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Over the past decade, much has been learnt and much more to discover about Foxp3+ reg-
ulatoryT cells (Tregs). Initially, it was thought thatTregs were a unique entity that originates
in the thymus. It is now recognized that there is a fraternal twin sibling that is generated in
the periphery. The difficulty is in the distinction between these two subsets. The ability to
detect, monitor, and analyze these two subsets in health and disease will provide invalu-
able insights into their functions and purposes.The plasticity and mechanisms of action can
be unique and not overlapping within these subsets. Therefore, the therapeutic targeting
of a particular subset of Tregs might be more efficacious. In the past couple of years, a
vast amount of data have provided a better understanding of the cellular and molecular
components essential for their development and stability. Many studies are implicating
their preferential involvement in certain diseases and immunologic tolerance. However,
it remains controversial as to whether any phenotypic markers have been identified that
can differentiate thymic versus peripheral Tregs. This review will address the validity and
controversy regarding Helios, Lap/Garp and Neuropilin-1 as markers of thymicTregs. It also
will discuss updated information on distinguishing features of these two subsets and their
critical roles in maternal-fetal tolerance and transplantation.
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INTRODUCTION
Since the identification of regulatory T cells based on CD25 expres-
sion by Sakaguchi et al. there has been a quest to decipher their
mechanisms of suppression, to identify their functional role in
different diseases and to develop therapeutic strategies to cure
disorders of immune dysregulation (1, 2). Subsequently, the tran-
scription factor, Foxp3, was discovered as a critical lineage mol-
ecule necessary for their development and function (3–5). This
discovery fortified the pillar that established their true existence
and set in motion a wide spread investigation of their role in
health and disease. Many suppressor functions of Tregs have been
described, although we have not been able to identify one central
mechanism of action (6). With the revelation that naïve CD4+

T cells can be differentiated to become Foxp3+ T cells, we now
appreciate that a Treg population can constitute various subsets,
particular those derived from the thymus and the periphery. There
have been excellent reviews on distinguishing features of these sub-
sets (7–11). With the discovery and better characterization of these
subsets, the nomenclature is becoming more variable and often
times confusing. It is difficult to know whether induced Tregs
(iTregs) is referring to those generated in vitro or in vivo. Simi-
larly, the term natural Tregs (nTregs) is often used for Tregs in the
peripheral blood of humans or lymphoid organs of animals with
the assumption that they had originated from the thymus, when
in fact they can be a composition of thymic and peripheral derived

Tregs. In this review, these terms will be used to refer to a specific
subset of Tregs: (1) Tregs= all subsets, (2) tTregs= thymic derived,
(3) pTregs= in vivo peripheral derived, and (4) iTregs= in vitro
iTregs. A recent recommendation to simplify the nomenclature
has been proposed (12). However, we feel that the elimination of
subscript and the word “cell” would make it more simplistic and
less verbose.

Several studies have shown that certain mouse strains thymec-
tomized at or before 3 days after birth led to autoimmune damage
of various organs like thyroid, stomach, ovaries, and testes and
the appearance of tissue-specific autoantibodies in the circula-
tion (13, 14). It is possible that tTregs are involved in controlling
tissue-specific autoimmunity. It has been challenging to study the
in vivo development of pTregs because of a lack of biomark-
ers to identify them. Rudensky’s group recently investigated the
role of three conserved non-coding DNA sequence (CNS) ele-
ments at the Foxp3 locus in regulating Treg development (15).
They revealed that CNS1, which possesses a TGFβ-NFAT response
element, has a dominant function in pTreg differentiation in gut-
associated lymphoid tissues. Subsequently, they demonstrated that
selective blockade in differentiation of pTregs in CNS1−/− mice
did not lead to unprovoked multi-organ autoimmunity, exac-
erbation of induced tissue-specific autoimmune pathology or
increased proinflammatory responses to Th1 or Th17 cells (16).
However these mice spontaneously developed remarkable Th2
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type pathologies at mucosal sites in the GI tract and the lungs with
hallmarks of allergic inflammation and asthma. Furthermore, they
had altered gut microbiota, suggesting the important involvement
of pTregs in regulating intestinal immunity and microbes. These
studies indicate that tTregs are sentinels of systemic and tissue-
specific autoimmunity, while pTregs serve a distinct and essential
function in controlling adaptive immunity to restrain allergic
type inflammation at mucosal surfaces. In response to inflam-
mation and integration of environmental cues, Tregs can function
to limit collateral damage (17). After eradication of the invad-
ing pathogens, the induction of pTregs can serve as peacekeepers
to suppress antigen specific response and prevent emergence of
cross-reactive T cells. Accordingly failure of these mechanisms can
result in immune mediated diseases.

A few trials with Treg immunotherapy have shown promis-
ing results, but clinical translation has been difficult because of
our inability to fully characterize these cells and understand their
mechanism of action and factors that maintain their stability in
the face of immune activation. We now recognize that there are
varieties of regulatory T cells based on their origin of develop-
ment (7). There are unique subsets of cells that contribute to the
regulatory function like IL10 producing Tr1 cells, TGFβ produc-
ing Th3 cells, CD8+ Tregs, natural killer (NK) regulatory T cells,
and regulatory B cells (Bregs). Thus the immunosuppressive cells
are more complex than we had thought earlier. These discover-
ies open up new frontiers to understand the role of these distinct
subsets of immunosuppressive cells in different situations. In this
special issue, we will restrict our focus on the different subsets of
Foxp3+ Tregs as indicated in Table 1. We will provide an updated
knowledge and issues regarding whether these markers are truly
tTreg specific: Helios, latency associated peptide (Lap)/Garp, and
Neuropilin-1. We will highlight our current understanding of
differences in generation, maintenance, survival, and function of

these Treg subsets. Accurately distinguishing pTregs from tTregs
will help to clarify the biological features and contributions of
each subset in maternal-fetal tolerance transplantation. Finally we
will touch briefly upon the challenges we face in adoptive transfer
of these cells from bench to bedside. Table 1 provides a summary
of some of the distinguishing features of the different Treg subsets.

PHENOTYPIC MARKERS
HELIOS
Ever since the recognition that Tregs can be generated in the
peripheral, there has been a focus in identifying phenotypic mark-
ers that can distinguish them from the tTregs. The ability to
discriminate the two subsets would allow for a better understand-
ing of their specific functions in certain diseases and immune
responses. This critical information would provide for more strate-
gic treatments and therapeutic development. Multiple reports have
indicated that Tregs have the potential to be plastic and can become
cytokine producers (18–20). However, in those studies, they have
assumed that the Tregs (CD4+Foxp3+) obtained directly from
human peripheral blood or mice were tTregs when in fact they
could be a composition of tTregs and pTregs. In the absence of
segregating the two subsets, it is unclear whether the plasticity is
predominately from tTregs. A similar issue occurred when many
of those same studies investigated the stability of Foxp3 in Tregs
by utilizing elegant transgenic mice where they could track a cell
that had previously expressed Foxp3. Because of this problem, we
and others have been driven to search for markers that can differ-
entiate these two subsets. We have demonstrated that Tregs from
mice and humans can be subdivided into two populations based
on their expression of Helios, a zinc finger transcription factor
(21). Approximately 70% of Tregs in peripheral blood of humans
and in peripheral lymphoid tissues of mice are Helios+. Over
95% of tTregs in the thymus of mice are Helios+. Interestingly,

Table 1 | Distinguishing features ofTreg subsets.

tTregs pTregs iTregs

Origin Thymus Periphery In vitro

Growth/development

requirement

Cytokine: IL2 (68, 69) Cytokines: IL2, TGFβ (74, 75, 98) Cytokines: IL2, TGFβ (74, 75, 98)

Costimulation: CD27 (81), CD28 (70–73),

CD40L (80)

Costimulation: TLR2 (?) (66) Costimulation: CD28 (76)

Epigenetics: CNS3 (15) Modulators: retinoic acid (78, 79) Modulators: retinoic acid (79)

Epigenetics: CNS1 (15)

Biomarkers Low TSDR methylation (86) IntermediateTSDR methylation (?) (23, 24) Intermediate TSDR methylation (87)

Helios+ (?) (21, 23, 24) Helios− (?)

Neuropilin-1+ (?) (44, 45) Neuropilin-1− (?)

LAP+ (?) (38) LAP− (?)

LRRC32/GARP+ (?) (36) LRRC32/GARP− (?)

Antigen recognition High-affinity TCR

Predominantly self-antigens (53–60)

Chronic/suboptimal TCR stimulation (59,

61, 62)

Environmental/microbial antigens (65–67)

tTregs= thymic derived, pTregs= in vivo peripheral derived, and iTregs= in vitro induced Tregs. Numbers in parenthesis are references. Question mark indicates

controversial or unknown.
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the vast majority of IL2+, IL17+, and IFNγ+ Tregs are local-
ized within the Helios− population. We and others have analyzed
human cord blood and thymus specimens and have found that
>90% of Tregs are Helios+ (22). While we cannot definitively rule
out that the <10% Helios− Tregs are thymic derived, they might
have been generated in the peripheral during the fetal gestation
for the cord blood or peripherally recirculated for the thymus.
Therefore, from our study, we have concluded that Helios is a
marker of tTregs and the Helios− subset represents pTregs. Sub-
sequently, we and McClymont et al. have demonstrated that the
human Foxp3+Helios+ Tregs contain <10% CpG methylation
in the Treg-specific demethylation region (TSDR) of the Foxp3
promoter, while the Foxp3+Helios− subset are >40% methy-
lated (23, 24). In addition, McClymont et al. have shown that
the IFNγ+ Tregs from patients with type 1 diabetes are Helios−

and predominately methylated at the TSDR.
Since our initial report, subsequent studies from other groups

have challenged our claim that Helios is a marker of tTregs. The
first study showed in murine experiments using 5C.C7 Rag2−/−

transgenic mice that Helios could be expressed in vitro in iTregs
and in vivo in pTregs (25). Their findings revealed that in vitro
expression of Helios in iTregs was dependent on the presence of
antigen-presenting cells (APCs). Using a 5C.C7 Rag2−/− CD45.1+

T cells adoptively transferred into B10. A wild-type recipients
and low dose immunization with intravenous injection of moth
cytochrome c (MCC) peptide, they were able to observe induc-
tion of pTregs with the majority expressing Helios. Since these
were transgenic mice that lack tTregs, similar experiments using
polyclonal CD4+Foxp3-GFP− cells from wild-type mice would
be necessary to confirm that the expression of Helios could be
induced in these cells. Another study using human experiments
presented data indicating that tTregs could be Helios− (26). They
based this claim from the observation of a few healthy donors (age
unknown) that ∼30–40% of naïve Foxp3+ Tregs in the peripheral
blood were found to be Helios−, regardless of the combinations
of naïve markers used: CD45RA, CCR7, CD62L, and CD31. The
challenge with human system is that things are in a dynamic state,
particularly the peripheral blood which is a highway for traffick-
ing from one site to another. Therefore, it is unclear whether the
“naïve” Helios− Tregs had been stimulated recently to become
pTregs but had not yet altered their naïve markers. There is no
evidence to support that the down-regulation of these markers is
a permanent state as the naïve cell becomes a memory cell. Since
>90% of cord blood Tregs are Helios+, some of these naïve tTregs
can lose their expression of Helios over the human lifespan. If
this process is true, then the absence of Helios expression is not a
stringent marker for pTregs. Contrary to our results, their study
showed that sorted human CD4+CD45RA+Foxp3+Helios+ and
Helios− Tregs have similar low methylation profile in the TSDR.
Based on all the current data thus far, it is evident that Tregs can be
subdivided into two subsets based on Helios expression. However,
at this point it is controversial whether Helios accurately defines
tTregs. A recent discovery by Rudensky et al. shed new light into
the role of conserved non-coding DNA sequence (CNS) elements
in the Foxp3 locus for determining the fate of tTregs and pTregs
(15). Their study indicates that CNS3 is essential for the devel-
opment of tTregs and pTregs. While CNS1, which contains the

TGFβ-NFAT response element, plays a major impact in pTregs
generated in gut-associated lymphoid tissues, it is not absolutely
obligatory. CNS1−/−Foxp3-GFP− T cells still possessed the capac-
ity to convert into pTregs in vivo, although significantly less than
wild-type controls. Unfortunately, there is no mention of whether
the Tregs in CNS1−/−mice are predominately Helios+. Therefore,
in the absence of a lineage marker that can truly identify pTregs,
we are left with correlative markers that might be influenced by
different diseases and microenvironment.

Our work has ignited an intense investigation into these two
subsets. Several studies have examined whether there is a prefer-
ential expansion or selection of either subset in human diseases.
Elkord et al. observed that there was an increased frequency of
Helios+ Tregs in the peripheral blood of patients with renal cell
carcinoma, particularly after IL2 treatment (27). Another study
revealed that there was a selective preservation of the Helios+ Tregs
in kidney transplant recipients that received thymoglobulin induc-
tion and a reduction in control patients (28). Similarly, others have
noted an expansion of Helios+ Tregs in patients with active sys-
temic lupus erythematosus (29). In a murine model of human
glioblastoma multiforme, the study demonstrated that the tumor-
infiltrating Tregs were of thymic origin based on their expression
of Helios and reduction after thymectomy (30). A recent study
utilized an in vitro stimulation assay with T cells and monocytes
to identify that the proliferation of Helios+ Tregs was inhibited by
IL12 produced from CD16+ monocytes, while the Helios− Tregs
were inhibited by TNFα from CD16− monocytes (31). In our ini-
tial study, we were unable to identify the function of Helios in
Tregs. However, a recent study has indicated that Helios can reg-
ulate IL2 production in Tregs by inducing epigenetic silencing of
IL2 gene expression (32). This finding does support our observa-
tion that the vast majority of IL2 production in Foxp3+ Tregs is
localized within the Helios− subset. At this point, more studies are
needed to acquire a better understanding of the role of these two
subsets in human diseases and whether they are distinct entities
or alter egos.

Lap/Garp COMPLEX
Although Lap, a component of latent TGFβ, was found to be
expressed on the surface of Tregs, it was unclear how this
pleiotropic cytokine was attached to the membrane (33, 34).
Another study has identified Garp (Lrrc32) as a Treg-specific cell
surface molecule that has suppressive function and the ability to
induce Foxp3 expression (35). However, it was unknown how Garp
mediated these functions. Recently, we and others have demon-
strated that Garp (Lrrc32) is the membrane anchoring molecule
that binds to latent TGFβ within the Tregs and facilitates its surface
expression (36, 37). Therefore, surface Lap on Tregs is a complex
of Garp, Lap, and active TGFβ. We and others have shown that
surface Garp and Lap expression selectively identifies activated
Tregs that represent a stable subset with highly potent suppres-
sive function (38, 39). The vast majority of cytokine-producing
Foxp3+ Tregs are within the Lap− subset. Moreover, the iTregs fail
to express surface Lap or Garp. Based on these observations, we
have established that the selection of Lap+ Tregs is an efficiency
method to repurify bona fide Tregs from the contaminating Lap−

Tregs and Foxp3− T cells during Treg expansion. We believe that
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the Lap+ Tregs represent a highly potent and stable subset ideal
for Treg immunotherapy. However, it remains controversial as to
whether this membrane-bound TGFβ is involved in the develop-
ment, maintenance, or suppressor function of Tregs (40). A recent
study showed that Garp-transgenic mice with forced expression of
Garp on all T cells resulted in reduction of Tregs in the thymus and
periphery (41). A subsequent study observed that transgenic mice
with Garp-deficient Tregs developed normally (42). The absence of
Garp on the Tregs did not compromise their suppressive function.
Instead, the membrane-bound TGFβ was important for induction
of both Th17 and pTregs/iTregs. Along the same line, we and oth-
ers have recognized that IL1 receptors are preferentially expressed
on activated Tregs but not on iTregs (38, 43). While the recep-
tors (CD121a and CD121b) do not appear to be involved in Treg
suppressor function, they might play an important role in regulat-
ing the development of Th17 and pTregs. Nonetheless, it remains
unclear whether Lap+ or CD121a+/CD121b+ Tregs are derived
from the thymus. Interestingly, the study by Shevach et al. has
demonstrated that mouse iTregs and pTregs could express Garp,
which is contradictory to our human studies (42).

NEUROPILIN-1
There have been several claims that neuropilin-1 (CD304) is a
surface marker of Tregs (44, 45). It can function to enhance the
interaction between Tregs and dendritic cells (DCs) during antigen
recognition (46). Another possible function of CD304 is for medi-
ating Treg infiltration into the tumor microenvironment (47). In
this study, the authors showed that mice with specific deletion of
CD304 in T cells were less susceptible to tumor growth. How-
ever, adoptive transfer of WT Tregs in these mice significantly
increased the tumor growth, suggesting the role of CD304 in
mediating Treg migration into the tumor site to modulate anti-
tumor immune responses. Recently, two studies demonstrated in
murine models that CD304 can distinguish tTregs from iTregs and
pTregs (48, 49). The first study used myelin basic protein (MBP)-
specific TCR transgenic mice (1B3) crossed with Rag−/− mice
to show that pTregs could spontaneously develop after 3 weeks
in these mice, but interestingly the pTregs had absence to low
CD304 expression unlike the Tregs from WT controls (48). Even
with the generation of pTregs, these mice still developed exper-
imental autoimmune encephalomyelitis (EAE) by 3–4 weeks of
age. Moreover, in an EAE model, the adoptive transfer of these
pTregs failed to attenuate the disease as compared to total Tregs
or CD304hi Tregs. The second study also revealed similar evidence
for the differential expression of CD304 on tTregs versus pTregs,
except that in the inflamed tissues such as the spinal cords from
EAE or the lungs from OVA-induced asthma mice, a large por-
tion of the pTregs were found to express high level of CD304 (49).
While these murine studies are insightful to our understanding of
Treg development and potential biomarkers, the translation into
human studies can be controversial. We have not been able to
appreciate much expression of CD304 on human Tregs in periph-
eral blood of healthy donors and in Tregs during in vitro expansion
(50). Another study also argues against the applicability of CD304
as a marker of human Tregs (51). That study showed that CD304
was not differentially expressed on human Tregs from thymus,

blood, lymph nodes, and tonsils. Similarly, a different study also
exposed that CD304 was not a selective marker of human Tregs
in lymph nodes or peripheral blood (52). Therefore, the data do
not support CD304 as a marker of human tTregs. However, Tregs
expressing CD304 represent a unique subset of Tregs that appear
to possess distinguished properties and functions.

Overall, there is a discrepancy between the mouse and human
studies regarding Helios, Garp, and CD304 as markers that can dif-
ferentiate tTregs from the other subsets of Tregs. The evidence thus
far would indicate that murine data are not translatable to human
and therefore should be interpreted with caution. Human studies
should continue to investigate these subsets of Tregs to gain more
insights into their functions and roles in different diseases and
inflammatory conditions. At this point, we still lack a definitive
lineage biomarker to identify between tTregs and pTregs.

DISTINGUISHING FEATURES
ANTIGEN SPECIFICITY AND AFFINITY
tTregs are generated in the thymus by positive selection when MHC
class II restricted self-peptides with high-affinity are presented to
CD4+ thymocytes (53–55). The thymic medulla appears to be
the critical compartment for their development (56). Their signal
strength of TCR stimulation is greater than that required for pos-
itive selection and lower than that required for negative selection.
In MHC class II restricted transgenic TCRs expressed in a Rag2−/−

mice, positive selection resulted in development of CD4+ thymo-
cytes but not tTreg cells (57). On the other hand, a low affinity anti-
gen would result in the generation of fewer CD4+CD25+ cells (58–
60). Therefore, signal strength plays an important role in directing
CD4+ thymocytes in the thymic medulla toward tTreg lineage.

pTregs are generated in the periphery from naïve CD4+CD25−

T cells preferentially in the peripheral lymphoid tissues. Elegant
experiments by Apostolou et al. and Thorstenson et al. showed
CD4+CD25− T cells from Rag−/− TCR transgenic mice adop-
tively transferred into antigen-expressing transgenic mice or mice
that have received intravenous or oral tolerizing dose of peptide
antigen can be converted to a CD4+CD25+ regulatory T cells
(59, 61). Gottschalk et al. have shown that a low antigen dose
of a high-affinity TCR ligand is optimal to induce a persistent
population of pTregs in vivo (62). Similarly, high doses of pep-
tides or polyclonal TCR stimuli could prevent Foxp3 induction via
NFκB-dependent cytokine production (63, 64). Therefore tTregs
are generated in the thymus in response to intermediate/high-
affinity interaction with self-antigen; whereas pTregs are induced
in the periphery in response to a low/suboptimal dose of high-
affinity alloantigen. Another source of antigens for peripheral
education of pTregs could come from colonic commensal micro-
biota (65–67). Intestinal microbiota such as Clostridium species
can promote induction of colonic pTregs that correlates with
increased bioavailability of TGFβ (67). In the Lathrop et al.
study, the colonic Tregs have a different TCR repertoire than
Tregs from other peripheral sites (65). These unique TCRs are
not involved in tTreg development. In the Round and Maz-
manian study, they revealed that polysaccharide A from Bac-
teroides fragilis can mediate the generation of IL10 producing
pTregs via Toll-like receptor 2 (TLR2) signaling (66). It appears
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that the generation of pTregs is more complex than simply
TCR signaling alone. A collaboration of other signaling path-
ways such as TGFβ, IL2, retinoic acid, TLRs, and cytokine milieu
are needed to direct a naïve T cell toward a pTreg or other
effector subsets.

COSTIMULATION
Interleukin-2 (IL2) and strong CD28 costimulation are essential
for the development of tTregs. Knockout mice of IL2R−/− and
CD28−/− failed to generate tTregs and developed severe lethal
autoimmunity early in life (68, 69). IL2 is important but might
not be necessary for tTreg development and CD28 stimulation
may be the most important factor for their development (70–72).
In contrary, a recent study has created Treg-specific CD28 condi-
tional knockout mice and interestingly, they have normal numbers
of tTregs (73). However, these mice developed severe autoimmu-
nity due to profound proliferative and survival dysfunction in the
Tregs. TGFβ, though not involved in driving tTreg development
and lineage commitment, might provide useful signals for survival
during early tTreg development (74). On the other hand, IL2 and
TGFβ are required for generation of iTregs (75, 76) While CD28
signaling appears to be important for iTreg generation (77), strong
CD28 costimulation is detrimental by mediating downstream
lymphocyte-specific protein tyrosine kinase (Lck) signaling (78,
79). Molecules that can modulate the CD28 costimulation would
influence the differentiation of pTregs, such as the case for all-trans
retinoic acid. In this study, the treatment with all-trans retinoic
acid during in vitro culture of naïve T cells with DCs express-
ing high level of CD80/CD86 costimulatory molecules resulted in
enhanced induction of iTregs (80). One possible explanation is
that all-trans retinoic acid can increase histone methylation and
acetylation within the promoter and CNS elements at the Foxp3
gene locus (81).

Ultimately, it is the APCs that are the key regulators of
Treg development. It has been suggested that plasmacytoid
DCs in the human thymus could promote the development of
CD4+CD25+Foxp3+ tTregs when activated with CD40 ligand
(CD40L) and IL3 (82). Recently, a new study has revealed that
CD27-CD70 costimulatory pathway is essential for tTreg devel-
opment by rescuing them from apoptosis, subsequent to Foxp3
induction by TCR and CD28 signals (83). The CD70 on medullary
thymic epithelial cells (mTECs) and DCs in the thymic medulla
triggers the CD27 signal on tTregs to promote their survival
by inhibiting the mitochondrial apoptosis pathway. In contrast,
CD103+ DCs that are found in the mesenteric lymph nodes and
lamina propria of the small intestine can enhance the conversion
of pTregs (84, 85). In peripheral lymphoid tissue, CD8+CD205+

splenic DCs appear to play a specialized role in pTreg development
by producing TGFβ (86). Thus the APCs, the microenvironment,
cytokine milieu, and costimulatory molecules all collaborate in the
generation and maintenance of tTregs and pTregs.

STABILITY AND PLASTICITY
tTregs appear to be more stable in vivo probably due to the con-
tinuous exposure to self-antigens. IL2 and TGFβ are required
for Treg stability and regulatory function. While TGFβ1 is not

required for thymic development of Tregs, it is essential for the
maintenance of Foxp3 expression, suppressor function, and sur-
vival in the periphery (87). This phenomenon is likely due to
the methylation status at the Foxp3 TSDR region. tTregs show
consistently demethylated TSDR region and are a more stable
pool of suppressive cells in the presence of IL2 (88). The level of
TSDR demethylation can discriminate Tregs from in vitro iTregs
or activated Foxp3+ conventional T cells (89). In the presence of
inflammatory cytokines like IL6, Tregs lose their Foxp3 expres-
sion, are less suppressive and a certain percentage of them convert
to pathogenic memory T cells (90, 91). A potential issue with
these studies is that they assume the Tregs are tTregs instead of
a composition of tTregs and pTregs. It is possible that the insta-
bility is coming from the pTreg subset. In support of this notion,
a subsequent study refuted this debatable topic of Treg plastic-
ity by demonstrating the stability of Tregs under physiologic and
inflammatory conditions (92). This study also uses genetic fate
mapping technical to track Tregs, even after they had lost Foxp3
expression. Unlike continuous labeling used in previous studies,
this study utilizes inducible labeling of Foxp3 expressing cells to
eliminate the constant incorporation into the labeled cells that
had transiently up-regulated Foxp3. This strategy enables accu-
rate assessment of bona fide Treg maintenance and stability. There
is still considerable debate on this topic that needs to be resolved
because of its important implications in diseases and therapeutic
applications (93).

The question of whether iTregs are stable and can be manu-
factured in human continues to be of great interest, because the
ability to create Tregs with different antigen and homing speci-
ficities offers enormous therapeutic potentials. The human iTregs
generated from naïve T cells are not anergic,non-suppressive, tran-
sient, and highly methylated in TSDR (89, 94, 95). It appears
that Foxp3 is promiscuous and has other novel functions in
conventional T cells (96). One possible explanation for the lack
of regulatory phenotype in human iTregs is their inability to
achieve high and sustained level of Foxp3 expression. Lentiviral-
based overexpression of Foxp3 can reprogram naïve and mem-
ory CD4+ T cells to possess similar phenotype and function
as ex vivo Tregs (97). Several studies have suggested that iTregs
are stable in vivo, even under inflammatory conditions (98, 99).
However, other studies have revealed that iTregs and pTregs are
highly unstable under certain conditions. iTregs depend on IL2
and STAT5 signaling in vivo to stabilize their Foxp3 expres-
sion (100). Suppressor of cytokine signaling 2 (SOCS2) protein
is equally important to prevent IL4 induced Foxp3 instabil-
ity and secretion of proinflammatory cytokines in iTregs and
pTregs (101). Signaling through receptors for C3a and C5a can
also negatively impact the generation, function, and stability of
iTregs and pTregs (102). Of most concern from a therapeu-
tic standpoint is the possibility of reversion into pathologic,
non-Tregs, as demonstrated in a murine study showing that
alloantigen-specific iTregs can rapidly revert in vivo and fail to
protect experimental graft versus host disease (GVHD) (103).
While this finding is controversial, it still raises a concern that
needs to be monitored and approached with caution in human
clinical trials.
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DISEASE ASSOCIATION
TREGS IN MATERNAL-FETAL TOLERANCE
Pregnancy is a physiological condition in which tolerance to pater-
nal alloantigens is critical for coexistence of the mother and fetus
across the placental barrier. Accumulating data indicate that Tregs
play a pivotal function in immune tolerance during pregnancy
(104, 105). During pregnancy there is an increase in the number of
Tregs in pregnant mice and humans (106, 107). Antibody mediated
depletion of Tregs during pregnancy led to increased reabsorption
of embryos and reduced litter size in allogeneic matings in mice
(108, 109). Women with decreased Treg numbers had increased
rates of abortion and preeclampsia (110, 111). Treg expansion was
shown to be essential for tolerance of the semi-allogeneic fetus in
healthy pregnancy and was impaired in preeclampsia in humans
(112). With regard to the subsets of Tregs, there was an expan-
sion of Helios− Tregs over the Helios+, particularly in the decidua
during healthy pregnancy (113). In preeclampsia, this preferential
expansion of Helios− Tregs was impaired. All of these studies beg
the question regarding which subset of Tregs is more critical during
reproduction. To address this question, Rudensky group utilized
their CNS1−/− mice that have impaired development of pTregs
to investigate their role in maternal-fetal immune tolerance (114).
The study reported that mating CNS1−/− female mice with allo-
geneic but not syngeneic males resulted in increased fetal resorp-
tion. There was insufficient generation of pTregs in the decidua,
leading to increased immune cell infiltration and defective remod-
eling of spiral arteries. It remains unclear as to the source of TGFβ

and the APCs involved in the induction of pTregs. One study sug-
gests that trophoblast cells can be involved in the recruitment and
induction of iTregs based on in vitro culture data (115). The study
shows that trophoblast cell lines, Swan-71 and HTR8, constitu-
tively secrete high levels of TGFβ for the induction of iTregs. We
now have a better understanding of maternal-fetal tolerance and
the importance of Tregs, particularly the pTreg subset.

TREGS IN TRANSPLANTATION
In hematopoietic stem cell transplantation, graft rejection or
GVHD occurs when the activated CD4+ and CD8+ T cells recog-
nize alloantigen expressed on MHC presented by self or allo APCs
and initiate an immune response against self. Current methods
of immunosuppression using calcineurin or mTor inhibitors or
antimetabolites are clearly insufficient as rates of mortality and
morbidity associated with GVHD remain high. Adoptive transfer
of Tregs has shown promise in mouse models to suppress autoim-
mune disease, prevent graft rejection and GVHD in hematopoietic
stem cell transplantation (50, 116, 117). Acute GVHD typically
occurs in a relatively short window between 1 and 3 months after
which central tolerance develops and provides lifelong protection
against adverse allo-responses. The predictable timeline of this
immune phenomenon and its potential to cause significant mor-
bidity and mortality makes it a good indication for adoptive Treg
therapy (118–120).

While murine data are very promising, there are practical
problems in translating Treg therapy to the clinic. First and fore-
most, we have not characterized Tregs enough to isolate a pure
population of human CD4+Foxp3+ Tregs. Using magnetic bead

separation under cGMP conditions, we can isolate between 60
and 70% CD4+CD25+Foxp3+ cells with the majority of the con-
taminants being CD4+CD25+Foxp3− cells (38, 121). Secondly
we do not have sufficient numbers as 1:1 Treg to effector T cell
ratio is required to get effective immunosuppression (122). Thus
there is a need to expand these cells ex vivo to achieve sufficient
numbers. But Tregs are anergic to begin with and difficult to
expand. Expansion protocols using anti-CD3/CD28 conjugated
beads can generate sufficient number of Tregs but the expanded
cells cannot maintain their Foxp3 expression and would lose their
suppressive potential. To overcome some of these hurdles, Hip-
pen et al. have generated large numbers of Tregs for clinical use
by stimulating Tregs in the presence of rapamycin with anti-
CD3 antibody-loaded, cell-based artificial antigen-presenting cells
(aAPCs) that expressed the high-affinity Fc receptor and CD86
(123). These cells maintained their Foxp3 expression and sup-
pressive function when infused into humanized GVHD mouse
model. Infusion of Tregs has been shown to be safe. In these trials
there was no statistically significant difference in rates of relapse,
graft rejection, and infections (124). In fact as shown by Di Ianni
et al. immune reconstitution was faster since these patient did
not receive prolonged immunosuppression using pharmacologi-
cal agents (125). In the Minnesota trial using umbilical cord blood
Tregs, rate of grade 3–4 GVHD was 43% as opposed to 61% in
historical controls (126). GVHD suppression was best when Tregs
were detected on day 14 post infusion and there was minimal or
no suppression when Tregs lasted only about 3 days, indicating
that the longevity of Tregs made the difference. In the Italian trial
using freshly isolated Tregs, only 2 out of 28 patients developed
acute GVHD, but overall survival was not superior to controls
(125). Infusion of Tregs is still a concern because of their instability
and potential to convert to effector T cells. Adoptively transferred
Tregs can convert to Th17 cells or helper T cells especially in lym-
phopenic host with potential pathologic effects (90, 127, 128). The
plasticity of Tregs is most susceptible in an inflammatory envi-
ronment in the presence of IL6 (91, 129). The issue of stability
and homogeneity of Treg therapeutic products have been a major
concern for us. It should be noted that expansion of Tregs is a com-
position of tTregs, pTregs, and contaminating non-Tregs. At this
time, it is unclear whether the detection of these reverted or unsta-
ble Tregs are coming from the pTregs or tTregs. We believe that
Lap+ Tregs represent a more homogeneous and stable population
than the bulk heterogeneous parental population that has been
expanded ex vivo for over 3 weeks (38). Ultimately like all drug
manufacturing, we should strive to achieve the highest purity and
homogeneity when developing a Treg product for cellular ther-
apy in order to achieve predictable efficacy, interpretability, and
minimal side effects.

Conventional CD4+ T cells can be induced to express Foxp3,
although their suppressive functions remain controversial (94).
Hippen et al. have generated clinical grade iTregs from CD4+ con-
ventional T cells in the presence of TGFβ1, IL2, and rapamycin
(130). These cells were much more stable and immunosuppressive
in the xenogenic GVHD model. The approach of using polyclonal
iTregs appears promising, but we do not know whether they will
exert their immunosuppressive effect in an antigen independent
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manner in the human host. We do not know whether they will
revert to effector cells that may have pathogenic potential as shown
by Schmitt et al. in a colitis model for inflammatory bowel disease
(131). It is unclear whether treatment with DNA methyltrans-
ferases and histone deacetylases inhibitors should be incorporated
into the protocol to enhance their stability. Furthermore, our
knowledge is lacking on the fate of these cells after they have been
infused into the human body. Nevertheless, the infusion of these
cells might just be sufficient to tip the balance away from an inflam-
matory response and induce infectious tolerance (132). Finally we
might have to co-transfer Tregs and iTregs to get the best results
to control GVHD after hematopoietic stem cell transplantation.
Further understanding of the Treg subsets and their interaction
with DCs and the cytokine milieu might help us deliver a better
product for adoptive transfer.

DISCUSSION
A great deal of work has been accomplished in the past decade on
Tregs, because of their central role in immune homeostasis, main-
tenance of tolerance, and regulation of inflammation. Within the
Foxp3+ Tregs, we now appreciate that they are composed of two
distinct subsets originating from either the thymus or the periph-
ery. Murine studies indicate that CNS1 is an essential factor in
the development of pTregs. These findings need to be translated
in human studies to assess whether mutations in this region are
associated with particular diseases. Although there are plasticity
and concerns for stability in these Tregs, it appears that the pTregs
are most vulnerable. Physiologically, this plasticity in the pTregs
might play an important function in their diversity depending on

their environment. While studies are continuing to investigate and
demonstrating preferential involvement of certain subsets of Tregs
in particular diseases, a major hindrance still exists due to a lack of
convenient and definitive biomarkers that can distinguish between
tTregs and pTregs.

Another major breakthrough is the ability to generate Tregs in
large quantity for cell-based treatment to reestablish immunologic
tolerance. A major therapeutic concern is that these Tregs are poly-
clonal in antigen-specificity and heterogeneous in composition of
tTregs, iTregs, pTregs, and non-Tregs. The capability to identify
and purify a more homogenous Treg population would provide
a better cellular product with the potential for greater efficacious
and minimal side effects. While more clinical trials are needed
to translate the promising results of preclinical studies, the the-
oretical concerns discussed above should be taken seriously and
our approach should have safe-guard mechanisms to disable their
functions in the event that they become pathologic. Of men and
mice are not always the same and translatable. There are still major
concerns as to whether iTregs can be generated in humans. Stabil-
ity and function in vitro or in vivo of humanized murine models
are not equivocal to the remaining lifespan of a human being after
the cells have been infused. The question is whether trading cancer
for autoimmunity or exchanging one autoimmunity or another is
acceptable. Nevertheless, we are encouraged and excited because
of the curative potential of these novel cell-based therapies over
our existing drug-based treatments. The thought of a one-time
treatment to cure a condition over a lifelong administration of
drugs to only prolong the inevitability of a disease is driving our
innovation to achieve this development.
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