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Cytotoxic T-lymphocytes (CTLs) recognize viral protein fragments displayed by major his-
tocompatibility complex molecules on the surface of virally infected cells and generate an
anti-viral response that can kill the infected cells. Virus variants whose protein fragments
are not efficiently presented on infected cells or whose fragments are presented but not
recognized by CTLs therefore have a competitive advantage and spread rapidly through the
population. We present a method that allows a more robust estimation of these escape
rates from serially sampled sequence data.The proposed method accounts for competition
between multiple escapes by explicitly modeling the accumulation of escape mutations
and the stochastic effects of rare multiple mutants. Applying our method to serially sam-
pled HIV sequence data, we estimate rates of HIV escape that are substantially larger than
those previously reported. The method can be extended to complex escapes that require
compensatory mutations. We expect our method to be applicable in other contexts such
as cancer evolution where time series data is also available.
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INTRODUCTION
During the first few months of HIV infection, the HIV genome
typically undergoes a series of rapid amino acid substitutions that
reduce immune pressure by cytotoxic T-lymphocytes (CTLs); this
process is referred to as CTL escape (1). The substitutions arise
by random mutation and spread through the viral population
by impairing either the presentation of viral epitopes on the cell
surface or the recognition of the viral epitope by T-cell recep-
tors. Avoiding recognition is an obvious benefit to the mutant
virus, but escape mutations can interfere with processes necessary
for virus replication and infection and thereby reduce the virus’
intrinsic fitness (2–5). The rate at which escape variants displace
the founder sequences depends on both “avoided killing” and the
fitness cost. To quantify the role of individual CTL clones in con-
trolling the viral population and the fitness costs associated with
escape mutations, one would like to infer the escape rate associ-
ated with the individual mutations from serially sampled sequence
data (4, 6).

With a single escape mutation and dense, deeply sampled data,
the escape rate can simply be estimated by fitting a logistic curve
to the time course of the mutation’s frequency (4, 6). The logis-
tic curve has two parameters: the growth or escape rate and the
frequency at the initial time point. In many cases, however, the
data obtained from infected patients are scarce, and estimating
two parameters reliably from the data is not possible since one
needs at least two time points at which the mutation is at interme-
diate frequency between 0 and 1 (4). Figure 1 shows an example
of such time series sequence data from CTL escape during early
HIV infection. Time points are far apart and the sampling depth
is low. Furthermore, it is not the case that only a single escape
mutation is observed; rather, several mutations rapidly emerge in

different places in the viral genome (7, 8). Multiple escapes imply
immune pressure on many epitopes. Since the viral population and
its mutation rate are large (9, 10), these different escape mutations
will arise almost simultaneously. Initially, these escape mutations
exist in the population as single mutant genomes until they are
combined into multiple mutants by recurrent mutation or recom-
bination (11, 12). The competition between viral variants affects
the trajectories of individual escape mutations, so estimating their
intrinsic growth rate by logistic fitting is not accurate. This com-
petition is known as “clonal interference” in population genetics.
The degree of competition between genotypes depends on the
population size, the mutation rate, and the recombination rate in
HIV populations. The latter-most is rather low (13, 14), and two
strongly selected mutations in a large population are more likely to
be combined by additional de novo mutation than recombination
with another rare single mutation.

Here, we develop a strategy for inference that allows one to
obtain robust escape rate estimates from the scarce data typi-
cal of studies of CTL escape. The inference is based on explicit
modeling of the process of mutation accumulation in the founder
sequence. Thereby, we exploit constraints imposed by the under-
lying dynamics of mutation and selection in the high dimensional
space of possible genotypes.

Despite the large number of possible genomes that can be
formed from different combinations of escape mutations, we typ-
ically observe one or two dominant genotypes at a time – at least
during the first few months of the infection. Furthermore, these
genotypes dominate only transiently and are quickly displaced
by genotypes with an even greater number of escape mutations;
see Figure 1. These observations agree with results from ref.
(15), where a model of acute HIV infection was used to show
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FIGURE 1 | Escape fromT-cell mediated immunity. The virus
population in patient CH58 quickly acquires four substitutions. (A)
shows a sketch of genotypes at the first 4 escape mutations, observed

at different times; see (7, 8) for the actual data. (B) shows the
frequencies of the mutations in samples of size 7 at day 9 and size 9 at
days 45 and 85.

that strongly selected escape mutations fix sequentially. Note that
we don’t assume a particular sequence of dominant genotypes
a priori. Instead, we observe a sequence of dominant genotypes
and try to infer the evolutionary scenario that most likely gave
rise to this sequence of genotypes. While we model only these
genotypes, many minor variants certainly exist. But only those
dominant variants that are likely to give rise to the future pop-
ulations need to be modeled accurately. Later in infection, the
viral population is very diverse and cannot be analyzed using our
method.

Given a data set from early infection, it is typically straight-
forward to define a series of dominant genotypes that likely
have arisen through step-wise accumulation of mutations. Note
that most likely all escape mutations constantly arise in different
combinations, but typically only one combination rises quickly
enough to dominate the population. This dominant genotype
is then in most cases the source for the next dominant geno-
type. Later in infection, however, recombination is sufficiently
frequent that no dominant genotype exists and mutations can
spread simultaneously.

In Ganusov et al. (11), a framework for multi-locus modeling
of CTL escape is presented. Building on this framework, we explic-
itly model the transition from one dominant genotype to another,
which is a good approximation of the dynamics for rapid CTL
escape in acute infection. The restriction to dominant genotypes
captures the interference between escapes at different epitopes
while avoiding the need to solve the full multi-locus problem.

We will first define a model of the dynamics of escape muta-
tions. This model serves a twofold purpose: it defines the para-
meters we would like to estimate from the data and provides
us with a computational tool to investigate how the accuracy of
the inference depends on sampling depth and frequency, as well
as how sensitively it depends on the values of parameters such
as mutation rates or the population size. We reanalyze existing
CTL escape data and find that accounting for multi-locus effects
in a finite population results in higher estimates of the escape
rates.

RESULTS
MODEL
In the majority of sexually transmitted HIV infections, a single
“transmitted/founder” virus initiates the new infection resulting
in an initially homogeneous viral population (8, 16). However, as
HIV replicates in its new host, mutations accumulate. Mutations
within or in proximity to CTL epitopes can reduce immune pres-
sure by facilitating the avoidance of CTL recognition. While one
often observes several escape mutations within a single epitope (17,
18), we do not differentiate between different mutations within the
same epitope and model L epitopes that can be either be mutant
or wild-type. Assuming that the escape at multiple epitopes has
additive effects, εj, the growth rate (birth rate minus death rate) of
a genotype is given by

F
(
g , t
)
= F0 (t )+

∑
i

εi si (1)

where g = {s1, . . ., sL} specifies the genotype. Here, si= 0 corre-
sponds to a wild-type epitope at locus i, whereas si= 1 signifies
escape at that epitope. F 0(t ) accounts for a genotype independent
modulation of the growth rate. The latter could, for example, be
due to variable numbers of target cells (19, 20). F 0(t ) controls the
total population size, while the differences between genotypes are
accounted for by

∑
i

εi si and result in differential amplification of

some genotypes over others. The εi are the escape rates that we
would like to estimate from the data and should be interpreted
as the net effect of avoided killing and the possible fitness costs
associated with the mutation; see e.g., Ganusov et al. (11). The
fitness costs are modulated by the overall growth rate of the viral
population and could therefore be slightly time dependent. We
neglect this complication. Within our model, mutations arise at a
rate µ per base per generation. This rate can be epitope dependent.
Motivated by the frequent template switching of HIV reverse tran-
scriptase (21), our general model of the HIV population includes
recombination, which is assumed to occur with rate r. In the event
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of recombination, all L epitopes are reassorted, but an explicit
genetic map could be implemented as well.

We implemented our model as a computer simulation in
Python using the population genetic library FFPopSim (22). The
simulation stores the population n(g, t ) of each of the 2L pos-
sible genotypes. In each generation, the expected changes of the
n(g, t ) due to mutation, selection, and recombination are calcu-
lated. The population of the next generation is then sampled from
the expected genotype frequencies γ(g, t )= n(g, t )/N. The size of
the population, N, can be set at will each generation. In this way,
up to 15 epitopes can be simulated for 1000 generations within
seconds to minutes.

A typical realization of the population dynamics is shown in
Figure 2, where we have assumed a generation time of 1 day. As
expected, the population is dominated by one genotype at a time.
Furthermore, the mutations accumulate in decreasing order of
escape rate, and the new dominant genotype arises from the pre-
vious by incorporation of the mutation with the largest escape rate
available. There are, however, many minority genotypes which are
rarely observed. Figure 2C shows the frequencies on a logarithmic
scale, where the minor variants are visible. We use these simula-
tions to test the accuracy and robustness of the inference procedure
developed below.

Of the many possible genotypes that are present at any moment,
only a small fraction is likely to be observed in a small sample
and to be relevant in the future. Simulations and data suggest
that the dominant genotypes accumulate mutations one by one –
this greatly simplifies the task of estimating escape rates from the
data. Instead of considering the dynamics of all possible genotypes
(2L), we will restrict the inference to a chain of genotypes, each
containing one additional mutation compared to its predecessor.

The best estimate for the HIV generation time is d = 2 days
(23), while estimates of escape rates are typically given in units of
inverse days rather than generations. For simplicity, we simulate
our model assuming one generation per day and state all rates
in units of 1/day. Our results are insensitive to the choice of the
generation time. Doubling the generation time has similar effects

to dividing the population size by 2, as this keeps the strength of
genetic drift constant.

INFERRING THE ESCAPE RATES
Suppose we have obtained sequence samples of size ni at differ-
ent time points ti and each of these samples consists of different
genotypes g present in k(g, ti) copies. If the actual frequencies of
those genotypes at different times are γ(g, ti), the probability of
obtaining the sample at ti is given by the multinomial distribution

P
(
sample

)
=

ni !∏
g

k
(
g , ti

)
!

∏
g

γ
(
g , ti

)k(g ,ti) (2)

If the underlying dynamics was deterministic, the frequencies
γ(g, t ) would be unique functions of the model parameters we
want to estimate. In that case we could use Bayes’ theorem, choose
suitable priors, and determine the posterior distribution of the
parameter values. However, both the model and the actual viral
dynamics are stochastic, and“replaying”the history would result in
different trajectories. Furthermore, most of the 2L possible geno-
types remain unobserved. This leaves us with the choice of either
some type of approximate Bayesian computation that compares
repeated simulations of the model with appropriate summary
statistics (24) or a reduced description of only the observed geno-
types, with the stochasticity captured by nuisance parameters
(25).

We opt for the latter and model only those genotypes that dom-
inate the population. We label these genotypes by the number of
escape mutations they carry, e.g., g 1 carries the first escape muta-
tions, g 2 the first and the second, and so forth. The frequency of a
genotype is affected by stochastic forces only while it is very rare.
If the genotype is favored, it will rapidly rise to high frequency,
and the stochastic effects will no longer be relevant. It is therefore
convenient to summarize the stochastic behavior by the time, τ, at
which its frequency crosses the threshold to essentially determin-
istic dynamics. Since the dynamics is deterministic after this “seed

A B C

FIGURE 2 | Example of simulated escape mutations spreading
through the population. (A) Even though all epitopes are targeted from
t =0, escape mutations spread sequentially. The mutation frequency in a
sample of size 20 at different time points is indicated by colored dots. (B)
The rising mutation frequencies are associated with the rise and fall of
multi-locus genotypes. The founder virus is first replaced by a dominant
single mutant, which itself is replaced by a double mutant and so forth.

Note, however, that the virus population explores many combinations of
mutations but that these minor variants never reach appreciable
frequency. This is best seen in (C), where all 32 genotype frequencies are
shown on a logarithmic scale. These rare variants are rarely sampled, and
their noisy dynamics suggests that little information can be gained from
them. Here, N =107, µ=10−5, and r =0, and escape rates are εj = 0.5, 0.4,
0.25, 0.15, 0.08 per day.
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time,” all the (unobserved) stochasticity can be accounted for by
an appropriate choice of the seed time (26, 27). For each of the
dominant escape variants, gj, with j = 1 to j = L escaped epitopes,
we define a seed time τj to accommodate the stochastic aspects of
the escape dynamics.

After crossing the deterministic threshold, the population
frequencies of the dominant genotypes evolve according to

γ̇j (t ) = F
(
gj , t

)
γj (t )+ µ

[
γj−1 (t )− γj (t )

]
(3)

if t > τj. Conversely, γj(t )= 0 for t < τj. The growth rate F(gj, t )
of genotype j is the sum of the escape rates εk of the epitopes
k = 1, . . ., j and the density regulating part F 0(t ); compare to
equation (1). The escape rates are what we would like to estimate.
The seed time, τj, corresponds to the time at which a genotype
with all escape mutations up to mutation j first establishes1. At the
seed time, we initialize the genotype frequency at γj(τj)=N−1.
If seed times are chosen appropriately, this model provides a very
accurate description of the frequency dynamics of the dominant
genotypes in the full stochastic model; see Figure 3.

At face value, the deterministic model has two parameters per
epitope – one escape rate and one seed time. The seed times,
however, are quite strongly constrained by basic facts of the evolu-
tionary dynamics. The genotype gj carrying mutations i= 1, . . ., j
arises with rate µN (t )γj − 1(t ) from the genotype gj − 1 carrying
only j − 1 mutations. This means it is unlikely that genotype j
arises early while γj − 1(t ) is still very small. However, once the
previous genotype j − 1 is common, genotype j is produced fre-
quently. The distribution of the time at which the first copy of
genotype j arises is given by the product of the rate of production
and the probability that it has not yet been produced. The latter is
the negative exponential of the integral of the production rate up
to this point. Hence, the distribution of the seed time τj, given the
trajectory of the previous genotype γj − 1, is given by

Q(τj |γj−1(t )) ≈ µN (τj)γj−1(τj)e−µ
∫ τj

0 N (t )γj−1(t ) dt . (4)

Since the γj(t ) are uniquely specified by {τk, εk}k = 1, . . ., L, we
can write the posterior probability of the parameters as

P
({

εj , τj
})
∝

∏
i

P
(
samplei |Θ

)∏
j

Q
(
τj |Θ

)
U
(
εj
)

, (5)

where Θ= {εk, τk}k = 1. . .L and U (εj) is our prior on the escape
rates. We employ a Laplace prior U (ε)= exp(−Φε) parameter-
ized by Φ favoring small escape rates. The prior regularizes the
search for the minimum and results in conservative estimates of
escape rates.

OBTAINING MAXIMUM LIKELIHOOD ESTIMATES
Finding the set of escape rates and seed times that maximizes
the posterior probability can be difficult due to multiple maxima

1There is a brief period after the initial production of the mutation during which
the dynamics is stochastic and the initial mutant establishes only with a probability
roughly equal to εd, where d = 2 days is the generation time (23). However, we find
εd ≈ 1 and ignore this complication.

FIGURE 3 |The deterministic model parameterized by seed times τj for
the L dominant genotypes and the escape rates of epitopes εi (solid
lines) captures the dynamics of the stochastic model accurately
(dashed lines). The trajectories (and seed times) vary from run to run. In
this run, N =107, µ=10−5, and r =0 and the escape rates are εj =0.5, 0.4,
0.25, 0.15, 0.08 per day.

and ridges in the high dimensional search space, and uncertainty
remains. To ensure that the global optimum will be reliably dis-
covered, we exploit the sequential nature of the dynamics and use
the fact that earlier escapes strongly affect the timing of the later
ones, but not vice versa. Thus adding genotypes with an increas-
ing number of mutations one at a time results in a reasonable
initial guess on top of which a global true multi-locus search can
be performed.

We have implemented such a search in Python, and the com-
putationally expensive calculation of the posterior probability is
implemented in C. The code infers parameters as follows:

• Fit the first escape assuming τ1= 0 by a simple one dimensional
minimization. This assumes that single mutants are already
present in the population, consistent with the large viral popu-
lation size present by the time a patient has been identified as
HIV-1 infected (28, 29).

• Add additional epitopes successively by mapping the entire two-
dimensional posterior distribution P(εj, τj) at fixed {εk, τk} for
k < j. This step is illustrated in Figure 4A.

• Refine the estimates through local optimization via gradient
descent, Monte Carlo methods, or local exhaustive search. The
resulting parameters and trajectories are shown for one example
in Figure 4B.

• Generate posterior distributions by Markov chain Monte Carlo
(MCMC).

This procedure is described in more detail in the Section
“Materials and Methods.” Fitting five epitopes takes on the order
of a minute on one 2011 desktop machine (Apple iMac i7
2.93 GHz). Generating the local posterior distribution by MCMC
takes roughly 20 min for 106 steps.

COMPARISON TO SIMULATED DATA
To evaluate the accuracy and reliability of our inference scheme,
we performed true multi-locus stochastic simulations using
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FIGURE 4 | Adding epitopes one by one is a feasible and reliable
fitting strategy. Assuming we know the population was homogeneous at
t =0, there is only one free parameter for the first epitope, which is easily
determined. For all subsequent epitopes, we need to determine the seed
time τj and the escape rate εj. In (A), the negative log posterior probability
of these parameters is shown for each of the epitopes. The surface
typically exhibits a single minimum. (B) shows the genotype frequencies

of the founder virus and the dominant escape variants (solid lines: model
fit, dashed lines: actual simulated trajectories). The estimated escape rates
of individual epitopes and the seed times of genotypes containing all
escape mutations up to j are given in the legend. Only the samples
indicated by balls (20 sequences at each time point) were used for the
estimation. In this run, N =107, µ=10−5, r =0, and the escape rates
εj =0.5, 0.4, 0.25, 0.15, 0.08 per day.

FFPopSim (see Materials and Methods) and sampled genotypes
from the simulation at a small number of time points. Time
points and sample sizes were chosen to mimic patient data. We
then inferred parameters from this “toy” data set and compared
the result to the actual values. When interpreting these compar-
isons, it is important to distinguish two sources of error. First,
limited sample size and sampling frequency will incur errors due
to inaccurate estimates of the actual genotype frequencies from
the sample. The second source of uncertainty is an inappropriate
choice of model or model parameters. Such inappropriate model
choices might include wrong estimates of the population size or
mutation rates, the presence or absence of recombination, or time
variable CTL activity.

We generate data assuming escape rates εj= 0.5, 0.4, 0.25, 0.15,
0.08 per day and sample the population on days ti= 0, 20, 40,
60, 120, 250. An example of such samples is shown in Figure 2.
Note that each genotype is typically only sampled at a single data
point; it easily happens that a genotype is hardly seen at all. We
therefore expect all inferences to be quite noisy as is the case with
patient data.

Sample size and sampling frequency dependence
With more frequent and deeper sampling, inferring the model
parameters is expected to become simpler. Indeed, as soon as
each genotype is sampled more than once at intermediate fre-
quency, one can estimate its growth advantage simply from its
rate of increase. This is the rationale behind previous studies
such as (4, 6). In many data sets, however, this condition is
not met. By constraining the seed time based on the evolu-
tionary trajectory of the previous escape, our method is able
to produce a more accurate reconstruction of parameters with
less data.

Figure 5 shows the estimates obtained as a function of the
sampling frequency and sample size. Increasing the sample size
improves the estimates only moderately, whereas increasing the
sampling frequency leads to substantial improvements.

A B

FIGURE 5 |The dependence of the accuracy of inference on sample
sizes (A) and sampling intervals (B). The actual normalized escape rate is
1.0 and is shown by the dashed line. Sample size only moderately affects
the accuracy, while sparse sampling (every 40 days in this example) leads to
serious loss of accuracy. Sample size is n=20 when sample intervals are
varied, and sampling times are as illustrated in Figure 2 when sample size
is varied. The plots show the mean± one standard deviation. The actual
values of the escape rates simulated are shown in the legend (same on
both panels). In each run, N =107, µ=10−5, and r = 0. Mean and standard
deviation at each point are calculated from 100 independent simulations.

Model deviations
The population size and the mutation rate explicitly enter our
model through the seed time prior, but we rarely know these
numbers accurately. Hence we need to understand how inaccurate
assumptions affect our estimates. If we assume that Nµ is larger
than it really is, our inference method will favor seeding subse-
quent genotypes too early, which in turn results in erroneously
small estimates of escape rates. We varied N and µ and observed
the expected effect on the estimates as shown in Figure 6. The
dependence on µ is stronger than that on N, since the effect of a
larger population size is partly canceled by the longer time nec-
essary to amplify the novel mutation to macroscopic numbers.
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A B C

D E F

FIGURE 6 |The effect of assuming the wrong population parameters
on the escape rate estimates. To quantify the robustness against wrong
assumptions, we simulate escape dynamics with parameters different
from those assumed in the escape rate estimation. (A–C) show
simulations with N =107 and µ=10−5 per day, while (D–F) use a 10-fold
higher mutation rate µ=10−4. In (C,F), the simulated recombination rate
varies as shown. (A,D) Assuming a too small population size results in
estimates that are too large. The effect is more pronounced at lower
mutations rates. (B) Similarly, if the mutation rate is assumed too large,
the estimated seeding of multiple mutants occurs too early and the

estimates of escape rates are too low. Note that assuming the correct
rates [µ=10−5 in (B) and µ= 10−4 in (F)] results in unbiased estimates.
(C,F) If the population recombines, the actual seed times are smaller than
those estimated by the fitting routine. To compensate for the shorter time
interval during which the escape variant rises, the estimates of escape
rates are larger than the actual escape rates, at least at low mutation rates.
For high mutation rates, recombination is less important because
additional mutations are more efficient at producing multiple mutants than
recombination. Mean and standard deviation at each point are calculated
from 100 independent simulations.

However, even the dependence on µ is rather weak, and chang-
ing µ 10-fold only changes estimates of escape rates by ±50%.
The underlying reason is that the seed times depend primarily
on the logarithm of Nµ·Q(τj|γj-1(t )) (see equation (4)), which
peaks when Nµγj − 1(t )≈ 1. Because γj-1(t ) is growing exponen-
tially, the position of the peak changes only logarithmically with
the prefactor Nµ. Changes in µ also affect the dynamics through
the initial rise in frequency of novel genotypes due to recurrent
mutations; see equation (3).

Another factor that affects seed times is recombination. HIV
recombines via template switching following the coinfection of
one target cell by several virus particles (21). In chronic infection,
coinfection occurs with a frequency of about 1% (13, 14). Recom-
bination is not modeled in the seed time prior of our inference

method but can speed up escape by combining escape mutations
at different epitopes. As a result, if recombination is present, seed-
ing tends to happen earlier than our prior would suggest. If the
model assumes that seeding occurs later than in reality, there is less
time for an escape variant to grow to its observed frequency. Hence
the estimated escape rate (growth rate) is larger than the actual
escape rate to compensate for the shorter time. In Figure 6, we
compare the estimates obtained by applying our inference method
to simulation data with recombination. Recombination starts to
have substantial effects once coinfection exceeds a few percent.
Recombination primarily affects the incorporation of more weakly
selected mutations and can be ignored for very strongly selected
CTL escape mutations. Recombination also has negligible effects
if the mutation rate is large as is seen in Figure 6F.
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Unobserved intermediates and compensatory mutations
The time intervals between successive samples are sometimes too
large to observe the accumulation of single mutations, so the domi-
nant genotype at one time point differs by more than one mutation
from the previous. This can arise for two reasons. First, one or
several unobserved genotypes may have transiently been at high
frequency but been out-competed by later genotypes before the
next sample was taken. Second, one escape might have required
more than one mutation, for example because single mutants are
not viable and a compensatory mutation is needed (30). Both sce-
narios can be accounted for in our scheme and are illustrated in
Figure 7.

Unobserved, but individually beneficial, intermediate geno-
types can be included by assuming they all have the same escape
rate and were seeded one from the other. There is not sufficient
information to estimate more than an average escape rate for all of
them. For a given set of sampled frequencies, the estimated escape
rates increase as more and more intermediates are assumed. Such
unobserved intermediates are common in the data from infected
individuals analyzed below.

Compensatory mutations and “multiple-hit” escapes can be
accounted for by replacing the single site mutation rate in equa-
tion (4) by the effective rate at which the viable escape mutant
appears. In the simplest case where all intermediate states are lethal
and mutations are independent, this rate is simply the probability
µk , where k is the number of mutations needed. In other cases,
the rates to multiple hits can be calculated using branching process
approximations (31, 32). The choice of the relevant effective muta-
tion rate for complex escapes must be made on a case-by-case basis.
The effective mutation rate of a multiple-hit escape will often be
low enough that its seed time is not very well constrained. If, for
example, the population size is N = 108 and the effective mutation
rate is 10−10, the seed time distribution has a width of more than
100 days. Given this weak constraint, more data are required in
order to estimate the escape rate accurately; see Figure 7.

IMMUNE ESCAPE IN HIV-INFECTED PATIENTS
Cytotoxic T-lymphocyte escape was characterized in detail in
the patients CH58, CH40, and CH77 (7, 8) and further ana-
lyzed in Ganusov et al. (4). Sequences were obtained by single
genome amplification followed by traditional sequencing. The
data are sparser and less densely sampled than most of the artificial
examples analyzed above, so any estimates are necessarily rather
imprecise. Furthermore, we do not know exactly when infection
occurred or CTL selection started. The days given in the above
papers are relative to the date of identification of the patient as HIV
infected. It has been estimated that in a chronically infected patient,
there are a total of around 4× 107 infected cells (33). Hence, the
population size is N ≈ 107 but might be larger during peak viremia
or smaller due to bottleneck effects or the myriad of factors influ-
encing patient-to-patient variation in viral load. We determined
posterior distributions for population sizes ranging from N = 105

to N = 108. The mutation rate was set to 10−5 per day (10). This
value is appropriate if only one escape mutation per epitope is
available. If escape can happen in many different ways, a higher
rate of about µ= 10−4 per day should be used, so we repeated
the estimation with µ= 10−4 finding similar results; see below.
Both of these scenarios are observed (18). Recombination in HIV
occurs but is not modeled here because its rate is low (13, 14), and
it is expected to be less relevant for the strong escapes in large pop-
ulations. In large populations, recurrent mutation is often more
effective at accumulating escape mutations than recombination
between two rare variants. Nevertheless, the neglect of recombi-
nation can lead to overestimation of escape rates; see above. Lastly,
we assume that infection occurred τ= 20 days before the patient
was identified and the viral population sampled (7).

For each patient, we initially considered all non-synonymous
mutations that are eventually sampled at high frequency as poten-
tial candidates for sequential escape mutants. Nearby mutations in
the same epitope were combined into one escape. We refined this
list of candidates by considering only time points early in infection

A B

FIGURE 7 | Unobserved intermediates and compensatory mutations.
(A) shows a scenario where the genotype with only 2 escape mutations
(blue) was not observed even though this genotype was transiently at high
frequencies. We fit this scenario by assuming both mutations have the same
escape rate but occur sequentially (N =107, r =0, µ= 10−5). (B) shows a
scenario where escape mutations 3 and 4 only occur together and any

genotype containing only one of the two mutations is not viable. Hence the
effective mutation rate into the genotype is µ2

=10−10 and the waiting time
for this genotype is longer. Note that the population size is N =109 in this
example (r = 0, µ=10−5). The last escape only appears once the previous
escape mutations have reached frequency one, and the seeding time is quite
variable.

www.frontiersin.org September 2013 | Volume 4 | Article 252 | 7

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


Kessinger et al. Inferring HIV escape rates

that were sampled with more than 5 genomes per time point and
only the earliest 3-6 strong escapes. All samples used had between
7 and 15 sequences. The frequencies of these escape mutations
and their linkage into multi-locus genotypes in the 5′ and 3′ half
of the genome, which were sequenced independently, can be easily
determined from the alignment provided in Salazar-Gonzales et
al. (8). Linkage information between the 5′ and 3′ half genomes is
missing but can in all cases be imputed using the assumption of
sequential escapes. We ignored mutations whose frequency does
not increase monotonically such as pol80 in subject CH40. Later
in infection, there is extensive non-synonymous diversity and it is
not feasible to fit a time course for most of these mutations.

In CH40 we considered samples at time points t = 0, 16, 45, 111,
and 181 days and identified escape in six epitopes; the first escape
occurs in nef185, followed by three indistinguishable escapes at
gag113, gag389, and vpr74 and two additional escapes in vif161
and env145. Following Ganusov et al. (4) the number in the epi-
tope name refers to the beginning of the 18-mer peptide covering
the epitope. The mutation at env145 was not analyzed in Ganusov
et al. (4), and 145 is simply the number of the mutated amino
acid in gp120. The indistinguishable escapes gag113, gag389, and
vpr74 are treated as described in the section on unobserved inter-
mediates (all three escapes are assumed to have identical escape
rates and only their seed times are varied). Note that the fifth
escape at epitope vif161 shows almost the same escape pattern
as the three indistinguishable escapes preceding it. The escape
rates of gag113, gag389, vpr74, and vif161 should therefore be
interpreted with care. In CH58 we considered samples at time
points t = 0, 9, 45, and 85 days and identified four escapes; the
first escape is at env581 and the second at env830, followed by
nef105 and gag236. In CH77 we considered samples at time points
t = 0, 14, and 32 days and identified four escapes, namely the
first escape in tat55 and subsequent escapes in env350, nef17,
and nef73.

Given the above assumptions, we obtained estimates for the
seed time and escape rate of each mutation. For each patient, we
obtained initial estimates using a naïve single epitope fit for each
mutation; then, we iterated our multi-epitope fitting model five
times. Next, we obtained posterior distributions for the escape
rates, all shown in Figure 8, by performing a MCMC simulation
using the likelihood function given in equation (5). After obtaining
our estimates, we randomly changed the escape rates in increments
of±0.01 and the seed times by±1, reevaluated the likelihood, and
accepted the change with probability min(1, exp(∆)), where ∆ is
the change in log-likelihood. The resulting Markov chain was run
for 106 steps with samples taken every 1000 steps.

Figure 8 shows the posterior distributions of the escape rates
for different epitopes in the three patients evaluated assuming a
mutation rate µ= 10−5 per day. Larger population sizes result in
smaller estimates of the escape rates, as expected from Figure 6A.
The posterior distributions for the first escapes are often very tight,
but they depend on the time of the onset of CTL selection, which
we have set here to T = 20 days prior to the first sample. If we
assume that the time of the onset of CTL selection coincided with
the first sample (i.e., T = 0), the estimates of escape rates of the
first epitope ε1 are around 0.9, while later escapes are almost not
sensitive to the choice of T.

While the posterior distributions of escape rates of subsequent
escape rates are quite broad, they nevertheless suggest that escape
rates can be substantially higher than previously estimated (4, 6).
Furthermore, the escape rate is not obviously negatively correlated
with the time of emergence during acute infection with HIV-1, at
least for the earliest four to six escapes. The underlying reason for
this is that selection on a late escape is only active after the success-
ful multiple mutant has been produced. In previous single epitope
estimates, selection was allowed to act on the mutant frequency
from the very beginning, resulting in a reduced estimate of the
escape rate. Figure 8 also shows the inferred trajectories for the
most likely parameter combination for patient CH40. One clearly
sees the rapid rise and fall of multiple genotypes between the sec-
ond and third time point. Given the large number of genotypes
involved and the little data available, the escape rates estimated for
this case are rather noisy. But this analysis clearly shows that strong
selection is necessary to bring four mutations to fixation in just a
few weeks. We repeated the analysis of the patient data assuming
a mutation rate of µ= 10−4 and show the results in Figure 9. The
overall picture is similar to what we found for µ= 10−5 per day,
but escape rates tend to be lower.

DISCUSSION
We have suggested a way to infer viral escape rates from time series
data sparsely sampled from the evolutionary dynamics of asexual
or rarely sexual populations such as HIV. We exploit the sequential
manner in which escape mutations accumulate, which allows us
to constrain the times at which new escape mutations arose. These
constraints regularize the inference to a large extent, but addi-
tional stability is gained by prioritizing small escape rates through
an exponential prior.

Escape rates of single escape mutations have so far been esti-
mated by comparing the time series data to a model that assumes
logistic growth of the mutation with a constant rate. This approach
has been used to analyze the intra-patient dynamics of recombi-
nant HIV (34), drug resistance (35, 36), and CTL escape dynamics
(4, 6, 20, 37, 38). While these methods work well if each muta-
tion is sampled multiple times at intermediate frequencies, they
provide very conservative lower bounds when data are sparse.
Furthermore, they ignore the effects of competition between
escapes at different epitopes and assume that each epitope can
be treated independently. Since the recombination frequency in
HIV is low (13, 14, 39), this can be a poor approximation. Our
method improves on previous methods on both of these counts.
We explicitly model the competition between escape mutations.
This competition places constraints on the times at which geno-
types with multiple escapes first arise (double mutants arise only
after the single mutants), which makes the inference more robust
and the lower bound tighter.

A related method to estimate CTL escape rates has been pro-
posed by Leviyang (12), who modeled multiple escape mutations
by an escape graph that is traversed by the viral population.
Combining these two approaches, intra-epitope competition as
modeled in (12) and the between epitope competition studied
here, would be an interesting extension. Similar ideas have been
developed in the context of mutations in cancer or evolution
experiments (40).
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FIGURE 8 |The posterior distribution of the escape rates for different
population sizes. It is assumed that CTL selection starts 20 days prior to the
date of identification, and the fitness prior has weight Φ=10. The black
vertical and horizontal lines indicate the estimates and confidence intervals
obtained in Ganusov et al. (4). Note that the mutation env145 in CH40 was
not analyzed in Ganusov et al. (4). The lower right panel shows the most likely

genotype trajectories for patient CH40 with parameters N =107 and µ=10−5.
Each curve is labeled by an epitope but should be understood as the
frequency of the genotype that has escaped at this and all previous epitopes.
Note that no data are available to differentiate epitopes gag113, gag389, and
vpr74. For those, we assume an arbitrary order and equal escape rates as
explained in the section on unobserved intermediates.

While previous methods neglect interactions between epitopes
altogether – equivalent to assuming very rapid recombination –
our method ignores recombination during the inference. By com-
parison with simulations that include recombination, we have
shown that neglecting recombination can result in overestimation
of the escape rates by roughly 30% at plausible recombination
rates of 1% (13, 14). We also show that neglecting recombination
is less of a problem at higher mutation rates. Note that neglecting
recombination cannot explain the larger escape estimates com-
pared to previous studies. For patient CH58 we find escape rates
that are up to threefold higher than earlier estimates (4), while we
never see such a large deviation in our sensitivity analysis. Further-
more, the errors made when neglecting recombination for rapid
early escapes are comparable to the uncertainties that result from
infrequent sampling or more severe deviations of the model from
reality, such as time variable CTL activity.

Reanalysis of CTL escape data from HIV using our method
suggests that CTL escapes are substantially more rapid than pre-
viously thought. Even with a large prior against high escape rates
(Φ= 10), we estimate that the escape rates of the first 4–6 escapes
are on the order of 0.3-0.4 per day. The estimates at large pop-
ulation sizes are fairly insensitive to the prior for population
sizes of 106 or larger. Early in infection, it is plausible to assume
that the relevant size is N = 107 (28, 29, 41). If population sizes
are small, relaxing the prior against high escape rates results in
larger estimates, which further supports our finding that escape
rates are often large and competition between escapes needs to
be modeled. Given the sparse data, we can only estimate para-
meters of simple models and have to neglect many complicating
features of HIV biology. Among other factors, the rate at which
escape mutations are selected depends on the overall R0 of the
infection, and CTL selection is probably time variable (4). The
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FIGURE 9 | Posterior distributions of escape rate assuming a mutation rate µ=10−4 per day. See Figure 8 for other details.

estimated parameters therefore represent time averaged effective
escape rates.

The timing of escape has been shown to depend on epitope
entropy and immunodominance (42). However, we modeled only
the first four to six escapes in each patient, from which rather
little information about differential timing can be obtained. In
the case of CH77, the first four escapes occurred within a month
from the identification of the patient. In patient CH58, it took
roughly 3 months for four escapes to spread and the estimated
escape rates are lower as expected. In the case of CH40, four of the
six escapes show almost or completely indistinguishable escape
patterns and we have little power to differentiate the escape rates
at epitopes gag113, gag389, vpr74, and vif161. Hence any meaning-
ful correlation with immunological features and epitope sequence
conservation, i.e., low entropy, requires more data.

The proposed method to analyze multi-locus time series of
adaptive evolution could be useful in many context where the
genotypic compositions of large populations of viruses or cells
can be monitored over time. Whenever mutations occur rapidly
enough that they compete which each other, this competition has

to be accounted for in the analysis. Outside of virus evolution, pos-
sible applications include the development of cancer and microbial
evolution experiments.

MATERIALS AND METHODS
DATA PREPARATION
Our fitting method uses counts kij of genotypes gj at time points ti

to infer escape rates of individual mutations. The procedure used
to obtain successive genotype counts from sequence data sampled
from patients is outlined in the text. As input data, our analy-
sis scripts expect a white-space delimited text file with a format
shown in Table 1. In addition, a separate file with the total num-
ber of sequences at each time point can be provided. This file is
expected to have the same format as the matrix with the genotype
counts; see Table 1. In absence of such a file, the sample sizes at
each time point are obtained by summing the genotype counts.

To test our method, artificial data kij= k(gj, ti) were obtained
from simulated trajectories (generated by FFPopSim) by bino-
mial sampling (with size ni) at specified time points ti.
Trajectory generation and sampling are implemented in the
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Table 1 | Format of input data: the escape mutations are ordered first

by the time of first observation and then by abundance.

Time (days) Founder Env581 Env830 Nef105 Gag236

9 5 2 0 0 0

45 0 0 5 3 0

85 0 0 0 0 8

Each entry in the table in a particular column reports the number of times a

sequence is observed containing the escape of that column and all previous

escape mutations.

file model_fit/ctlutils.py at http://git.tuebingen.mpg.
de/ctlfit; see below.

Sequence data
The HIV sequences for patients CH40, CH58, and CH77 where
downloaded from http://www.hiv.lanl.gov/content/sequence/HIV/
USER_ALIGNMENTS/Salazar.html (8).

INFERENCE
The inference procedure consists of initial guessing, sequential
addition of escapes, multi-dimensional refinement, and estima-
tion of posterior distributions. The implementation can be found
in src/ctl_fit.py, with the C code for the likelihood
calculation in src/cfit.cpp.

Initial guesses
We produce initial guesses by single epitope modeling. The fre-
quency of each escape mutation, νj, grows logistically with the
escape rate (11). We expect that only the frequency of the first
escape mutation is significantly affected by mutational input,
because it receives input from the abundant founder sequence,
whereas the later escapes only receive mutational input from the
previously escaped genotype, which is still rare when the novel
escape arises. Hence we only model the mutational dynamics of
the first escape. In a single epitope model, the frequency of the
founder variant is one minus the frequency of the escape variant.
The frequency of the escape variant increases by µ(1− ν1) per
day due to mutations from the founder and decreases by µν1 due
to further mutations to additional escapes. Combined with the
logistic growth, the dynamics of ν1 is described by

ν̇1 (t ) = ε1ν1 (1− ν1)+ µ [1− 2ν1] . (6)

with initial condition ν1(0)= 0. Note the difference between the
allele frequency ν, which refers to a particular escape mutation, and
γ, which corresponds to frequencies of particular multi-epitope
genotypes. The above ODE has the solution

ν1 (t ) =
1

2ε1

[
ε1 − 2µ+ R tanh

(
α+ t

2
R

)]
(7)

where R =
√

ε2
1 + 4µ2 and α =

4µ−2ε1

4µ2+ε2
1

(11). The escape rate ε1

is determined by maximizing the likelihood (equation (5)) using
fmin from scipy (43).

The seed time τj of subsequent escape mutants gj is determined
by maximizing the seed time prior Q(τj|γj − 1) defined in equa-
tion (4) using the previously determined γj − 1. The frequencies
of mutations are assumed to follow a logistic trajectory since the
genotype from which they receive mutational input is itself still at
low frequency:

νj (t ) =
eεj(t−τj)

eεj(t−τj) + N εj

j > 1. (8)

Again, we maximize the posterior probability, equation (5), to
obtain an initial estimate of εj.

Sequential addition of escapes
Given the initial estimates for the first escape, we now add subse-
quent escapes to the multi-epitope model, which is formulated in
terms of genotype counts kij and frequencies γj(t ). Note that the
interpretation of genotype counts depends on how many epitopes
are modeled. For example, if we model epitopes 1, . . ., j out of a
total of L epitopes, counts for genotype j are kij =

∑L
l=j kil , i.e.,

we ignore all later escapes.
If the added escape is unique, i.e., no other escape mutation has

the exact same temporal pattern, we calculate the likelihood on a
21× 31 grid of escape rates and seed times; comp. Figure 4. The
grid spans values between 0 and twice the initial estimate for both
the seed time and the escape rate. The most likely combination of
seed time and escape rate is chosen, and the procedure is repeated
with the next epitope.

If multiple epitopes exhibit the same temporal pattern, we add
them all at once, constrain their escape rates to be equal, and
assume they emerged in the order listed in the genotype matrix.
Since we now have to optimize one joint escape rate and multi-
ple seed times, we do not map the likelihood surface exhaustively
but rather perform a greedy search. We examine next-neighbor
moves with steps δτ=± 1 day and δε=± 0.02 per day, moves
which change all seed times by δτ, and 20 moves in which all seed
times and escape rates are changed by δτ and δε with random
sign; the step that maximizes the likelihood is accepted. This is
repeated until no favorable move is found and further repeated
with δε=±0.01 and±0.001 per day.

Refinement
We then iterate sequentially over every epitope and optimize its
seed time and escape rate as described above, but with all other
epitopes part of the multi-epitope model. This typically leads to
rather small adjustments and converges rapidly.

Posterior distributions
To determine the posterior distribution of the escape rates, we
attempt to change all seed times and escape rates by δτ=± 1 day
and δε=± 0.01 per day with random sign. The move is accepted
with probability min(1, exp(∆)), where ∆ is the difference in log-
likelihood before and after the change. We sample this Markov
chain every 1000 moves and thereby map the posterior distribution
of seed times and escape rates.

USAGE
All source code and scripts are available at http://git.tuebingen.
mpg.de/ctlfit.
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Building
The part of our method that is implemented in C and the python
bindings can be built using make and the Makefile provided in
the src directory. Prerequisites for building are python2.7,
scipy, numpy, swig, and a gcc compiler.

Fitting
Given a text file with genotype counts specified as shown in Table 1,
fitting is performed by calling the script fit_escapes.pywith
Python. Parameters can be set via command line arguments:

python fit_escapes.py --input datafile (9)

where --input specifies the file with the genotype counts.
Other parameters can be modified in a similar manner. Run-
ning the script with the option --help prints a list of

all parameters. The estimated escape rates and seed times
as well as the sampled posterior distribution will be saved
in the directory fit_escapes_output, unless otherwise
specified.
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