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Pathogen-specific CD8 T cells provide a mechanism for selectively eliminating host cells
that are harboring intracellular pathogens.The pathogens are killed when lytic molecules are
injected into the cytoplasm of the infected cells and begin an apoptotic cascade. Activated
CD8T cells also release large quantities of pro-inflammatory cytokines that stimulate other
immune cells in the local vicinity. As the alveoli are extraordinarily sensitive to cytokine
induced damage, multiple layers of immune regulation limit the activities of immune cells
that enter the lungs. These mechanisms include receptor-mediated signaling pathways
in CD8 T cells that respond to peptide antigens and transforming growth factor β. Both
pathways influence the functional and phenotypic properties of long-lived CD8 T cells
populations in peripheral and lymphoid tissues.
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Adaptive immune responses to new pathogens begin after naïve
T cells encounter mature DC with their cognate antigen in the
secondary lymphoid organs. Extensive phenotypic and functional
changes occur as the T cells progress along a complex differentia-
tion pathway (Figure 1). Some of the earliest changes include the
loss of homing receptors that are required to enter the encapsulated
lymph nodes, which are replaced by other molecules that guide
activated T cells into infected tissues. Many functional properties
are also modulated during exposure to antigen or environmen-
tal stimuli, leading to the acquisition of new effector functions
and altered capacity for long term survival (1). The enduring
characteristics of the surviving memory T cells sometimes reflect
partial progression along a chosen differentiation pathway after
weak antigen stimulation, insufficient costimulation, or limited
inflammation (2).

THE PHENOTYPIC CHARACTERISTICS OF NAÏVE CD8 T CELLS
The secondary lymphoid organs serve as centralized sites of
immune activation and accommodate large numbers migratory
DC which carry microbial products from infected tissues (3,
4). Rare antigen-specific T cells provide comprehensive immune
surveillance by moving sequentially between different lymphoid
tissues until they encounter antigen presenting cells (APCs) with
their cognate antigen. Some circulating lymphocytes (including
naïve CD8 T cells) enter encapsulated lymph nodes by squeez-
ing between cuboidal endothelial cells that line wide vessels
known as high endothelial venules (HEV) (5). The migrating
cells express L-selectin (CD62L) which interacts with periph-
eral lymph node addressins (pNAD) causing the T cells to begin
rolling over the surface of the endothelial cells (6, 7). The
rolling T cells constitutively express CC chemokine-receptor 7
(CCR7) and respond to chemokines ccl19 and ccl21 (8, 9) which

promote a conformational change in the structure of an integrin
known as leukocyte adhesion molecule-1 (LFA-1) (10–12). Tight
interactions between activated LFA-1 and Intercellular Adhesion
Molecule-1 (i.e., ICAM-1) are essential for diapedesis (13, 14).
After crossing the endothelial layer, naive T cells use conduits of
reticular cells which are coated with ccl19 and ccl21 to search for
DC with their cognate antigen (9, 15, 16).

ANTIGEN STIMULATION LEADS TO EXTENSIVE PHENOTYPIC
AND FUNCTIONAL CHANGES
All nucleated cells can assemble MHCI molecules using peptides
from self-derived proteins however the mechanisms that are used
to produce antigenic peptides from foreign proteins are not iden-
tical for all cell types (17, 18). Infected cells produce defective
ribosomal products which are directed to the proteasomes for
degradation and are pumped from the cytosol into the endo-
plasmic reticulum by the Transporter for Antigen Presentation
(TAP) where the complete peptide/MHCI complexes are assem-
bled. Other APCs (i.e., some DCs and macrophages) acquire
foreign proteins from cells in the surrounding tissues and pro-
duce immunogenic peptides without infection which are used for
cross-presentation to CD8 T cells (19, 20). The preferential use
of a specific peptide processing pathway can influence the speci-
ficity of the CD8 T cell response and alter the pattern of epitope
dominance during some infections (21).

At least two subsets of migratory DC carry microbial prod-
ucts into encapsulated lymph nodes and other lymphoid tissues
(22). Other DCs are permanent residents of the lymph nodes and
acquire antigens from neighboring cells (20, 23). These DC express
a variety of coreceptors that exert positive or negative effects on
T cells during antigen stimulation, but play little or no role in the
immune response unless the TCR is engaged. The coreceptors that
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FIGURE 1 |Tissue distribution of memory CD8T cells.

augment Teff functions, including cytokine production and lytic
activity, are known as costimulatory molecules while inhibitory
receptors suppress functional activities and cell cycle progression
(24). Some important costimulatory signals are delivered through
CD28 which interacts with CD80 and CD86 during the formation
of the immunological synapse (25, 26). Clonal diversity can be
increased by costimulation through CD27, which promotes cell
survival during responses to low affinity antigens (27, 28). Other
coreceptors are induced by TCR derived signals and modulate the
properties of responding T cells as the infection progresses (29).
Costimulation through 4-1BB, OX40, or CD27 leads to increased
expression of anti-apoptotic molecules such as BCL-2 and BCL-
XL and prolonged T cell survival (30), while CD30 has pleiotropic
effects on T cell activation, apoptosis, and effector function.

Antigen stimulation causes many external changes as naïve
CD8 T cells become Teff cells. Some permanent changes include
increased CD44 and LFA-1 (CD11a) expression, which are
required for activated T cells to enter peripheral tissues (11,
31–33). Other surface molecules are reversibly induced during
antigen stimulation including chemokine receptors which control

the distribution of antigen-specific CD8 T cells in inflamed tissues,
such as CXCR3 (34, 35). Some activated T cells leave the blood ves-
sels using chemokine-dependent mechanisms, however a recent
study has shown that cognate antigen can induce transendothe-
lial migration in vascularized transplants by a mechanism that is
independent of Gαi-signaling (36). Other surface molecules are
down regulated during antigen stimulation including CCR7 and
CD62L which can be cleaved from the cell surface by metallopro-
teases (37). Foxo-1 plays a role in the transcriptional control of
CCR7 and CD62L expression in T cells (38).

The functional characteristics of CD8 T cell populations are
modified by cell-fate decisions during memory development.
Some experiments indicate that asymmetric cell division deter-
mines the ratios of Teff cells and memory cells (39). Others suggest
that the strength of the TcR signal determines whether CD8 T
cells undergo symmetric or asymmetric cell division and thus
controls the phenotype of the daughter cells (40, 41). This idea
was not supported by transfer studies with individual OTI cells
which express a high-affinity TcR and produced heterogeneous
progeny after infection (41–43). Some experiments suggest that
naïve CD8 T cells become TCM precursors (Tcmp), before becom-
ing TEM precursors (Temp) and finally Teff cells (43). This linear
differentiation model is supported by the finding that Tcmp pro-
liferate slower than the Temp or Teff cells (43). The model can
be reconciled with data which show that recurrent antigen stim-
ulation or inflammation increases the percentages of short-lived
Teff cells within the population, while virus-specific CD8 T cells
that are activated later in the response may receive less stimula-
tion and preferentially differentiate into the Tcm phenotype (44).
The disparate fates of progeny cells from individual parent T cells
underscore the importance of extrinsic signals during memory dif-
ferentiation, which can come from a variety of sources including
the APCs, costimulatory molecules, or cytokines.

CYTOKINES CONTRIBUTE TO THE HETEROGENEITY OF
ACTIVATED T CELL POPULATIONS
Recent studies have shown that IL-1 is not only critical for the acti-
vation of DCs (45), but also significantly increases clonal expan-
sion and augments the effector functions of virus-specific CTL
(46). During the expansion phase of the infection, autocrine IL-2
production is essential for Teff cell differentiation and survival.
The IL-2 derived signals promote sustained Blimp-1 expression
and repress Bcl-6 (47) which sustains mTOR activity and gly-
colysis via the PI3K-Akt pathway (48). Some Teff cells maintain
CD25 expression (i.e., the high-affinity IL-2 receptor) and undergo
extensive proliferation before becoming terminally differentiated
Teff cells, while other cells lose CD25 and maintain the capac-
ity to become memory cells (49). Large numbers of Teff cells
that express the Killer cell lectin-like receptor G1 (KLRG1) but
not CD127, die during contraction of the CTL response and are
known as short-lived effector cells (SLECs) (31). Other cells which
lack KLRG1 and re-express CD127 before the contraction begins,
are known as memory precursor effector cells (MPECs) because
they are more resistant to apoptosis. KLRG1 is a useful phenotypic
marker however expression is not required for Teff differentiation
or development of robust effector functions (50). Two inhibitor of
DNA binding proteins (Id2 and Id3) influence memory CD8 T cell
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development before the phenotypic markers of MPECs and SLECs
change. Both proteins inhibit E-protein transcription factors but
they promote CD8 T cell survival by different mechanisms (51–
54). Specifically Id2 supports the survival of Teff cells by inducing
anti-apoptotic molecules such as Bcl-2, while reducing the expres-
sion of pro-apoptotic molecules such as Bim (51, 52). In contrast
Id3 prolongs the survival of memory cells by regulating key genes
that are essential for genomic stability (53, 54).

The milieu of pro-inflammatory cytokines that are produced
upon innate immune recognition of pathogen-associated molec-
ular patterns (PAMPs) can also influence the functional properties
of developing CD8+ Teff cells. For example, IL-12 or type I
interferon (IFN-I) can lead to STAT4 phosphorylation and T-bet
expression which promotes terminal differentiation of SLECs (55).
In addition, IL-12 activates the PI3K-Akt-mTOR pathway which
drives rapid proliferation of Teff cells and promotes degradation
of Foxo-1, which in turn leads to the down regulation of Eomeso-
dermin (Eomes) and loss of CD127, CD62L, and CCR7 (56). The
T-bet and Eomes transcription factors also regulate CD8 T cell
effector functions, as shown by high IL-17 expression and exces-
sive leukocyte infiltration when these molecules are not expressed
(57). As the levels of pro-inflammatory cytokines decline, IL-10
and IL-21 activate STAT3 to promote memory development by
inducing Bcl-6, Eomes, and suppressor of cytokine signaling 3
(SOCS3) (58). SOCS3 expression may be essential for preserving
memory potential by dampening the IL-12 response and shift-
ing their metabolic state back to oxidative phosphorylation as the
activated CD8 T cells become quiescent.

Most newly activated Teff cells are capable of immediate lytic
activity and cytokine expression, but have a very short life span.
Members of the common γ-chain cytokine family play a complex
role in CD8 T cell survival and elicit responses that can be mod-
ulated through changing receptor expression. The loss of CD127
expression on naive CD8 T cells is partly controlled by the Foxo-1
transcription factor, which can be inactivated via the PI3K-Akt-
mTOR signaling pathway (50). Some activated T cells re-express
CD127 before the peak of the CTL response and have an enhanced
capacity to become long-lived memory cells (59). Re-expression
of CD127 is controlled by the transcription factor GA binding
protein α (GABPα) which is responsible for hyperacetylation of
the promoter, while growth factor independence 1 (Gfi-1) is an
antagonist that suppresses CD127 expression on late Teff cells by
recruiting histone deacetylase 1 (60). The upstream signaling mol-
ecules that regulate GABPα and Gfi-1 expression have not been
clearly defined.

Multiple mechanisms contribute to the contraction of Teff
response, including the withdrawal of essential growth factors such
as IL-2 (48) and perforin or TGFβ induced apoptosis (61, 62). Only
small percentages of Teff cells have the capacity to survive through
the contraction and become long-lived memory cells. Cell sur-
vival is determined by a delicate balance between of pro-survival
molecules such as Bcl-2 or Mcl-1, with pro-apoptotic molecules
such as Bim or Noxa, which can be regulated by external signals
in the tissues (63–65). A recent study has shown that some pro-
apoptotic signals are induced by TGFβ, but can be antagonized by
the pro-survival properties of IL-7 and IL-15 (62). Forced CD127
expression does not prevent contraction of the Teff population

(66) which indicates that terminally differentiated SLECs have an
intrinsic defect in their response to IL-7 signaling, as suggested
by high expression of the cell cycle inhibitor p27Kip (43). Conse-
quently IL-7 in combination with IL-15 promotes the survival of
MPECs, while SLECs are critically dependent on the stimulation
through the IL-2/IL-15 receptor (67).

CHRONIC ANTIGEN STIMULATION PROMOTES PHENOTYPIC
AND FUNCTIONAL HETEROGENEITY IN CD8 T CELLS
CD69 and PD-1 are surface proteins that are transiently induced
on activated CD8 T cells soon after TcR stimulation (68, 69).
The function of CD69 is not known, but some studies suggest
that interactions between CD69 and the sphingosine-1-phosphate
receptor-1 (S1P1) facilitate efficient migration of activated CD8
T cells into the bloodstream (70). CD8 T cells transiently express
CD69 in infected tissues when IFN-I is present,however expression
levels quickly decline when the cytokine is removed (71). PD-1 is
also expressed on activated T cells during antigen stimulation but
expression cannot be induced by IFN-I. PD-1 disappears when
the antigen is removed and is thus a reliable indicator of persisting
peptide/MHC complexes.

When CD8 T cells are exposed to a continuous supply of antigen
during chronic infections or inside tumors they adopt an altered
phenotype which is characterized by high level PD-1 expression
together with other inhibitory coreceptors such as TIM3, CTLA4,
BTLA, CD160, LAG3, and 2B4 (72). The responses of CD8 T
cells that express one or more of these inhibitory receptors are
attenuated as shown by reduced proliferative capacity and tem-
pered effector functions, which led to the term “exhausted” T cells
(73). Interactions with PD-1 ligands can impair CD8 T cell func-
tions through multiple mechanisms, including reduced mobility
(74). The symptoms of exhausted CD8 T cells were reversed in
some studies, using combinations of antibodies to block inter-
actions with PD-1 and other inhibitors such as TIM3, CTLA4,
and/or LAG3 (72). Large numbers of exhausted CD8 T cells are
often accompanied by depleted populations of memory CD8 T
cells, which suggests that they may be the product of chronically
stimulated Teff cells. Evidence that specific APCs play a role in
the development of exhausted CTL has not been reported but
since the cells do not express KLRG1 suboptimal differentiation
may play a role (75). Indeed, network analysis recently revealed
fewer transcriptional modules of quiescence in exhausted CD8
T cells, as compare to functional memory cells (76). In contrast
to memory CD8 T cells, exhausted CTL are maintained in an
antigen-dependent manner and gradually disappear when they
are transferred to infection-free mice (77). Most functional studies
have focused on the properties of exhausted CD8+ T cells how-
ever there is evidence that CD4+ T cells can exhibit symptoms of
exhaustion in some situations (26).

THE PHENOTYPIC PROPERTIES OF LONG LIVE MEMORY CD8
T CELLS
Two major subsets circulating memory CD8 T cells survive the
contraction of the Teff response and can be distinguished using
reciprocal CD62L and CCR7 expression (78). Central memory
(TCM) CD8 T cells are CD62L+CCR7+ cells that can access
secondary lymphoid organs via HEV and have a similar tissue
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Table 1 | Phenotypic heterogeneity of CD8T cell subsets.

CD44 CD62L KLRG1 CCR7 CD69 PD-1 CD103 CD25 CD127 CD122

Naive ± • • ± •

Teff • • • • • •

TCM • • • • •

TEM • • •

TRM • • ± • •

Exhausted • • • •

• indicates marker expressed at high levels.

distribution as naive CD8 T cells (Table 1). Since effector mem-
ory CD8 T cells (TEM) lack CD62L and CCR7 expression they
cannot access encapsulated lymph nodes under steady state con-
ditions, however some activated CTL can access inflamed lymph
nodes during infection by a mechanism that requires CXCR3, but
not CD62L (79). Recent studies have shown that a third major
subset of memory CD8 T cells resides in selected peripheral tis-
sues after local infections and does not return to circulation after
inflammation subsides (80). The highest concentrations of these
tissue-resident memory (TRM) CD8 T cells are typically found
in tissues with an epithelial layer, during the recovery from a
recent infection (81–84). Some studies indicate that recent expo-
sure to cognate antigens plays a role in the long term retention
of CD8+ TRM cells in tissues such as the lungs and CNS, where
some KLRG1-negative CTL express CD103 (αeβ7 integrin) when
activated TGFβ is present (81, 85, 86). Other studies indicate that
sustained antigen exposure is dispensable for maintenance of TRM

cell in the gastrointestinal tract (87). The influence of pathogen-
derived peptides on lymphocyte migration is controversial since
several viruses which were previously thought to induce “acute
infections” leave residual peptides that persist in vivo for weeks
or months after inoculation (88–90). Additional peptides may
persist longer but are below the level of detection. Although the
reasons for the heterogeneous characteristics of pathogen-specific
memory CD8 T cells in vivo have not been clearly defined, the
duration of the infection and the pathogen’s capacity to elicit
specific cytokines can have a dramatic influence on the enduring
characteristics of the response.

Stable CD69 and CD103 expression are hallmarks of TRM

cells that can be found in the skin, gastrointestinal tract, and
lungs (80, 91). Some studies suggest that epithelial cells provide
signals for sustained CD69 expression, which does not require
chronic antigen stimulation (87, 92). Whether CD69 influences
the distribution of TRM cells in peripheral tissues such as the
lungs (81) through interactions with the sphingosine-1-phosphate
(S1P) receptor-1 remains to be determined (93). Others found
that an ongoing response to antigen stimulation was required
for TRM cells to maintain stable CD103 expression in the lungs
(81) and CNS (85). Additional evidence of a prolonged response
to antigen stimulation by TRM cells in the lungs includes low
level expression of PD-1 (94) and interferon-induced transmem-
brane protein 3 (IFITM3) (95), while CD103 expression declined
when antigen-specific antibodies were used to block TcR interac-
tions with peptide/MHC complexes (81). TRM cells in the brain
also expressed CD103 only after intracerebral inoculation with
Vesicular stomatitis virus (VSV) (81, 95).

TRANSFORMING GROWTH FACTOR-β AND HETEROGENEITY
OF CD8 T CELLS IN MUCOSAL TISSUES
Transforming growth factor-β1 (TGFβ1) is pleiotropic cytokine
that plays a central role in immune homeostasis. The regulatory
properties of TGFβ include potent anti-proliferative and pro-
apoptotic effects on virus-specific CD8 T cells, which contribute to
the contraction of the Teff response during some infections (62).
Teff cells are resistant to apoptosis during clonal expansion, but
become highly vulnerable to deletion after KLRG1 is upregulated
(62). Very few KLRG1+ CD8 T cells survive in the lungs during
infections with some strains of influenza and other respiratory
viruses that make enzymes which can activate TGF-β (96–99).
Paradoxically, exposure to activated TGFβ leads to αEβ (7) inte-
grin (CD103) expression on long-lived CD8+ TRM cells, which
often reside near epithelial cells that express E-cadherin (81, 100).

The reasons why individual subsets of CD8 T cells respond to
TGFβ in different ways is not known, but multiple different sig-
naling pathways may play a role (79, 80). The apoptotic effects of
TGFβ on Teff cells can be overcome by IL-2 and partially inhib-
ited by IL-7, but IL-15 has no protective value (62). This reason
why TGFβ exerts its pro-apoptotic role after the peak of the Teff
response may be due to the presence of IL-2R (CD25) at earlier
time points. This may also explain why SLECs are particularly sen-
sitive to TGFβ-induced apoptosis, as this subset lacks CD127 and
depends on IL-15 for survival. The ability of γc cytokines to antag-
onize the apoptotic effects of TGFβ signaling may be determined
by their ability to activate the PI3K pathway, which interacts with
TGFβ-induced Smad proteins in a complex manner. Activated
Akt can directly associate with Smad3 and inhibit phosphoryla-
tion by TGFβRI, which prevents translocation into nucleus. Also,
p15Ink4b and p21Cip1 are inhibitors of cyclin-dependent kinases,
which can be induced by TGFβ and are required the formation
of a transcription complex that is composed of Smad3, Smad4,
and the Foxo transcription factors. The PI3K-Akt pathway can
induce phosphorylation and degradation of Foxo proteins, and
thus antagonize the inhibitory effect of TGFβ during cell cycle pro-
gression. On the other hand, TGFβ signaling can dampen the PI3K
pathway through the induction of lipid phosphatase SHIP. TGFβ

signaling can also dephosphorylate S6K downstream of PI3K-
Akt-mTOR pathway via the induction of protein phosphatase 2A
(PP2A) (83).

The signaling pathways that are activated during TGFβ regula-
tion are more clearly defined for CD4 than CD8 T cells. Studies
have shown that TGFβ induces Sma and Mad-related (SMAD)
transcription factors to repress Id3 and enhance binding of E2A in
CD4 T cells, which is crucial for the induction of the forkhead box
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p3 (Foxp3) gene (101) and inhibits the development of Th1 cells
(102). Other signaling pathways include the MAP kinase (MAPK),
Rho-like GTPase, and phosphatidylinositol-3-kinase (PI3K) path-
ways (103). A master transcription factor RORγt can be induced
in CD4 T cells from mice that lack either Smad4, or Smad2 and
Smad3 expression (102). TGFβ also promotes Th17 development
by suppressing Eomes via the c-Jun N-terminal kinase (JNK)-c-
Jun signaling pathway (104). Since some pathogens elicit robust
TGFβ responses it is likely that these signaling pathways have
a dramatic influence on the activities of pathogen-specific CD8

T cells during infection, which play a critical role immunity in
mucosal tissues.

SUMMARY
Together the current data show that the cytokine milieu and pro-
longed presence of foreign antigens are responsible for extensive
heterogeneity in long-lived CD8 T cell populations. This het-
erogeneity is reflected by a broad tissue distribution and diverse
functional properties which are absolutely essential to combat an
enormous variety of different pathogens.
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