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The influence of CD4+CD25+Foxp3+ regulatory T-cells (Tregs) on cancer progression has
been demonstrated in a large number of preclinical models and confirmed in several types
of malignancies. Neoplastic processes trigger an increase ofTreg numbers in draining lymph
nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses.Treg-
depletion before or early in tumor development may lead to complete tumor eradication
and extends survival of mice and humans. However this strategy is ineffective in estab-
lished tumors, highlighting the critical role of the earlyTreg-tumor encounters. In this review,
after discussing old and new concepts of immunological tumor tolerance, we focus on the
nature (thymus-derived vs. peripherally derived) and status (naïve or activated/memory)
of the regulatory T-cells at tumor emergence. The recent discoveries in this field suggest
that the activation status of Tregs and effector T-cells (Teffs) at the first encounter with the
tumor are essential to shape the fate and speed of the immune response across a variety
of tumor models.The relative timing of activation/recruitment of anti-tumor cells vs. tolero-
genic cells at tumor emergence appears to be crucial in the identification of tumor cells as
friend or foe, which has broad implications for the design of cancer immunotherapies.
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TUMOR RECOGNITION BY THE IMMUNE SYSTEM:
IGNORANCE, SURVEILLANCE, AND TOLERANCE
A now receding branch of tumor immunology literature favors the
view that antigens expressed by many tumors would be ignored
by the immune system due to inadequate antigen presentation (1–
3). Hewitt, after examining the immunogenicity of many tumor
cell lines, concluded that only virus-induced tumors are likely to
induce an immune response against them (4). Beyond this found-
ing observation, and the reports that many tumor cells do not
express MHC proteins, several groups have found functional alter-
ations of the proteasome (5, 6) and TAP (7) in tumor cells and
APCs (8), reducing tumor visibility to the immune system. In
contrast, many studies have proven that the immune system is acti-
vated in the presence of spontaneous tumors (9–12), revitalizing
the concept of immunosurveillance.

This concept, first proposed in 1909 (13), was formally defined
in 1957 when – based on the findings that the immune system
can specifically recognize and reject tumor cells in a chemically
induced murine sarcoma model (14) – Burnet proposed that the
immune system may prevent tumor development by recognizing
antigens absent in normal tissues (15). According to his theory, the
immune reactions against tumor antigens expressed by neoplastic
cells generally eliminate them at an early stage before any clinical
hint of their existence, and frank tumors can grow only after escap-
ing the immune system by diminishing their immunogenicity.

The existence of tumor-specific antigens was indeed confirmed in
the 1960s by Klein (16). Later, tumors developing in immunode-
ficient mice were proven to be more immunogenic than tumors
developing in immunoproficient mice (17), suggesting that tumors
undergo selection by the immune system.

However, in other mouse models, immunodeficiency did not
promote tumor development (18–20), and the ability of tumor
cells to diminish the expression of their most immunogenic
epitopes by adaptation or selection, also called cancer immu-
noediting, has been questioned (21). The involvement of innate
immunity in tumor surveillance was further explored in studies on
natural killer cells (NKs), and has produced similar arguments pro
(22–24) and con (20, 25, 26). The conflicting accounts on the role
of ongoing anti-tumor surveillance produced in animal models are
mirrored by findings in clinical studies that measured the risk of
tumor development in patients with immunodeficiencies. Numer-
ous publications have observed a significant increase of cancer
occurrence in immunodeficient patients, but at the same time
there is no study reporting an “explosion” of cancer cases in these
patients. For example, in a study of 2005 on a very large number
of immunosuppressed renal transplantation recipients, Hollen-
beak et al. observed that of the 89,786 patients who underwent
transplantation, 246 patients developed melanoma, with an age-
adjusted incidence rate of 55.9 diagnoses per 100,000 individuals.
This represented an increase in age-adjusted, standardized risk that
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was 3.6 times greater than the general population (27). Thus, while
such studies support a real role of immunosuppression in pro-
moting cancer susceptibility, the risk of developing a melanoma
in the absence of a functional immune system, if increased and
non-negligible, is still only 0.056%. One interpretation is that
tumor development in the absence of immune system is still a
rare event, another interpretation is that the immunodeficient
state in patients mostly increases risk of cancers of viral etiol-
ogy, and that the impact of immunosurveillance on preventing
non-viral human cancer may actually be relatively minor (28–
31). On the other hand, in already established tumors, presence
of tumor-infiltrating lymphocytes is correlated with improved
survival (32), and intra-tumoral CD8 T-cells infiltration is associ-
ated with delayed recurrence and extended survival in oncologic
patients (33). A consensus is that the immune surveillance may
guard against cancer under certain conditions, but the precise
nature of these conditions is unclear.

The first clue that immune tolerance might be a part of the
equation came from the works of Nishizuka and Sakakura. While
investigating the role of the thymus in tumor immunity in mice
susceptible to mouse mammary tumor virus (MMTV)-induced
cancer, they observed that neonatal thymectomy at 3 days of
age (day 3 nTx) resulted in reduced frequency of breast cancer
in tumor-prone (C3H/HeMs× 129/J)F1 females (34), suggesting
that cells produced by the thymus after day 3 may protect the
tumor. In the following studies, they also looked at tumor devel-
opment in extra-mammary tissues. There was no increase in the
lung and liver tumors after neonatal thymectomy, but the authors
reported increased ovarian, lymphoreticular, and pituitary tumor
development (35). A notable point of these studies was the dis-
covery that mammary gland development in day 3 nTx female
mice was delayed (34) and that mice became infertile secondary
to the development of oophoritis (36). At the time, Sakakura and
Nishizuka attributed these features to an endocrine role of the
thymus, although it is now known to be the manifestation of
T-cell-mediated autoimmunity, which paved the road to the dis-
covery of thymic-derived suppressor T-cells, and active tolerance
to the tumors.

Treg-MEDIATED TUMOR SURVEILLANCE: EXPAND TO REIGN
T-cells capable of suppressing the rejection of implanted tumors
were first observed in the late 1970s (37–40). These reports
remained underappreciated as were most findings pointing to
the existence of suppressor cells, caused, in part, by lack of
suppressor-specific cellular markers. The doubts have disappeared
only in the 1990s, when Sakaguchi, a former student of Nishizuka
demonstrated that CD4+CD25+ T-cells, baptized “regulatory,”
were responsible for the induction of dominant immune tolerance
to tumors. First, the transplantable tumors grew in immunodefi-
cient hosts transferred with whole splenocytes, but were rejected
in hosts that have received splenocytes depleted of CD25+ cells
(41). Second, the tumors were rejected following preventive treat-
ments with anti-CD25 antibody (42). In both cases, the presence
of CD25+ cells inhibited the anti-tumor immune response and
their removal led to the complete elimination of the tumor.

In a short time, an impressive number of reports confirmed
the association between malignant tumors and the regulatory

T-cells (Tregs). Clinical studies have shown that CD4+CD25+

cells are often present within the tumor mass, and have reported
a link between a presence of a tumor and an increase in the pro-
portion and/or the number of CD4+CD25+ Tregs in the blood
(43–47). However some results were more heterogeneous depend-
ing of the cancer type, and in some studies, no Treg increase was
observed (48). Moreover, sometimes the observed proportion of
Tregs seems falsely increased by the reduction of the absolute num-
ber of CD4+CD25− effector cells (Teffs) (49). Regardless of its
causes, an important question was whether the observed increase
in Tregs is informative for prognosis. Animal models have argued
that Tregs have pro-tumorigenic effects (see above), and tumor
volume appears directly correlated to the number of Tregs present
in the secondary lymphoid organs in several models (50–52).

Starting with the report correlating presence of Tregs within
the tumor infiltrate and a poor survival prognosis in patients
with ovarian cancer (Curiel, 200,456), the majority of studies have
agreed that an increase in Tregs/Teffs ratio or in an absolute Treg
number confers a poor prognosis in cancer patients [see below,
and in these recent reviews (48, 53, 54)]. Yet there are instances
in which Treg increase is actually linked to a good prognosis, for
example in lymphomas (55, 56) and in colorectal cancer (57–59).
The reasons for this discrepancy appear to depend on the spe-
cial nature of these cancers, in which inflammation may promote
tumor growth if not regulated by Tregs, but may also be related to
a difference in the origin of cells with Treg characteristics observed
in individual malignancies.

Concerning the causes of the tumor-induced increase in
Tregs, the literature describes several mechanisms: (i) Preferential
recruitment of existing thymic-derived Tregs (tTregs), which may
be mediated, in part, by chemokines produced by tumors, such
as CCL22, that attracts regulatory T-cells, which predominantly
express the cognate agonist receptor (60, 61). However, as effec-
tor lymphocytes express chemokine receptors as well, chemokine
secretion alone cannot explain the preferential recruitment of
Tregs to tumor sites (62, 63). The two alternative explanations are
(ii) fate conversion – de novo induction of peripheral Treg (pTregs)
out of effector T-cells; and (iii) clonal expansion – cytokine and/or
antigen-induced proliferation in the periphery of tTregs. Given
the vast variety of tumor systems in which all these scenarios have
been explored, it is conceivable that the nature of the transform-
ing event, or the tissue of origin of the tumor may determine the
specific biological mechanism leading to an increase in Tregs.

PERIPHERALLY AND THYMIC-DERIVED Tregs IN CANCER
Discovered in the early 2000s in mice (64) and in humans (65),
pTregs quickly became the subject of active investigation in tumor
immunology, generating evidence both for and against their role in
tumor tolerance. Adoptive transfer of CD4+CD25− T-cells in mice
challenged with either colon cancer or B cell lymphoma resulted
in induction of CD25 expression in a significant proportion of
donor Teffs, as well as appearance of Foxp3 transcript (66, 67).

A major line of research pursued a possible instructive role of
TGF-ß, a signaling molecule with pleiotropic functions in both
immunity and cancer, and in the conversion of CD4+CD25−

T-cells to pTreg cells (65). TGF-ß acts by binding to the type II
TGF-ß receptor (TGF-ßRII), which is constitutively active as a
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serine/threonine kinase (68, 69). A CD4+ cell-restricted blockade
of TGF-ß signaling in mice expressing a dominant negative version
of the receptor resulted in eradication of TGF-ß expressing lym-
phoma or metastatic B16F10 melanoma (70) and has established
a firm link between TGF-ß and tumor immune tolerance. In part,
such a blockade may impair the pro-tumorigenic conversion to
pTregs. Indeed, an in vitro study has implied that TGF-ß expressing
kidney or prostate tumor cells can stimulate the pro-tumorigenic
conversion to pTregs (71). Accordingly, the anti-TGF-ß treatment
of mice injected with these tumor cells resulted in fewer tumor
nodules; but the in vivo experiments did not exclude a possibility of
a direct effect of TGF-ß-blockade on RENCA and TRAMP-C2 cell
growth. Moreover, pancreatic tumor-derived TGF-ß was shown to
activate Foxp3 expression in tumor cells themselves (72). The func-
tional significance of this upregulation is unclear, as in the tumor
cells the Foxp3 transcription factor remains restricted to the cyto-
plasm, contrary to nuclear localization in Tregs, but it may result
in a lower immunogenicity of the tumor, as siRNA-mediated inhi-
bition of Foxp3 expression in tumor cells may shift their cytokine
expression pattern toward IL-6 and IL-9 secretion (72).

The effect of TGF-ß on the conversion in vivo in tumor-
bearing mice was addressed more recently using adoptive transfer
of CD4+25−Foxp3− T-cells into Rag−/−mice. In the presence of a
TGF-ß-producing pancreatic Pan02 tumor, the transferred T-cells
converted into Foxp3+ pTregs, but few FoxP3+-converted cells
were found when mice were transplanted with a TGF-ß-negative
esophageal Eso2 tumors (73). As predicted, the induction of cells
with Tregs characteristics in Pan02-bearing mice was blocked
by systemic injection of an anti-TGF-ß-antibody. This finding
mirrors the clinical situation, when increase of Foxp3+ Tregs is
observed in patients with a TGF-ß-producing pancreatic adeno-
carcinoma but not in those with a TGF-ß-negative esophageal
tumor (74). Similarly, in non-small cell lung cancer patients, TGF-
ß plasma concentrations directly correlated with the frequency of
circulating Tregs (75).

As stated above, the spectrum of biological effects of TGF-ß
is wide, and is spread beyond the pTreg induction to regulate
other Teff responses. For example, anti-TGF-ß treatment signif-
icantly and synergistically improved vaccine efficacy as measured
by a reduction in growth of the TC1 lung tumor allografts, but
anti-TGF-ß alone without vaccine had no impact (76). Moreover,
anti-TGF-ß treatment did not affect Treg numbers in lymph nodes
and tumors, or their function (76). The resultant synergistic pro-
tection induced by anti-TGF-ß plus vaccine combined treatment
was likely mediated by CD8+ T-cells since anti-CD8 treatment
completely abrogated this effect (76). These results, of course,
do not exclude a role for peripherally derived-CD4+ pTregs, but
greatly diminish the chances that CD4+ pTregs are the sole culprit
behind the TGF-ß effects on tumor tolerance.

Overall, the role of TGF-ß in Treg maintenance is mixed, as
it inhibits Teffs and Treg cell proliferation, but is important for
tTreg and pTreg survival in the periphery (77). In fact, the nature
of TGF-ß/Treg interactions may be more complex than a direct
conversion scenario would suggest. For example, a mammary
tumor cell line, 4T1, can induce recruitment of TGF-ß-producing
Gr-1+CD11b+ monocytes (78), and a mouse melanoma and a rat
colon tumor were shown to convert dendritic cells (DCs) into the

TGF-ß-producing cells, which then led to Treg proliferation (79),
possibly through a GILZ-dependent mechanism (80). A similar
hierarchy of APC/Treg exchange has been clearly demonstrated in
colitis. There, DC-produced TGF-ß was shown to be critical to
avoid colitis due to its Treg inducing power (81). In this paper,
the Sheppard team showed that DCs lacking the TGF-β-activating
integrin αvβ8 failed to induce Tregs in vitro, and that mice with
conditional deletion of αvβ8 in DCs presented reduced propor-
tions of Treg cells in colonic tissue. If It should not be excluded
that effector cell expansion may contributes to this observed reduc-
tion in the fractional number of Treg cells in the colon, these
in vitro and in vivo results reinforce observations that DCs are
essential in the maintenance of both pTreg and tTreg cells in the
periphery (82–85).

A major complication that weakens the accounts of de novo
pTreg induction after adoptive transfer of Teffs in tumor-bearing
mice is that the CD4+CD25− Teffs subset purified in the major-
ity of the conversion experiments of the pioneer articles, con-
tains around 2% of CD4+CD25−Foxp3+ T-cells that exhibit
suppressive functions (86) and can gain CD25 expression and
expand after stimulation (87, 88). The experimental approaches
based on the sorting of CD25− T-cells do not provide sup-
portive evidence for a de novo induction of pTregs, and do not
exclude a possibility of tumor-driven activation and expansion of
CD4+CD25−Foxp3+ thymus-derived tTregs. Accordingly, exper-
iments using Teffs transfer from donor mice expressing a Foxp3-
reporter indicate that generation of peripherally derived FoxP3+

pTregs out of GFP− Teffs within tumors is inefficient and that
tumor-infiltrating GFP+FoxP3+ tTregs are highly stable and do
not readily convert back to FoxP3− T-cells contrary to pTregs
(89). Some authors suggest that proliferating Helios+ Treg cells
are a major population in tumors (90), which may be interpreted
against pTregs conversion in tumors, Helios being a tTreg marker
(91, 92). But Helios may be upregulated in peripherally derived
pTregs after activation by DCs (93).

Another line of evidence questioning the primary role of pTregs
in tumor tolerance comes from a recent paper describing the
tolerogenic response against the prostate-associated MJ23 self-
antigen expressed by prostate tumors induced by an SV40 TAg
transgene. On an immunoproficient background, these tumors are
infiltrated with MJ23 tumor-specific Tregs, but no MJ23 tumor-
specific Tregs were found in tumors that have developed in Aire−/−

mice. As Aire is important for tTreg development but dispens-
able for pTreg induction, these findings indicate that the tumor-
infiltrating Treg cells specific for the highly immunogenic MJ23
are principally of the thymic origin (94).

Overall, there is little doubt that pTregs may appear from
CD25− subsets, probably from recent tumor emigrant cells (95),
in the presence of tumors under certain experimental conditions.
Whether this subset plays a substantial role during spontaneous
tumor development, is less clear. The difficulty is best illustrated
by recalling the original report of Sakaguchi, showing that the
immunodeficient mice reconstituted with CD25 depleted spleno-
cytes acquired efficient anti-tumor responses in various cancer
models (41). Stated otherwise, any spontaneous pTreg conversion
that may occur in this experimental setup does not prevent
clearance of the transplantable tumors.
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ACTIVATED/MEMORY Tregs IN THE EARLY IMMUNE
RESPONSE TO CANCER
When we were studying the kinetic of early immune responses
in various models of cancer by adoptive transfer of CFSE-labeled
T-cells, we were struck by the fact that Treg response was not a
late event, secondary to the activation of IL-2-releasing anti-TAA
effector T-cells (Tumor-associated antigen-specific Teffs), but was
actually a very early event, preceding any Teffs activation (52). Such
a rapid tumor-specific response of the immune system was coun-
terintuitive in a model of primary tumor exposure, but it bore well
with the earlier reports that tumor growth can activate immune
cells very quickly.

In 1975, Bhatnagar and colleagues have measured ex vivo
thymidine incorporation by splenocytes and detected substantial
cellular immune responses as early as 1–2 days after i.p. injection of
methylcholanthrene-induced fibrosarcoma cells (96). The inten-
sity and rapidity of the cellular response was dependent of the
number of cells injected and was always followed by a gradual loss
of cellular reactivity against the tumor cells. The progressive loss
of immune recognition for tumor cells correlated with progres-
sion of tumor growth (96). These observations were confirmed
by Berendt and North, who provided evidence supporting the
hypothesis that immunity to tumors declines with time as a result
of T-cell-mediated immunosuppression (40). More recently, in
several injected tumor models (B16 melanoma, 4T1 carcinoma,
AB1 mesothelioma, and more) and in an inducible-oncogene-
driven breast tumor model, an increase in T-cell division was
detected as soon as 2 days after the emergence of the tumor by
measure of CFSE dilution as well as BrdU incorporation (52).
But this early response was restricted to CD4+CD25+Foxp3+

regulatory T-cells, and it appeared to precede the response of
conventional T-cells (Figure 1). The responding Treg cells were
specific to the antigens, which, although expressed by tumors,
were already present in mice before tumor appearance (Figure 1).
In other words, the tumor-derived antigens able to stimulate Tregs
were self-antigens. Indeed, no Treg expansion was observed against
tumors that were not bearing a cognate self-antigen recognized
by the transferred tTregs. These observations confirmed previ-
ous observations that the self-specific Tregs suppress anti-tumor
responses (97, 98), although it did not exclude a possibility that
Tregs specific for tumor neoantigens may also participate to the
induction of tolerance to the tumor (99, 100). Recently, it was
demonstrated that Aire-mediated expression of peripheral tissue
antigens drives thymic development of a subset of organ-specific
tTregs, which are likely recruited by tumors developing within the
associated organ (94).

Concerning the APCs that may be responsible for presentation
of the tumor self-Ags to Tregs, the good candidates are tissue DCs,
which are known to be especially potent in stimulating and main-
taining the actively dividing Treg pool (83). Indeed, DCs from
tumor-bearing mice were shown to recruit Tregs and to favor their
proliferation in the draining lymph nodes (79) (Figure 1). These
DCs may present antigens derived from proteins secreted by the
live tumor cells, or those derived from tumor cells that die during
transformation-induced apoptosis. Of note, microvesicles that are
released by tumors and may be captured by DCs for tumor antigen

FIGURE 1 | Early events during cancer emergence lead to immune
tolerance against tumor. Activated memory Tregs (AmTregs or amTr,
beige lymphocytes) are the first to be stimulated by the presence of the
tumor (gray round-shaped cells) via recognition of self-Ag presented by
dendritic cells (DCs, star-shaped cells) coming from the tumor site (t1).
AmTreg will then proliferate faster than TAA-specific Teffs (Th, gray
lymphocytes) that are naïve (or have already been suppressed at the steady
state). AmTreg will then inhibit either Teff activation, proliferation, migration,
and function either/or DCs presentation and costimulation (t2).

presentation (101) appear to have a role in Treg expansion and acti-
vation (102) (Figure 1). Moreover, Treg subset expands after adop-
tive transfer in MHCII+/+ but not in MHCII−/− tumor-bearing
mice, which proves that cytokines released in the tumor-bearing
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mice are not sufficient by themselves to favor Treg recruitment,
and that antigen-driven proliferation is mandatory (83).

Isolation of Tregs with activated/memory vs. naïve phenotype
from tumor-free mice followed by adoptive transfer to tumor-
bearing mice showed that the initial proliferation of Tregs in
tumor-draining lymph nodes was confined to the pool of acti-
vated/memory Tregs (amTregs) present in naive mice, (52). These
cells were previously characterized as an activated/memory sub-
type of Tregs, constantly stimulated by self-antigens at the steady
state (103). These amTregs are phenotypically and functionally
distinct from naïve Tregs (103, 104), and are highly potent at
suppressing autoimmune responses (105, 106). The intensity of
the early anti-tumor Treg response is thus explained by their
self-specificity and activated/memory status.

The early dividing cells described in tumor-bearing mice since
1975 are thus the tolerogenic amTregs cells, a conclusion that is fur-
ther confirmed by observing tumor rejection following short-term
depletion of proliferating immune cells via early administration
of anti-mitotic hydroxyurea (HU) or cyclophosphamide (CY) in
mice bearing HU/Cy-resistant tumors (50, 52, 107, 108). The early
administration of these drugs has a much stronger effect than
the late administration, once again suggesting that the immune
cells that divide early in the presence of an emerging tumor
favor tolerance. Accordingly, a recent analysis of Treg subsets
in Her2/Neu-expressing mammary tumor-bearing mice revealed
the existence of a Cy-sensitive CD4+Foxp3+CD25+ subset with
tumor-seeking migratory phenotype, characteristic of amTregs,
and capable of high avidity T-cell suppression (109). In addi-
tion, the tumor-infiltrating Foxp3+ T-cells express high levels
of memory/tumor-associated CCR8 and CXCR4 receptors, and
antigen priming is required for the induction of this trafficking
receptor phenotype. Thus only antigen-primed, but not antigen-
inexperienced naive, FoxP3+ T-cells can efficiently migrate into
tumors (89). Of course, the effector T-cells also start to pro-
liferate after an adoptive transfer into tumor-bearing mice, but
with a primary kinetics that is much slower (9–12 days) than that
observed in Treg subset (2–4 days) (83). This delay appears to be
sufficient for the establishment of a stable immunosuppressive
environment.

To test if tolerance to tumors was due to the Treg/Teffs
imbalance induced by the delays between their respective acti-
vation/expansion, we adoptively transferred high numbers of
HA-specific Teffs in mice bearing HA-expressing tumor cells.
We observed complete remission in mice adoptively transferred
with antigen-experienced HA-specific Teffs (52). Complete regres-
sion was also found (i) in secondary-challenged mice cured
from first tumor challenge by temporary Treg-depletion (42, 52)
and (ii) in tumor-pre-immunized mice (52, 110–112). The acti-
vated/memory Teffs, are able to eradicate very efficiently even
poorly immunogenic tumors like B16 melanoma (110, 111),
regardless of the number of Tregs present in the mice (52). Even
highly suppressive adoptively transferred tumor-specific Tregs are
not able to reverse the anti-tumor memory response (52). The
resistance of activated/memory Teffs (amTeffs) to Treg-mediated
suppression demonstrated was also observed in other condi-
tions like allograft rejection (113) and autoimmune inflammation
(114). Nishikawa and colleagues also observed that CD45RO+ but

not CD45RA+ tumor-specific CD4 T-cells from cancer patients
were resistant to Treg suppression (115). This resistance could be
due to the fact that activated Tregs can downregulate expression
of costimulation molecules by DC (116), but activation/function
of amTeffs is much less dependent on costimulation than that of
naive T-cells (117). Together, these observations suggest that anti-
tumor amTeffs could be inherently more resistant to Tregs, and
explain why detection of amTeffs correlates with good prognosis
in cancer patients (118, 119).

The memory status of Treg and Teffs in early tolerance induc-
tion might be important in other settings than just cancer. Several
analogies between pregnancy and cancer [reviewed in (120)] point
to similarities between the early Treg responses to embryo implan-
tation and tumor emergence. In a just-released study, we observed
that early Treg responses to embryo implantation obey to the
same rules as those in cancer setting: Tregs expressing markers of
the amTreg subset are rapidly recruited to para-aortic conceptus-
draining lymph nodes and are activated in the first days after
embryo implantation in both syngeneic and allogeneic matings
(121). They are also at least in part self-Ag specific, as seen in tumor
emergence. Finally, pre-immunization against paternal tissue Ags
results in the increase of aborted fetus frequency, and additional
Treg-depletion (by anti-CD25) at the time of pre-immunization
against paternal tissue Ags, leads to very high frequencies of fetus
loss (121). Thus, thymic-derived amTregs appear as a driving force
of tolerance to self-ambiguous tissues in the absence of infectious
danger signals or pre-immunization.

One can then wonder how an immune system that protects
deadly tumor cells may survive evolution. We speculate that the
AmTreg tolerant response has been actually positively selected
to protect allogeneic fetuses against immune rejection. Indeed,
Foxp3-expressing Treg-like cells appeared in the first live-bearing
animals like Tetraodon (2400 million years) (122) and zebrafish
(123), both histotrophic viviparous species. Tregs were thus prob-
ably selected in part to protect allogeneic fetuses against immune
rejection (121, 124), but the pro-tumorigenic activity of Tregs was
not counter-selected because cancers mostly develop late in life
(125) without affecting reproductive life span.

IMPLICATIONS FOR THE DESIGN OF ANTI-CANCER
IMMUNOTHERAPIES
Activation kinetics and memory status of different T-cell subsets at
tumor emergence are pivotal in the outcome of cancer (Figure 2)
and explains why preventive immunization is more effective than
therapeutic immunization and suggests (i) that preventive vacci-
nation against cancer should be considered seriously and (ii) that
therapeutic vaccination could actually worsen host tolerance to
tumor antigens (126, 127). Development of vaccination strategies
must include treatments aimed at Treg-depletion (128–130) or at
inhibition of their function (131–133), with mandatory valida-
tion of the effect of therapeutic vaccination on the level/function
of Tregs. Preventive vaccination with tumor-specific antigens pre-
sented in a context that would not stimulate amTregs will improve
development of efficient amTeffs, which may mount efficient
effector responses when a tumor emerges.

Noteworthy, although amTeffs are resistant to Tregs, and can
cure mice if provided at the time of tumor implantation, the global
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FIGURE 2 | Immune tolerance vs. immune rejection decision process.
Activation kinetics and memory status of Tregs (green) and Teffs (red) in
the tumor-draining lymph nodes (dLNs, left) after stimulation by dendritic

cells (DC, blue) result in the infiltration of the tumor by different cell
subsets with different speed and different tumor fate (right, with tumor
cells in gray).

immunosuppressive environment established by Tregs in draining
lymph modes and at the tumor site (134) can develop to a point
where later therapeutic administration of amTeffs would no longer
be effective (52).

Together with vaccination and beyond, ablation of Tregs in can-
cer patients appears to be a promising direction, especially if per-
formed early in the course of the disease (129, 135). Nonetheless,
we need to remember that the efficiency of anti-tumor responses
after Treg ablation is certainly tumor- and genetic background-
dependent: Treg ablation results in minimal rejection and delayed
growth of B16 tumors in B6 mice, 60% rejection of 4T1 tumors
in BALB/c mice (83), and close to a 100% rejection of RLZ1,
MOPC-70A, and Meth A tumors in BALB/c mice (41, 42). These
diverse outcomes may depend upon (a) the percentage of Treg
cells in a given strain of mice in the steady state, (b) the natural

ability of some mouse backgrounds to favor strong Th1 responses,
and (c) the tumor-specific expression of immunodominant anti-
gens able to trigger strong anti-tumor effector responses (136).
These observations from tumor-bearing mice must be kept in
mind while designing new immunotherapies strategies in cancer
patients.

Altogether, these recent discoveries on the events taking place
during the early tumor immune response highlight the impor-
tance of the timing and kinetic of Treg and Teff engagement,
which depends on their memory status (Figures 1 and 2). In
theory, this may disqualify tumor-induced pTregs from playing
a substantial role during the early tumor development as they
arise preferentially from naïve recent thymic emigrants (95). This
does not exclude their eventual involvement in some later events
that may sustain the ongoing tolerance. But the fate of the tumor
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is being decided early, pTregs are unlikely to have much impact
in most cancers. Their late arrival in the battle and the absence of
memory status puts pTregs at disadvantage during the early tumor
development. In tumor immunology and beyond, the timing of
engagement dictates the final outcome of an immune response.
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