
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 17 September 2013

doi: 10.3389/fimmu.2013.00278

Development of novel arginase inhibitors for therapy of
endothelial dysfunction
Jochen Steppan, Daniel Nyhan and Dan E. Berkowitz*

Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA

Edited by:
Rudolf Lucas, Medical College of
Georgia, USA

Reviewed by:
Rudolf Lucas, Medical College of
Georgia, USA
Matthias Clauss, Indiana University,
USA

*Correspondence:
Dan E. Berkowitz, Department of
Anesthesiology and Critical Care
Medicine, The Johns Hopkins
University School of Medicine, 1800
Orleans Street, Baltimore, MD 21287,
USA
e-mail: dberkow1@jhmi.edu

Endothelial dysfunction and resulting vascular pathology have been identified as an early
hallmark of multiple diseases, including diabetes mellitus. One of the major contributors
to endothelial dysfunction is a decrease in nitric oxide (NO) bioavailability, impaired NO
signaling, and an increase in the amount of reactive oxygen species (ROS). In the endothe-
lium NO is produced by endothelial nitric oxide synthase (eNOS), for which L-arginine is
a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes L-arginine,
thereby directly competing with eNOS for their common substrate and constraining
its bioavailability for eNOS, thereby compromising NO production. Arginase expression
and activity is upregulated in many cardiovascular diseases including ischemia reperfu-
sion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since
the 1990s, specific arginase inhibitors such as N -hydroxy-guanidinium or N -hydroxy-nor-
L-arginine, and boronic acid derivatives, such as, 2(S)-amino-6-boronohexanoic acid, and
S-(2-boronoethyl)-L-cysteine, that can bridge the binuclear manganese cluster of arginase
have been developed.These highly potent and specific inhibitors can now be used to probe
arginase function and thereby modulate the redox milieu of the cell by changing the balance
between NO and ROS. Inspired by this success, drug discovery programs have recently
led to the identification of α–α-disubstituted amino acid based arginase inhibitors [such as
(R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid], that are currently under early
investigation as therapeutics. Finally, some investigators concentrate on identification of
plant derived compounds with arginase inhibitory capability, such as piceatannol-3′-O-β-D-
glucopyranoside (PG). All of these synthesized or naturally derived small molecules may
represent novel therapeutics for vascular disease particularly that associated with diabetes.

Keywords: endothelium, endothelial dysfunction, arginase, L-arginine, nitric oxide synthase, reactive oxygen
species, diabetes mellitus

NITRIC OXIDE AND ITS REGULATION BY ARGINASE
The endothelium plays a major role in cardiovascular physiol-
ogy. The intact structure and integrity is vital for endothelial
cells in order to fulfill their role separating blood flow from
surrounding tissues and ensuring an anti-thrombogenic surface.
Previously only known of as a passive barrier between those two,
the endothelium is now considered a main hub for regulating
vascular tone, hemostasis, immune function, structure, smooth
muscle cell proliferation, and migration. The combined amount
of surface area of the endothelium can reach up to 350 m2 in
total (1). Endothelial dysfunction has been identified as an early
harbinger of multiple diseases and resulting vascular pathology.
One of the major contributors to endothelial dysfunction is a
decrease in nitric oxide (NO) bioavailability, impaired NO sig-
naling, and an increase in the amount of reactive oxygen species
(ROS). NO is not only a potent vasodilator and essential in reg-
ulating vascular tone and blood pressure, but it also contributes
to the regulation of hemostasis, platelet, and leukocyte adhesion
as well as vascular smooth muscle cell proliferation. It is freely
diffusible with a half-life of just a few seconds prior to its con-
version into nitrates and nitrites that are ultimately excreted. NO
is synthesized by nitric oxide synthase (NOS), a family of P450

mono-oxygenase-like enzymes which exist in one of three iso-
forms: nNOS or NOS-1 (neuronal NOS in the central nervous
system, skeletal muscle, and pancreas), iNOS or NOS-2 (inducible
NOS in activated macrophages, heart, liver, and smooth muscle
cells), and eNOS or NOS-3 (endothelial NOS in the endothelium,
brain, and epithelium). In the endothelium NO is produced by
eNOS (endothelial NOS), which uses l-arginine as a substrate after
activation by either chemical agonists or mechanical forces (shear
stress). The process of NO synthesis involves firstly the oxidation
of arginine to NG-hydroxy-l-arginine (NHA) using nicotinamide
adenine dinucleotide phosphate (NADPH) and O2 catalyzed by
NOS (2). The second step involves the production of NO when
NHA is converted to l-citrulline via NOS. The actions of NOS
are accelerated by the cofactors flavin adenine dinucleotide (FAD),
flavin mononucleotide (FMN), and tetrahydrobiopterin (BH4). In
the absence of its substrate l-arginine or its cofactor BH4, eNOS
uncouples and produces ROS, making it one of the four major
enzymes involved in the production of vascular ROS. (The others
are xanthine oxidase, NADH/NADPH, the mitochondrial electron
transport chain,and eNOS). NOS uncoupling is an important con-
tributor to endothelial dysfunction and plays a crucial role in the
cardiovascular phenotype. Arginase, a critical urea cycle enzyme,
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also utilizes l-arginine. It thereby directly competes with eNOS for
their common substrate l-arginine and constrains its availability
to eNOS, compromising NO production and increasing the pro-
duction of ROS by NOS uncoupling (3–5). Arginase, which is
present in two isoforms (arginase I in the liver and arginase II
extrahepatic) catalyzes the final step of the urea cycle yielding l-
ornithine and urea from l-arginine. Arginase II appears to be the
predominant isoform in human endothelial cells (6) and is highly
compartmentalized. There appear to be at least three distinct pools
of l-arginine that are spatially confined and regulated by different
transporters and enzymes (7, 8). Thus, local concentrations of l-
arginine in microdomains in which NOS and/or arginase might
be located may be limiting for NOS isoforms. This concept of
the l-arginine paradox is found in the mammalian organism by
which l-arginine concentrations by far exceed K m values of NOS.
Consequently, additional l-arginine should not augment nitric
oxide formation. In vivo however, increasing the plasma concen-
tration of l-arginine has repeatedly been shown to increase NO
production (4). The three existing pools of arginine within the
cell are (1) a freely exchangeable pool (pool I) with extracellular l-
arginine that is regulated by the cationic transporter (CAT-1) and
depleted by exchanging the pool with cationic amino acid lysine,
(2) a non-freely exchangeable pool (pool II) with extracellular l-
arginine that cannot depleted by l-lysine, and (3) extracellular
l-arginine pools (pool III) present in endothelial cells and mito-
chondria in which arginase II modulates NO synthesis through a
non-freely exchangeable l-arginine pool (9). According to recent
paradigms, the not freely exchangeable l-arginine pool II is com-
posed of two cytosolic microdomains. The major function of pool
IIA appears to be the result of citrulline recycling and conversion to
arginine by a combined reaction of argininosuccinate synthetase
and argininosuccinate lyase (10). The remaining l-arginine pool
IIB, which is mainly used by mitochondria, is composed of l-
arginine gained by protein breakdown and cannot be depleted
by neutral amino acids such as histidine. Arginase expression
and activity is upregulated in many diseases including ischemia
reperfusion injury (in the heart, lung, and kidneys), hypertension,
atherosclerosis, aging, diabetes mellitus, erectile dysfunction, pul-
monary hypertension, and aging. Furthermore it can be induced
by lipopolysaccharide (LPS), TNFα, interferon γ, 8-bromo-cGMP,
and hypoxia (11–14). It has been shown repeatedly that both
arginase isoforms are capable of reciprocally regulating NO pro-
duction (3, 4, 15). More importantly the development of specific
arginase inhibitors like N -hydroxy-guanidinium or boronic acid
derivatives, such 2(S)-amino-6-boronohexanoic acid, and S-(2-
boronoethyl)-l-cysteine (BEC) can now be used to probe arginase
function (16). This development in the 1990s allowed the selective
inhibition of arginase in the laboratory and thereby the modula-
tion of the substrate availability for NOS and its end product NO
(17–19).

ARGINASE STRUCTURE, ENZYMATIC FUNCTION, AND
INHIBITOR DESIGN
The first step toward the generation of arginase inhibitors
was the determination of the crystal structure of arginase and
its active site. Dr. Christianson and his laboratory team from
the University of Pennsylvania first demonstrated the binuclear

manganese cluster required for catalysis at the active side of
rat arginase using X-ray crystallography (20). Successive stud-
ies determined the structures of human arginase I (21) and
human arginase II (22), both of which contain almost iden-
tical metal clusters and active site configurations, this similar-
ity makes it very difficult to develop inhibitors that are spe-
cific for one arginase isoform. At the active site, l-ornithine
and urea are formed by the collapse of a tetrahedral interme-
diate that forms after the addition of a hydroxide ion to the
l-arginine guanidinium group in the binuclear manganese cluster
(Figures 1A,B).

The first group of arginase inhibitors consisted of the boronic
acid analogs of l-arginine (2)S-amino-6-hexanoic acid (ABH) and
S-2-BEC both of which inhibit the catalytic activity of arginase
(16, 23, 24). As both contain trigonal planar boronic acid moi-
eties instead of a trigonal planar guanidinium group, found in
l-arginine, binding to the active site of arginase results in a nucle-
ophilic attack of the boron atoms by the metal-bridging ion,
resulting in a tetrahedral boronate ion (18). This reaction is iden-
tical to the creation of a tetrahedral intermediate by nucleophilic
attack of hydroxide ions at the guanidinium group of l-arginine
and has been confirmed by crystallographic structure determi-
nation (18, 22, 24) (Figures 1C,D). The ability of the boronic
side chains of ABH and BEC to bind the active side chain of
arginase is 50,000 times stronger than the binding of comparable
amino acids, aldehyde, or tetrahedral sulfonamide, both of which
mimic the tetrahedral intermediate in the arginase mechanism
(22, 25). ABH [K i = 0.11 µM for arginase I and K i = 0.25 µM (at
pH of 7.5) for arginase II (26, 27)] and BEC [K i = 0.4–0.6 µM
for arginase I and K i = 0.31 µM (at pH of 7.5) for arginase II
(18)] are therefore specific inhibitors of arginase as they are closely
matched to the metal-bridging hydroxide ion in the active site of
arginase.

Another category of arginase inhibitors, that is mainly rep-
resented by N -hydroxy-l-arginine (NOHA) and N -hydroxy-
nor-l-arginine (nor-NOHA), is characterized by N -hydroxy-
guanidinium side chains (25, 28–30). Analysis of the enzyme
structure by X-ray crystallography reveals that both NOHA and
nor-NOHA inhibit arginase by displacing the metal-bridging
hydroxide ion of arginase with their N -hydroxy group (31). Based
on this mechanism, both amino acids inhibit arginase activity with
nor-NOHA being a more potent inhibitor (K i = 500 mM for nor-
NOHA vs. K i = 10 µM for NOHA) (28, 30) and with both being
less specific than the boronic acid derivates BEC and ABH [for
nor-NOHA the K i values for arginase I and arginase II are 500
and 50 nM, respectively (32)].

Recent efforts now concentrate on expanding the range of
arginase inhibitors based on a structure based design program,
translating ABH’s mechanism of action into new compounds
(33, 34). Identifying the α-position of ABH as a target for site
substitution, a tertiary amine linked via a two-carbon chain
improves the ability of ABH to inhibit both arginase I and
arginase II (35). X-ray crystallography demonstrates a close con-
tact between nitrogen and the carboxylic side chain of Asp 181
(arginase I) and Asp 200 (arginase II) at the active site (Figure 2)
(35). This has led to the discovery of (R)-2-amino-6-borono-
2-(2-(piperidin-1-yl)ethyl)hexanoic acid (compound 9) a small
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FIGURE 1 | Structure and function of arginase and the interaction with
BEC. (A) The formation of L-ornithine and urea from L-arginine by arginase.
(B) The reaction of the boronic acid analogs of L-arginine, 2(S)-amino-6-
hexanoic acid (ABH) (X representing CH2) and S-(2-boronoethyl)-L-cysteine

(BEC) (X representing S). (C) Electron density map of ABH bound to human
arginase I. (D) A schematic showing the enzyme-inhibitor hydrogen bond
(black dashed lines) and metal coordination interactions (green dashed lines).
With kind permission from Santhanam et al. (55).

molecule that has shown efficacy in the attenuation of myocar-
dial reperfusion injury (33). Compound 9 contains a piperi-
dine linked to the α-carbon by a two-carbon aliphatic chain at
the α-position. This results in the formation of new through-
water hydrogen bonding interaction with Asp 181 and Asp 183
(arginase I), providing a roughly sixfold increase in potency com-
pared to ABH. Co-crystallizing compound 9 with arginase II
yields a similar, albeit weaker interaction of the through-water
contacts between the piperidine ring nitrogen atom and Asp
200 and Asp 202 (arginase II: IC50 509 nM vs. arginase I: IC50
223 nM).

In a parallel approach to finding new and improved inhibitors
of arginase, some investigators have concentrated on charac-
terizing a plant derived compound with the ability to inhibit
arginase (36, 37). It has been demonstrated that piceatannol-3′-O-
β-d-glucopyranoside (PG), an important component of rhubarb
extract has, antioxidant effects (38), Woo et al. tested the ability
of this extract to act as an arginase inhibitor (36). They were able
to demonstrate that PG inhibits arginase I and arginase II activ-
ity and increased nitric oxide production in a dose-dependent
manner. In their experiments PG proved to be a non-specific

arginase inhibitor with an IC50 value of 11.22 µM (arginase I) and
11.06 µM (arginase II) respectively (36). Furthermore they were
able to extend their studies by demonstrating that PG improves
endothelial dysfunction via eNOS activation in a rodent model of
hyperlipidemia (39).

This search for a new plant derived arginase II specific
inhibitor has very recently been extended by screening hun-
dreds of plant extracts for potential targets (37). This inves-
tigation yielded a methanol extract of Scutellaria indica, that
has the ability inhibit arginase II. Following multiple addi-
tional fractionations, and repeated column chromatography, the
group was able to isolate eight different compounds from the
extract. One of the compounds (compound 1, flavan type)
has been previously unknown while the remaining seven com-
pounds (compound 2–8) have been described earlier. Arginase
II activity was inhibited by two of the eight compounds
(compound number 3 and 5) with an IC50 of 25.1 and
11.6 µM, respectively (37). They authors did not test the capa-
bility of the extract or compounds to inhibit arginase I, nor
did they investigate the underlying mechanism of arginase II
inhibition.
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FIGURE 2 | (R )-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic
acid) and arginase 1. Structure of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)
ethyl)hexanoic acid) at the active site of arginase I (surface colored
according to charge), shown superimposed with a difference map
calculated without the inhibitor model contoured at 3 RMS (white
contours). With kind permission from Ref. (33).

IMPLICATIONS OF INHIBITORS IN DIABETES MELLITUS
Diabetes mellitus has long been shown to be a disease tightly asso-
ciated with endothelial dysfunction (40). Recent data suggests that
metabolic degradation of l-arginine is directly involved in the
l-arginine enhanced insulin-stimulated glycogen synthesis (41).
Furthermore, hyperglycemia and the hemoglobin A1C levels cor-
relate to arginase activity, with arginase activity being increased
in type 2 diabetic subjects with impaired NOS activity (42–44).
These higher arginase activity levels could be a result of reduced
insulin action and increased protein catabolic processes in diabetic
subjects (45). Consequently, insulin treatment reverses increased
arginase activity and mRNA levels to close to control values (46).
In addition to the effect of arginase in the endothelium of diabetic

patients, arginase is also present and active in human islets cells of
the pancreas, where arginase activity regulates the generation of
NO (47).

The molecular mechanism of glucose-induced upregulation of
arginase activity appears to involve small G proteins. In fact, the
Rho kinase inhibitor Y-27632 as well as a HMG-coenzyme reduc-
tase inhibitor (statin) blunt the upregulation of the enzyme as
well as ROS production under these conditions. Therefore, statins,
which are known to inhibit the Rho/Rock pathway, reduce vascu-
lar events in patients with diabetes in part by a mechanism that
involves inhibition of arginase activation (48, 49). Moreover, stud-
ies show that diabetes-induced impairment of vasorelaxation is
correlated with increases in ROS, arginase activity, and arginase
expression in the aorta. A treatment regime with simvastatin or
l-citrulline is able to blunt these effects and acute treatment of
diabetic coronary arteries with arginase inhibitors has been shown
to reverse the impaired vasodilation to acetylcholine (50). This is
likely due to the upregulation of arginase I in coronary arterioles
of diabetic patients, which contributes to reduced NO production
and consequently diminished vasodilation (51). Thus, endothe-
lial dysfunction in diabetes may be caused, at least partially, by
reduced l-arginine availability for eNOS. Given both preclinical
data from animal models, early but provocative human data, as
well as potent small molecule inhibitor drug candidates, arginase
promises to be an exciting, novel target for therapy in diabetic
vasculopathy, a scourge for which there is currently little effective
treatment. However caution is advised in selectively inhibiting
arginase isoforms in macrophages. The inflammatory pheno-
type M1 macrophages (Th1 immune response) mainly expresses
arginase II, while the profibrotic and repair phenotype M2 (alter-
natively activated macrophage, Th2 cytokine response) mainly
expresses arginase I (52). Therefore selective inhibition of arginase
I might lead to an expansion of the M1 phenotype, which could
aggravate iNOS mediated inflammatory effects (53), while selec-
tive arginase II inhibition might enhance the profibrotic response
of alternatively activated ornithine producing macrophages with
potential deleterious effects on vessels and other organs (54).
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