{frontiers in
IMMUNOLOGY

MINI REVIEW ARTICLE
published: 20 September 2013
doi: 10.3389/fimmu.2013.00290

Interferons in Sjogren’s syndrome: genes, mechanismes,

and effects

He Li"?, John A. Ice’, Christopher J. Lessard'? and Kathy L. Sivils'?*

" Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
2 Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Edited by:
Timothy B. Niewold, Mayo Clinic, USA

Reviewed by:

John P Vasilakos, 3M Company, USA
Andras Perl, State University of New
York, USA

*Correspondence:

Kathy L. Sivils, Arthritis and Clinical
Immunology Research Program,
Oklahoma Medical Research
Foundation, 825 N.E. 13th Street,
MS57 Oklahoma City, OK 73104, USA
e-mail: sivilsk@omrf.org

Sjogren’s syndrome (SS) is a common, progressive autoimmune exocrinopathy distin-
guished by dry eyes and mouth and affects ~0.7% of the European population. Over-
expression of transcripts induced by interferons (IFN), termed as an “IFN signature,” has
been found in SS patients. Four microarray studies have been published in SS that identified
dysregulated genes within type | IFN signaling in either salivary glands or peripheral blood of
SS patients. The mechanism of this type | IFN activation is still obscure, but several possible
explanations have been proposed, including virus infection-initiated and immune complex-
initiated type | IFN production by plasmacytoid dendritic cells. Genetic predisposition to
increased type | IFN signaling is supported by candidate gene studies showing evidence
for association of variants within IFN-related genes. Once activated, IFN signaling may con-
tribute to numerous aspects of SS pathophysiology, including lymphocyte infiltration into
exocrine glands, autoantibody production, and glandular cell apoptosis. Thus, dysregulation
of IFN pathways is an important feature that can be potentially used as a serum biomarker
for diagnosis and targeting of new treatments in this complex autoimmune disease.
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INTRODUCTION

Sjogren’s syndrome (SS) is a chronic autoimmune disease that pri-
marily affects middle-aged women with an estimated prevalence of
~0.7% in European populations (1, 2). SS is characterized by infil-
tration of lymphocytes into glandular tissues, typically the salivary
and lacrimal glands, leading to xerostomia (dry mouth) and ker-
atoconjunctivitis sicca (dry eye). The resulting pathology can be
debilitating, and target organ damage may be so severe that mois-
ture production is virtually non-existent. However, manifestations
of SS are not limited to exocrinopathy; other common extraglan-
dular features include fatigue, arthritis, Raynaud’s phenomenon,
and an increased incidence of non-Hodgkin B cell lymphoma (3).
Two autoantibodies targeting ribonucleoproteins, anti-Ro/SSA,
and anti-La/SSB, are detected in 60-70% of SS patients and are
important to disease diagnosis (4, 5).

The etiology and pathogenesis of SS are still unclear, par-
tially due to the complexity and heterogeneity of disease mech-
anisms. Recently, the dysregulation of interferon (IFN) signaling
pathways, especially upregulation of type I IFN-inducible genes,
has been observed in salivary glands and peripheral blood in a
subset of SS patients (6—10). Type I IFNs, including IFNa and
IENB, are key immune mediators involved in viral defense and
activation of immune responses (11). Viral infection has long
been suspected to trigger SS (12), and abnormal elevations in
type I IFN signaling may reflect an important role for viral
infection in disease pathogenesis. Additionally, genetic associ-
ation studies indicate the importance of multiple genetic loci
within IFN pathways. Here, we review the identification of the
type I IFN “signature” through high-throughput techniques, and

discuss potential mechanisms and functions of dysregulated IFN
signaling in SS.

IDENTIFICATION OF THE “IFN SIGNATURE" IN SS

Many powerful, high-throughput techniques have emerged in the
last few decades and have revealed important insights into mech-
anisms of complex human diseases. Gene expression profiling
(GEP) studies using microarrays represent one of the most widely
used approaches to determine global transcriptome differences
between patients and healthy controls. “Signatures” of disease have
been defined that represent clusters of co-expressed genes, often
within a biological network, that may serve as biomarkers for dis-
ease diagnosis, classification, and drug response prediction. The
“IFN signature,” first described in a GEP study of systemic lupus
erythematosus (SLE), has been defined by the overexpression of
type I IFN-inducible genes (13). Subsequent studies have demon-
strated similar signatures in other autoimmune diseases, such as
rheumatoid arthritis (RA), systemic sclerosis (SSc), myositis, and
SS (14).

Four microarray studies have been published in SS to date that
describe the overexpression of type I IFN-inducible transcripts in
minor salivary glands or peripheral blood from SS patients (7-10).
Hjelmervik et al. (7) published the first GEP in SS using a relatively
low-density 16K microarray to identify a whole transcriptome sig-
nature in biopsy samples of minor salivary glands from 10 SS
patients and 10 controls who experienced subjective oral dryness.
They successfully clustered 19 out of the 20 subjects into the cor-
rect group by using the top 200 differentially expressed transcripts,
in which numerous type I IFN-regulated genes were represented,
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including IF127, ISG12, GBP2, IFITM]I, and IRF8. Subsequently,
Gottenberg et al. (8) also identified distinct gene expression pat-
terns involving IFN pathways (both type I and type II) in salivary
glands of SS patients by comparing seven cases and seven con-
trols. Specifically, 23 genes were IFN-inducible, including genes in
the antiviral IFN-induced transmembrane protein (IFITM) family
(IFITM1, IFITM2, and IFITM3) and genes in the Toll-like recep-
tor (TLR) family (TLR8 and TLR9) that play a fundamental role
in pathogen recognition and activation of innate immunity (15).
All showed significantly increased expression in SS patients. Inter-
estingly, the only two known IFN-inducible genes that showed
decreased expression in SS salivary glands, CCL18 and SOCS3, are
involved in the inhibition of inflammatory processes. The overex-
pression of IFN-inducible genes was supported by the detection
of plasmacytoid dendritic cells (pDC), the most potent producer
of type I TFNs (16), in salivary glands of patients with SS, but none
in the glands of controls. These results suggest that pDC activa-
tion may play a role in SS pathogenesis, which is discussed later in
this review.

Upregulation of 11 IFN-inducible genes has been identified
by Pérez et al. (10) through a microarray study of epithelial
cells from salivary glands of nine SS patients and six con-
trols. Notably, three of these genes belong to the IFN regulatory
factor (IRF) family (IRF7, IRF8 or ICSBPI, and IRF9). IRFs
are pivotal transcriptional regulators of type I IFN and IFN-
inducible genes, and are important in cellular differentiation of
hematopoietic cells (17). This GEP study also identified dysreg-
ulation of apoptotic pathways in SS epithelial cells, which are
now thought to be involved in local auto-antigen production
and tissue damage in the salivary glands of SS patients (18, 19).
Additionally, they identified six genetic loci associated with SS

using microsatellite markers, with five of the association sig-
nals falling within regions where differentially expressed genes
were found, such as IL6, CD44, and IRF9. These results sup-
port a genetic contribution to the dysregulated IFN pathways
observed in SS.

The IEN signature has also been observed in peripheral blood
of SS patients. Emamian et al. (9) detected upregulation of IFN-
inducible genes in peripheral blood of a subset of SS patients by
comparing 21 cases and 23 controls followed by replication in an
independent dataset of 17 SS cases and 22 controls. IFI35, MX1,
OAS], IRF7,and OAS2 were among the top differentially expressed
genes and are known to be induced by IFNs. The authors also
showed that the expression levels of most IFN-inducible genes
were positively correlated with anti-Ro/SSA and anti-La/SSB titers.
Although the relationship between IFN pathway activation and
autoantibody production is unclear, these results provide a link
for both innate and adaptive immune responses to the pathogene-
sis of disease. These results also suggest that the IFN signature can
be potentially used as a disease biomarker for a subgroup of SS
patients with certain clinical features that includes the production
of anti-Ro/SSA and anti-La/SSB.

All of these microarray studies have consistently identified dif-
ferentially expressed genes in IFN-mediated signaling pathways. As
shown in Table 1, there are several differentially expressed genes
found to be common across multiple studies and multiple tissue
types,such as IFITM1, IFI44, MX1, IRF7,and IRF8, suggesting both
local and systemic dysregulation of IFN signaling pathways in SS
patients (Table 1). Each study also revealed unique dysregulated
genes, partially due to the different types of arrays, relatively lim-
ited sample sizes, different quality control processes, and sample
heterogeneity between studies.

Table 1| Differentially expressed IFN-inducible genes found in common from the gene expression profiling studies in SS.

Hjelmervik Pe’rez et al. (Mean

et al. (T score)

Gottenberg et al.
(Fold change)

difference with log, scale)

Emamian et al. Gene function

(Average fold change)

IFITM1 —4.98 2.52 1.13
IFITM3 1.88

IFIT2 1.1
IRF7 0.93
IRF8 —4.40 1.47
IRF9 —5.72 0.74
IFI16 0.99
IFI27 —6.29

IF144 —4.74

MX1 1.15
SP110  —5.05

1.83 Block early stages of viral replication

1.96

2.39 Inhibits expression of viral MRNA lacking
2’-0O-methylation

2.18 Important transcription regulators of type
I IFN and IFN-inducible genes
Important to cell differentiation

1.56 Modulates p53 function and inhibits cell
growth via Ras/Raf pathway

15.83 Mediates IFN-induced apoptosis

3.49 Antiproliferative, associated with HCV
infection

3.85 A GTPase with antiviral activity against a
wide range of RNA viruses and some
DNA viruses

1.85 Regulates gene transcription
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Additional studies have identified increased activation of type I
IFN-mediated genes in SS patients by candidate gene approaches
(20-24). Increased IFN-inducible gene expression profiles have
been detected in saliva and tears as well as particular cell types
from SS patients (25, 26). However, results for the expression lev-
els of IFNa itself in SS patients are controversial (6, 27). This may
be due to the different techniques used in separate studies, a mix-
ture of cell types in each experiment, and the heterogeneity of SS
patients involved.

MECHANISMS OF ELEVATED IFN-MEDIATED SIGNALING
INSS

Although virtually all cells can produce type I IFNs in response
to viral and bacterial infection, pDCs are the most potent IFN-
producing cells, making up to 1000-fold more type I IFNs than
other cell types (28). The detection of activated pDCs in salivary
glands of SS patients but not in controls makes pDCs prominent
candidates for the local production of type I IFNs that may pro-
mote the formation of inflammatory foci (8). Activated pDCs have
also been found in the target organs of other autoimmune diseases
(29, 30). Interestingly, Wildenberg et al. (26) found that, although
the number of pDCs is decreased in the blood of SS patients, sup-
posedly due to the migration of pDCs to peripheral sites, the cell
surface activation marker CD40 is significantly overexpressed on
pDCs from SS patients. Possible explanations of sustained acti-
vation of pDCs in SS include chronic exogenous stimulation and
constitutive expression of pro-inflammatory transcription factors,
such as IRF5 and IRF7, in SS patients (31).

Type I IFNs are induced transiently by viral infection and elicit
antiviral effects. The pDCs can be rapidly induced to produce
IFNa upon stimulation by RNA and DNA through TLR7 and
TLRY, respectively (32). Thus, an initial viral infection is sus-
pected to trigger the production of type I IFN by pDCs. The
contribution of viral infection to elevated IFN signaling in SS is
unknown; however, a number of viruses have been thought to con-
tribute to SS pathogenesis, including Epstein—Barr virus (EBV),
cytomegalovirus (CMV), hepatitis B virus (HBV), and hepatitis
C virus (HCV) (12). Several mechanisms have been hypothe-
sized regarding possible infectious triggers of SS, such as antigenic
molecular mimicry. For example, infection with EBV results in
the production of EBV nuclear antigen-1 (EBNA-1). Immune
response against EBNA-1 can generate antibodies that cross-react
with SS-associated autoantigens, such as anti-Ro/SSA (33). These
antibodies may undergo epitope spreading and may ultimately
become pathogenic in SS.

Autoantibodies and autoantigen-specific B cells have been
detected in the salivary glands of SS patients (34, 35) and may
involve in the production the type I IFNs through the forma-
tion of immune complexes. Béve et al. (6) have found that the
combination of autoantibodies to RNA-binding proteins and
material released by apoptotic cells can induce IFNo produc-
tion by pDCs. This event is probably triggered by the inter-
action of RNA-containing immune complexes with Fcy recep-
tor Ila (FCGRIIA) on the surface of pDCs. Lovgren et al.
(36) have described the production of IFNa by pDCs stimu-
lated using U1l snRNA combined with IgG from patients with
SLE. This response can be inhibited by FCGRIIA antagonists

or RNase, suggesting a role for the RNA component as well
as FCGRIIA in the immune complex-induced IFNa production
by pDCs.

Another role of autoantibodies, especially anti-Ro52, in pro-
moting IEN signaling is based on the function of their target
autoantigens. Ro52, also known as tripartite motif-containing
protein 21 (TRIM21), is an IFN-inducible E3 ubiquitin-protein
ligase that promotes ubiquitination and proteasomal degradation
of IRF3 and IRF7 (37, 38). After induction by IFNs following
TLR signaling, Ro52 exerts a negative role on IFN signaling and
prevents further inflammatory damage. Therefore, autoantibod-
ies against Ro52 may interrupt the negative feedback of type I IFN
signaling. Indeed, anti-Ro52 from SS patients is able to inhibit the
E3 ligase activity of Ro52 by blocking the E3/E2 interface (39).
Additionally, tissue inflammation and systemic autoimmunity in
Ro52 knockout mice is thought to be induced by overproduc-
tion of pro-inflammatory cytokines (40). These results may well
explain the correlation between the IFN signature and autoanti-
body positivity in SS patients (9). However, anti-Ro alone does
not seem sufficient to induce high IFNa activity, given the fact
that patients with disease are more likely to have high serum IFN
activity than asymptomatic individuals with autoantibodies (41).
Therefore, the contribution of autoantibodies to the elevated IFN
signaling warrants further study.

GENETICS RISK FACTORS IN IFN PATHWAYS

A possible model for SS development is that an initial viral infec-
tion induces the production of type I IFNs and genetic suscepti-
bility factors in certain individuals promote prolonged activation
of the IFN system. Genetic predisposition to SS is supported by
family aggregation of disease as well as a few twin studies (42—45).
Genetic risk variants within or near IFN-regulated genes could
possibly predispose patients to increased IFN signaling by (1) the
constitutive expression of IFN-inducible genes or (2) the induc-
tion of loss-of-function inhibitors within IFN pathways. Genetic
studies in SS have relied primarily on candidate gene approaches,
focusing on those genes with biological plausibility for a role in
SS etiology or evidence of association in other autoimmune dis-
eases (46). The most convincing associations outside the HLA in SS
found by candidate gene studies are within the regions of IRF5 and
STAT4 (47-49), both of which are involved in IFN signaling. IRF5
is a transcription factor mediating type I IFN responses in vari-
ous immune-related cells (17). Upon viral infection, IRF5 induces
the transcription of IFNa and other pro-inflammatory cytokines,
including IL12 p40 subunit, IL6, and TNFa (50). Genetic asso-
ciation within the IRF5 region has been established in other
autoimmune diseases, including SLE, RA, ulcerative colitis, pri-
mary biliary cirrhosis (PBC), and SSc (51-55). STAT4 is also a
critical transcription factor involved in signaling initiated by type
I and type II IFNS. It is required for the development of Th1 cells
from naive CD4+ T cells and IFNy production in response to
IL12 (56, 57). The association of variants in STAT4 has also been
well established in other inflammatory diseases (58—60). Ongo-
ing genome-wide association studies in SS have firmly established
these loci as well as other genes that promote susceptibility to dis-
ease and may contribute to the dysregulation of IFN-inducible
genes (61).
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EFFECTS OF THE OVEREXPRESSION OF TYPE |
IFN-INDUCIBLE GENES IN SS

Type I IENs are key regulators of human immune systems and
exert a broad effect on immune responses and autoimmunity
(11). Overexpression of type I IFN-inducible genes in the salivary
glands and peripheral blood of SS patients may influence many
aspects of SS pathophysiology. Epithelial cells from the salivary
glands of SS patients play an active role in promoting immune
responses, including increased expression of MHC molecules and
co-stimulatory molecules, such as B7 and CD40 (62—65). Many
T cell-attracting and germinal center-forming chemokines, such as
CXCL10, IL-8, and CXCL13, have also been found to be expressed
in epithelial cells from the salivary glands of SS patients (22, 66,
67). Thus, these cells acquire antigen-presenting characteristics,
mediating the recruitment, activation, and differentiation of the
infiltrating inflammatory cells (68). Many of these molecules are
induced by IFNa and IFNP.

Another cytokine induced by type I IFNs in both salivary
gland epithelial cells and peripheral blood monocytes is B cell
activating factor (BAFF) (69, 70). BAFF is important in B cell acti-
vation, proliferation, and differentiation and has been found to be
overexpressed in SS patients (71). Increased expression of BAFF
has been observed in salivary gland epithelial cells from SS patients
compared with those from healthy controls upon stimulation by
IFNa, but not IFNy or TNFa, suggesting a specific role of type I
IFNs in B cell dysfunction in SS (72).

As mentioned above, autoantigen Ro52, or TRIM21 can be
induced by IFNa in cultured human B cells and peripheral blood
mononuclear cells (73). After upregulation, Ro52 translocates
from the cytoplasm to the nucleus and initiates IFNa-induced
apoptosis through intrinsic caspase-3. IFNa can also induce the
expression of pro-apoptotic molecules, including Fas and FasL
(74), and the increased expression of Fas and FasL has been
identified in salivary glands from SS patients (18, 75). But this
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