intestinal goblet cells, a depleted
intestinal mucus barrier and spontaneous colonic inflammation
(78). The distal colon segment showed significant increase in the
expression of TH17 signature genes; Il17a, Il17f, Tgfß, and Ccr6
were detectable suggesting a TH17 polarization. Hence, this novel
model is ideally suited to study the role of CCR6 and TH17 cells in
intestinal immune responses.

CONCLUSION
The unique CCL20-CCR6 axis poses as a dilemma for researchers
into IBD and other diseases. There is little doubt that the pair is
involved in mucosal immunity and IBD; but because of its par-
ticipation in the opposing TH17 and Treg cell activities as well
as B cell activation and antigen presentation, ascertaining its over-
all involvement in pro- or anti-inflammatory activities poses some
difficulties. The differing approaches and experimental techniques
may account for some of the contradictions in the above results
of the precise contributions of the CCL20-CCR6 pair to IBD. A
fundamental problem is that many studies rely on well established
but not tissue-specific Ccr6 gene knockout mice while CCL20−/−

mice do not yet exist. Therefore, unanswered questions remain:
is the CCL20-CCR6 axis centrally involved in the development of
inflammatory diseases of the bowel (axis of evil) or is it just a pair
of cellular navigational tools that seemingly interfere with disease
pathogenesis as an epiphenomenal artifact of a general knockout
mouse (odd couple)? This question can be answered when better
tools such as tissue-specific knockouts are available. Furthermore,
we have to wonder how the axis can contribute to inflammatory
cell recruitment yet confer suppression at the same time through
the opposing TH17 and Treg cells. Adding to the confusion, what
role, if any, does the axis play in regulating the inflammatory ver-
sus regulatory TH17 cells? The answer to this question and others
may lie in the combination of other regulatory factors, such as
other chemokines, which recruit and “switch on” pro- or anti-
inflammatory cells during IBD and will have to be addressed and
dissected in more detail in further studies.
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