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Regulatory T cells (Treg) are needed in the control of immune responses and to maintain
immune homeostasis. Of this subtype of regulatory lymphocytes, the most potent are
Foxp3 expressing CD4+ T cells, which can be roughly divided into two main groups; nat-
ural Treg cells (nTreg), developing in the thymus, and induced or adaptive Treg cells (iTreg),
developing in the periphery from naive, conventional T cells. Both nTreg cells and iTreg
cells have their own, non-redundant roles in the immune system, with nTreg cells mainly
maintaining tolerance toward self-structures, and iTreg developing in response to externally
delivered antigens or commensal microbes. In addition, Treg cells acquire tissue specific
features and are adapted to function in the tissue they reside. This review will focus on
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INTRODUCTION

Regulatory T cells (Treg) maintain immune homeostasis, prevent
autoimmune and allergic responses, and control the magnitude
and duration of inflammatory responses. Although there are other
cell types that also participate in these processes and are sometimes
named Treg cells, such as IL-10 producing Tr1 cells and TGF- pro-
ducing Th3 cells, this review will use the term Treg cells only for
the most potent regulators, i.e., CD4+ T cells expressing Forkhead
box P3 transcription factor (Foxp3) (1).

Foxp3 has been shown to be the key regulator of Treg cell differ-
entiation and function, as demonstrated by the devastating effects
of loss-of-function mutations in the Foxp3 gene, leading to the
lethal IPEX syndrome (immune dysregulation, polyendocrinopa-
thy, enteropathy, X-linked). Patients with this disorder suffer from
severe autoimmune responses, persistent eczema, and colitis. Sim-
ilar effects can also be observed in mice with mutated Foxp3
(2-7).

Treg cells can be divided into two major subsets, natural Treg
(nTreg) cells, which develop in the thymus, and induced Treg
(iTreg) cells, which develop in the periphery from naive T cells in
response to such signals such as low immunogenic doses of anti-
gen, commensal microbes, lymphopenia, or activation by imma-
ture DCs (8-11). In addition, iTreg cells can also be generated
under inflammatory conditions, as has been shown in infections
with certain pathogens, and mouse disease models, in which the
development of the disease is due to the absence of nTreg cells (12).

To date, no unique marker that can distinguish nTreg cell from
iTreg cell has been found. It has been suggested that the intracellu-
lar molecule Helios, which does not seem to be involved with the
suppressive potential of Treg cells, is expressed only by nTreg cells
in non-immunized animals (13). However, under certain activat-
ing conditions, Helios is also expressed by iTreg cells (14, 15), and
in humans, a small subset of naive Foxp3+ cells with suppressive
function canlack Helios expression (16). Another potential marker

some specific features of Treg cells in different compartments of the body.
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that might distinguish these two cell types is Neuropilin-1 (Nrp-1),
which also seems to be expressed only by nTreg cells (17, 18).

Treg cells often accumulate at the site of inflammation, most
likely to control the magnitude and the duration of the inflamma-
tion, and in this way protect the host from immune-mediated
pathology (19-23). Foxp3+ Treg cells have been reported to
express transcription factors associated with effector T cells,
including the Th1 transcription factor T-bet, Th2 transcription
factor Gata3, and the Th2- and Thl17-cell-related transcription
factor IRF4 (24-26). These probably facilitate the expression of
a number of features that are shared with effector T cells, such
as the same homing receptors, which would allow Foxp3+ Treg
cells to localize to the same site with the cells they are expected to
suppress.

All of the environmentally exposed areas of the human body,
such as the gastrointestinal tract, respiratory tract, skin, and
urogenital tract, are covered by commensal microbiota (27). In
addition to this, these surfaces are continuously facing harmless
antigens, such as pollen or food. One of the main functions of
Treg cells is the induction of tolerance toward these innocuous
agents. Failure to do so may lead to development of allergy or
inflammatory responses against commensals, which can be detri-
mental to the host (7, 10, 28). However, pathogens also utilize
mucosal sites and the skin to enter the body. In order to be able
to mount an appropriate immune response for a given trigger,
the immune system constantly needs to balance between tolerance
and immunity.

Tolerogenic dendritic cells (tDC) and structural cells, such as
pulmonary stromal cells or intestinal epithelial cells (IEC), pro-
mote tolerance by producing anti-inflammatory substances, such
as TGF-B, retinoic acid (RA), and TSLP (29), which are known to
promote Treg generation and function. In addition, at least in the
gut and in the lungs, a specific subset of macrophages seems to
induce Treg cells (30-32).

www.frontiersin.org

September 2013 | Volume 4 | Article 294 | 1


http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Immunological_Memory/10.3389/fimmu.2013.00294/abstract
http://www.frontiersin.org/Immunological_Memory/10.3389/fimmu.2013.00294/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SariLehtim�ki&UID=96415
http://www.frontiersin.org/people/RiittaLahesmaa/112109
mailto:riitta.lahesmaa@btk.fi
http://www.frontiersin.org
http://www.frontiersin.org/Immunological_Memory/archive

Lehtimaki and Lahesmaa

Treg cell heterogeneity

Table 1| Features of Treg cells in different compartments of the body.

Site Special features Main function forTreg cells
Gut High number of iTreg cells induced by orally delivered antigens and Oral tolerance (systemic)
commensal microbes
Skin High number of Treg cells in the steady state. UV-radiation induced Treg cells Immune homeostasis
Lung Pathogens affect Treg number and function Induction of tolerance against nasal antigens
Liver Antigen presentation in the liver may lead to formation of iTreg cells which Systemic tolerance
confer systemic tolerance
Fat tissue Limited TCR repertoire Control of sterile, low-grade inflammation in the

adipose tissue

Treg cells are also found in those compartments of the body that
are not directly exposed to external environment, where they most
likely mainly participate in the maintenance of immune home-
ostasis and prevention of autoimmunity. It is not surprising that
these Treg cells possess several features that distinguish them from
Treg cells that are continuously exposed to external antigens. A
recent report by Feuerer et al. (33) nicely demonstrated the tran-
scriptional similarities and differences between Treg cells from
lymph nodes (LN), spleen, adipose tissue, and Treg cells induced
under different conditions. These comparisons clearly show that
although they are all suppressive in nature and clearly closer to each
other than to conventional T cells, they all have unique features
of their own. These observations combined with mouse models,
where it is possible to follow effects of either nTreg cell or iTreg cell
depletion or deficiencies in homing receptors of Treg cells in dif-
ferent disease models, indicate that multiple Treg cell subsets have
their own specific roles in the immune system and although they
have overlapping tasks, they are also needed to complement each
other’s functions (19, 24, 34-36). In this review we will go through
some of the specific features of Treg cells in defined compart-
ments of the body (Table 1) and how Treg cells in these different
sites contribute to tolerance.

TREG CELLS IN THE GUT

Over 60 years ago, Chase (37) reported that the feeding of an anti-
gen resulted in an “immunologic non-responsiveness” to the same
antigen when it was later administered systemically (37). This kind
of non-responsiveness to intestinal antigens is now referred to
as oral tolerance (38, 39). In mice, oral tolerance can be trans-
ferred from one animal to another through adoptive transfer of
CD4+CD25+ cells (40, 41). On the other hand, depletion of
Foxp3+- cells abolishes the oral tolerance (31), indicating that tol-
erance is not solely a result of effector T cell depletion or anergy
but is also actively induced through activation of Treg cells.

In addition to orally administered antigens, tolerance to gut
microbiota has been reported several years ago by Powrie etal. (42)
who demonstrated that adoptive transfer of CD4+CD45RBhigh
cells into immunodeficient mice resulted in the development of
colitis, and the inflammatory response could be prevented by
simultaneous transfer of CD4+CD45RBY cells, i.e., Treg cells.
Colitis was not provoked in germ-free (GF) mice indicating that

inflammatory response against commensal microbes was involved
in the pathology (43, 44). Treg cells do develop in GF-mice and are
able to suppress T cell proliferation, but according to some exper-
iments, not as efficiently as Treg cells from conventionally housed
mice (45, 46). Recent studies indicate that colon derived microbes
play an important role in shaping the T cell repertoire in the gut
and certain bacterial species seem to be particularly efficient in
promoting Treg cell differentiation and suppressive function (8,
47). At least some of the gut derived Treg cells have TCRs recogniz-
ing gut microbe derived antigens. Moreover, adoptively transferred
colon microbe recognizing Treg cells with a GFP marker, localized
preferentially in the colon (48). Interestingly, iTreg cells also shape
the microbial colonies in the gut. In mice devoid of iTreg cells, the
gut microbiota is different from WT mice, possibly due to sponta-
neous Th2 type inflammation developing in the gut in the absence
of iTreg cells (24).

Several studies indicate that a large proportion of gut Treg cells
are derived from conventional T cells, which are converted into
immunosuppressive Foxp3+ cells and are thus iTreg cells. Adop-
tive transfer of Foxp3~ OT-II T cells into mice subsequently fed
with OVA resulted in expansion of OT-1I specific Foxp3™ cells (31).
Additionally, in mice where nTreg development was inhibited but
iTreg cells could form, administration of OVA in the drinking water
lead to formation of OVA-specific iTreg cells and prevented sub-
sequent sensitization with OVA (19, 40). When the development
of both of these cells was prevented, no tolerance was generated
(19). A great majority of gut derived Treg cells lack Helios and
Nrp-1 expression, indicating that they are not thymic derived Treg
cells (13, 17, 48). Finally, the TCR repertoire of Treg cells in the
gut has been shown to be different from Treg cells in the sec-
ondary lymphoid organs, indicating development in the periphery
from naive precursors (48). This observation has, however, been
challenged in a recent paper by Cebula et al. (49), who found
a significant overlap between TCRs of gut derived and thymus
derived Treg cells. Over 90% of the TCRs of gut derived Treg cells,
which were able to recognize gut commensal antigens, were also
expressed by Foxp3+ thymocytes. Based on these observations,
plus the fact that colitis is not induced in CNS1~/~ mice devoid
of iTreg cells (24), and that the colonization of GF-mice with a
specific microbiota results in the expansion of nTreg cells (50), the
authors concluded that nTreg cells constitute the majority of gut
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Treg cells and dominantly confer tolerance to gut microbiota. It is
true that adoptive transfer of Foxp3— cells into lymphopenic host
induces colitis in the recipient, although a certain proportion of
the transferred cells convert into Foxp3 expressing iTreg cells (10).
Moreover, in vitro generated and adoptively transferred iTreg cells
were unable to cure the colitis in this same model, although they
did prevent the lethality of the disease. However, nTreg cells were
unable to cure the colitis either, unless transferred together with
iTreg cells or transferred into mice that could generate iTreg cells.
These results indicate that nTreg cells and iTreg cells have non-
redundant roles in tolerance against gut microbiota. Furthermore,
CNS1~/~ mice develop spontaneous Th2 type inflammation in the
gut (24), and conversion of Foxp3— into Foxp3+ cells has been
observed upon colonization of GF-mice with specific microbiota
(50). As a conclusion, most likely iTreg cells, but also nTreg cells
participate in the tolerance against gut microbiota. High inter-
personal variability in the gut’s microbial communities has been
observed, whereas at the individual level, the variation is minimal
over time (51, 52), and therefore tolerogenic responses against gut
microbes could resemble tolerance toward self-structures. Instead,
iTreg could be especially important for generating tolerance to
orally delivered antigens with even more diverse and “fluctuat-
ing” antigen repertoire. This view is supported by OVA feeding
experiments, as described above as well as the study by Nagatani et
al. (53) indicating that adoptively transferred OVA-specific naive
T cells in Peyer’s patches (PP) start to express Foxp3 after oral
administration of ovalbumin.

Induced Treg cells in the gut are most likely induced in the
mesenteric LNs (mLN) by tolerance inducing CD103+ DCs.
Synthesis of RA and the production of immunosuppressive
indoleamine-2,3-dioxygenase (IDO) by these DCs are involved
in the induction (54-56). Intestinal macrophages, which arise
from different precursors than DCs, may also play a role in the
Foxp3 conversion and/or proliferation in the gut (30-32). In
addition, IEC participate in the induction of oral tolerance by
secreting TSLP, TGF-B, and RA, and thus creating a local microen-
vironment which favors tolerogenic responses, for instance by
enabling DCs to produce RA from food derived vitamin A (29).
Microbes may also favor conversion, for example, bacteria derived
matrix-metalloproteinases may cleave latent TGF-§ into active
form which supports Treg conversion. Moreover, Bacteroides frag-
ilis and Clostridium species, both gut microbiota, have been shown
to promote the number and function of certain Treg cell subsets
in the gut (8, 47).

Establishment of oral tolerance requires migration of tDCs into
to mLN to activate Foxp3 cells. Mice devoid of mLN are unable to
mount oral tolerance (57) and an impaired inhibition of colitis has
been observed in mice deficient of CCR7 or CD62L (58, 59), most
likely due to impaired homing of Treg cells to the mLNs. However,
subsequent recruitment of Foxp3 cells into the lamina propria (LP)
and local expansion there is also necessary for the establishment
of oral tolerance. Foxp3+ cells proliferate only little in the mLN
but vigorously in the LP. In addition, oral tolerance is weaker or
abolished in mice with deficiencies in gut homing molecules, such
as integrin a4p7+ or chemokine receptor CCR9+ expressed on
Treg cells or mucosal addressin cell adhesion molecule-1 (MAd-
CAM1) expressed on intestinal venules and PPs (31, 60). It has

been speculated that this local expansion may offer an additional
checkpoint between immunity and tolerance (31).

TREG CELLS IN THE SKIN

Skin is continuously exposed to a variety of external antigens,
pathogens, and chemicals. The structure of the skin forms a phys-
ical barrier to prevent harmful substances or antigens entering
the body. In addition, many chemical and biochemical properties,
such as low pH, low water content, production of antimicrobial
peptides, or composition of lipid compounds, protect the host
from the “outside invaders.” However, if a pathogen/chemical is
able to breach the epithelial barrier and penetrate into the skin,
both the innate and the adaptive immune systems are activated
(61, 62).

Like the gut, also skin is covered by commensal bacteria, which
in humans occupy specific niches, like sebaceous glands or hair
follicles (63). Furthermore, as in the gut, the skin commensals are
needed for the development of a proper immune response in the
skin, and commensals have been shown to modulate especially IL-
1 driven inflammation (64). Although gut induced tolerance has
been shown to have systemic effects (39), absence or reduction of
gut commensal bacteria does not affect skin commensals or their
ability to modulate immune responses in the skin (64).

In the steady state, both the skin Langerhans cells (LCs) and
dermal dendritic cells (dDCs) maintain the tolerance through
induction/activation of Treg cells. While LCs have been shown
to promote skin resident Treg cell proliferation (65), it seems
that mainly dDCs present self-antigens in the skin draining LNs
(66-68). Approximately 6% of DCs in the skin draining LNs
in the mouse have been shown to originate from the skin in
the steady state (23). Vitamin D plays a role in the develop-
ment of tolerogenic DCs in the skin. Vitamin D3 is activated by
UV-radiation and vitamin D receptor agonist treatment of DCs
elicits Treg inducing tDCs and LCs (69—71). In addition, RA pro-
ducing DCs, which in contrast to gut are CD103—, have been
shown to induce Tregs in the skin draining LNs (72), although
their number is lower in the dermal LNs compared with intesti-
nal tract (73). During primary response to an antigen, iTreg cells
are generated from conventional T cells in the skin draining LNs
(74).

In the steady state, skin has a high proportion of Treg cells and
they are needed to maintain local homeostasis in the skin. This
becomes evident in experiments where Treg recruitment into the
skin is impaired, e.g., due to the absence of skin homing chemokine
receptor, CCR4, or E/P-selectin ligand, a-1,3-fucosyltransferase
VII (23, 75-77). Although Treg cells deficient in these molecules
are functional in in vitro suppression assays and are able to con-
trol other peripheral autoimmune responses in scurfy mice, they
are not able to control spontaneous inflammation developing
in the skin. However, during hapten induced contact hypersen-
sitivity (CHS) response, Treg cells accumulate in the skin even
in the absence of CCR4 receptor (78), possibly through another
chemokine receptor such as CCR10 (78, 79) or CCR5, which is
important for Treg recruitment into the skin during Leishma-
nia major infection (80). CCR7 and CCR6 expression have also
been reported in skin derived Treg cells. Other markers typical
for skin resident Treg cells are CD44 and CD103, indicating that
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the majority of skin Treg cells are of memory/effector type (23,
75, 76).

During CHS response, Treg cells migrate from the skin exposed
to hapten to the draining LN. Upon rechallenge with the same hap-
ten, they migrate back to the skin, into the site of new exposure
(23). These skin derived Treg cells are more suppressive than LN
derived Treg cells and they function, at least partly, in an antigen-
specific manner. In addition, they express more IL-10, TGF-beta,
and have higher surface expression of CD103 and GITR (23).
Increasing percentages of Treg cells accumulate in the skin at dif-
ferent time points after challenge and ablation of Treg cells during
the challenge phase of CHS results in a prolonged inflammation,
pointing to an important role for Treg cells in terminating the
inflammatory response at the site of inflammation (21, 23).

UV-irradiation of the skin induces Treg cells, which can pre-
vent sensitization to contact allergen in an antigen-specific man-
ner when adoptively transferred from UV radiated and hapten
exposed mouse to a naive recipient prior to sensitization (81).
These UV-iTreg cells express Foxp3, CD4, CD25, CTLA-4, GITR,
neuropilin, and CD62L (82). The mechanism for Treg induction
involves LCs, which suffer from UV radiation in such a way that
they are unable to present hapten professionally, resulting in tol-
erance instead of immunity. Keratinocytes may also be involved
through RANK-RANKL mediated mechanisms (83, 84). UV-iTreg
cells are, however, unable to suppress the elicitation phase in an
already sensitized recipient, unless injected directly at the site
of hapten administration. This is most likely due to expression
of LN homing molecule, CD62L, on Treg cells, which prevents
their migration into the skin. Education of these UV-iTreg cells
in vitro or in vivo with skin derived APC equips the cells with
skin homing molecules, ligands for E-and P-selectin, and results
in the suppression of the elicitation phase. These results clearly
demonstrate that UV-iTreg cells can efficiently suppress both pri-
mary and secondary responses and that they are needed at the
site of inflammation, i.e., the skin, during the secondary response
(82). Like Treg cells in general, UV-iTreg cells are also a hetero-
geneous population, possessing different properties depending on
the UV-dosage, mouse strain, and even hapten used to sensitize
the mice (85).

TREG CELLS IN THE LUNG

In the lungs, normal flora and exogenous antigens delivered via
the airways trigger DCs and lung resident tissue macrophages
to induce iTreg cells in order to control pulmonary homeosta-
sis and tolerance (29, 86, 87). Moreover, pulmonary stromal
cells participate in the process by promoting differentiation of
tDCs (88).

Low doses of antigen administered intranasally induce gener-
ation of Foxp3+TGF-B+ cells, which maintain tolerance to the
same antigen when later administered at doses that would induce
sensitization (89). Foxp3+ cells control allergic airway inflamma-
tory responses and their depletion during the sensitization phase
results in increased IgE titers and eosinophilia after challenge in
the lungs (20, 90). Adoptive transfer of Treg cells in the chal-
lenge phase, in turn, results in suppressed inflammatory response,
and both nTreg cells and in vitro generated iTreg cells are capable
of suppression (91-93). Importantly, mice with defects in iTreg

generation develop spontaneous inflammation in the lungs (and
gut) with features of Th2 type allergic airway inflammation (24).

Mice with CCR4 deficient Treg cells develop spontaneous lung
inflammation (76) and in contrast to the skin, efficient Treg
recruitment into the lungs during inflammation also requires
CCR4 (35). Moreover, asthmatic patients show increased percent-
ages of CCR4+ Foxp3+ Treg cells in the BAL fluid after allergen
challenge. CCR4 expression seems to be especially important dur-
ing secondary allergic inflammatory responses, whereas in the
priming phase, Treg mediated suppression requires CCR7 expres-
sion (34) and allergic airway inflammation is exacerbated in the
absence of CCR7 (94).

Pathogens affect Treg cells in the lungs and may have conse-
quences on tolerance. While some infections increase the number
of Treg cells, promote their function, and subsequently inhibit
sensitization to common allergens, some infections exacerbate
allergic inflammation in the lung. For instance, vaccination of
mice with bovis Bacille Calmette—Guérin (BCG) or recombinant
BCG expressing house dust mite protein Derp, reduced subsequent
allergic airway inflammation after OVA or Derp sensitization and
challenge, respectively. In addition, increased numbers of Foxp3+
cells in the lung and enhanced expression of CTLA-4 and elevated
levels of IL-10 and TGF-b were observed (95, 96). Instead, infec-
tion early in life with respiratory syncytial virus (RSV) impaired
Treg function and exacerbated allergic airway inflammation in
mice (97).

TREG CELLS IN THE “INSIDE”

Tissues not directly exposed to outside world, such as organs and
adipose tissue also harbor Treg cells with specific functions. A
couple of examples of these sites are considered, as follows.

The liver favors immune tolerance and it has been already
known for a long time that liver allografts are accepted even with-
out immune suppression or require less immunosuppression for
long term survival than other transplants (98, 99). Furthermore,
liver-allograft recipients seem to tolerate non-hepatic allografts
from the same donor, and ongoing rejection can be reversed
by liver allografts, indicating a systemic tolerant response (100).
Although the liver is not directly exposed to environmental anti-
gens, it is continuously sampling food and microbial antigens
from the gut and may also play a role in the development of oral
tolerance (101). In addition, being a primary metabolic organ,
several neo-antigens are developed during metabolic processes,
which may require tolerance. Several cell types in the liver, such
as liver sinusoidal endothelial cells, Kupffer cells, stellate cells, and
DCs, can present antigens in the context of suppressive cytokines
and inhibitory cell surface molecules and promote tolerance (102).
Although several mechanisms of tolerance prevail, such as clonal
deletion or immune deviation (103—105), increasing evidence also
points toward the role of Treg cells in mediating hepatic toler-
ance. For instance, in a mouse model of Concavalin A (ConA)
induced T cell mediated liver injury, Treg cell depletion results in
more severe inflammation, whereas adoptive transfer of Treg cells
ameliorates the symptoms. These hepatic Treg cells express more
Foxp3, CTLA-4, CD103, and GITR than their splenic counter-
parts, and are more suppressive in vivo than Treg cells from non-
treated mice (106, 107). More importantly, targeted expression of

Frontiers in Immunology | Immunological Memory

September 2013 | Volume 4 | Article 294 | 4


http://www.frontiersin.org/Immunological_Memory
http://www.frontiersin.org/Immunological_Memory/archive

Lehtimaki and Lahesmaa

Treg cell heterogeneity

antigens in the liver can establish systemic tolerance by inducing
antigen-specific Foxp3+ Treg cells (108, 109). For example, in a
mouse model of multiple sclerosis, ectopic expression of neuronal
autoantigen myelin basic protein (MBP) in the liver prevented the
development of the disease. The protection could be transmitted
to a WT recipient through adoptive transfer of Foxp3+ Treg cells
from mouse expressing MBP in the liver. Treg cells were shown to
develop from conventional T cells in a TGF-b dependent manner
and only when the autoantigen was expressed in the liver, not in
the skin (109).

Obesity is accompanied by low-grade inflammation in the adi-
pose tissue, which has consequences on insulin-resistance and
subsequently, development of type 2 diabetes (110, 111). In nor-
mal mice, Foxp3+ cells can be found in the adipose tissue, but
in the obese insulin-resistance mouse models or mouse fed with
high fat diet, the number of these cells is reduced (112, 113). Loss-
of-function/depletion experiments and gain-of-function/adoptive
transfer experiments, demonstrate that these Foxp3+ cells are
responsible for controlling the inflammation in the fat tissue and
development of insulin resistance (113, 114). In mice, T cells
comprise approximately 10% of the abdominal fat tissue cells, of
which three quarters are CD4+ T cells, and approximately half of
these express Foxp3, which is a high percentage compared to lym-
phoid and non-lymphoid tissues. Interestingly, high Fopx3+ cell
numbers are recovered from visceral adipose tissue, but not from
subcutaneous tissue, the former being associated with insulin resis-
tance (110, 113). The TCRs of fat deposited Treg cells are distinct
from their LN resident counterparts and have a limited TCR reper-
toire, indicating that fat Treg cells may be selected through antigen
specificity. Also the transcriptional signature of adipose derived
Treg cells is different from Treg cells derived from secondary lym-
phoid organs or Treg cells induced in vivo or in vitro (33). In
humans, both lowered Foxp3 expression (112, 113) and increased
Foxp3 expression in the adipose tissue (115) has been shown to
accompany obesity. Eller et al. (114), in turn, observed similar
Foxp3 mRNA expression in obese patients with insulin resistance,
whilst Foxp3 expression in obese patients without insulin resis-
tance was lowered, compared to healthy controls. The expression
of Helios was decreased in both obese groups, indicating lowered
nTreg numbers. Clearly further studies are needed to confirm Treg
contribution to fat tissue inflammation in humans.

GENOME-WIDE ANALYSIS

Feuerer et al. (33), have demonstrated that the gene-expression
in different murine Treg cells differs from that of conventional
T cells. However, when comparing, for example, spleen derived
Treg cell signatures with fat tissue derived Treg cells or with
Treg cells induced in vivo or in vitro, it becomes evident that
Treg cells form a heterogeneous group of suppressive cells. The
rapid development of technologies enabling fast and reproducible
genome-wide analysis of the cells has enabled finding such small
differences between the subsets of cells. These methods include
array- or next-generation sequencing based transcriptome studies,
proteomic studies and ChIP-Seq analysis, which enable detection
of novel protein coding and non-coding transcripts, differen-
tial splicing, epigenetic modifications, or transcription factor-
binding sites along the whole genome [reviewed in Ref. (116)].

Genome-wide approaches provide valuable information about
complex networks occurring in the cells during or in response
to differentiation and reveal novel genes and mechanisms par-
ticipating in these processes. For example, array based analysis
of differentiated human Th1 and Th2 cells revealed several pre-
viously unknown genes differently expressed between these cell
types (117, 118). Similarly, analysis on human cord blood derived
Th1/Th2/Th17 cells during the early differentiation process iden-
tified several new candidates potentially involved in the fate
decision of these cells (119-121). Functional analysis of these
candidates in turn, resulted in the discovery of new regula-
tors of human Th cell differentiation (122-126). Genome-wide
approaches have also been utilized to unravel the role of tran-
scriptional regulators, such as STAT6, SATB1, or ATF3, in the
differentiation process (122, 124, 127). Similarly in mouse, genes
regulated by STAT4 and STAT6 during Thl or Th2 cell devel-
opment have been studied (128, 129), and quite surprisingly,
only a small subset of genes was similarly regulated by STAT6
in mouse and human, underlying the importance of human
studies.

A large proportion of the single-nucleotide polymorphisms
(SNPs) associated with autoimmune diseases identified through
GWAS studies are in the non-coding regions of DNA. To investi-
gate how such SNPs may participate in molecular mechanisms of
human diseases, integrative analysis of human cells is required.
For example, a recent study that combined analysis of tran-
scription factor-binding sites, chromatin state maps, modeling
of enhancer-gene pairs, and genome-wide association studies of
autoimmunity-associated SNPs provide a potential link for dis-
tal regulatory regions in disease pathogenesis. Such SNPs were
shown to alter binding of transcription factors involved in Th cell
differentiation (130).

Several systems biology approaches have also been used to study
Treg cells, including genome-wide analysis of Foxp3 binding sites,
both in mouse and human (131-134), transcriptomes of rest-
ing and activated nTreg and iTreg cells in mice (33, 135, 136)
and epigenetic modifications of Treg cells in mouse and human
(137-139).

Whilst the regulatory functions of Treg cells indicate their
potential therapeutic use, there are a large number of questions
that should be answered first. For instance, the stability of Treg
cells is one of the major concerns. Natural Treg cells have been
shown to prevent onset of different autoimmune diseases in sev-
eral animal models and have already been tested also in clinical
trials (140, 141). Additionally, a number of studies have demon-
strated a remarkably more demethylated Foxp3 locus in nTreg
cells compared to iTreg cells, which is thought to provide a more
stable suppressive phenotype in nTreg cells (137, 142, 143). How-
ever, in some studies, iTreg cells have shown enhanced stability
over nTreg cells during inflammation, due to IL-2 and TGF-
-mediated downregulation of IL-6 receptor, which makes iTreg
cells more resistant to conversion into Th17 cells. In addition, in
contrast to nTreg cells, iTreg cells also retained suppressive activ-
ity in vivo in inflammatory conditions (144—146). These results
suggest that while nTreg cells might be efficient in preventing the
onset of the disease, iTreg cells could be more suitable for treating
the already established disease.
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The heterogeneity of Treg cells and their non-redundant roles in
immune tolerance also imply that the mechanisms of suppression
may differ between different Treg types, tissues, and inflammatory
conditions. Also antigen specificity plays a role. The expansion
of nTreg cells in vivo or in vitro generates a polyclonal pool of
cells, whereas iTreg cells can be generated with a certain antigen
specificity, which may diminish harmful side effects. Finally, while
having a lot of information of more or less terminately differen-
tiated Treg cells, we still lack information about gene-expression
and regulation during Treg development, especially in humans.
Genome-wide studies, including transcriptomes, regulomes, and
proteomes, will help us to recognize the subtle differences between
different Treg subtypes, identify the factors that drive the differ-
entiation process toward Treg phenotypes and define the elements
that contribute to the stability and functionality of these cells. In
the future this knowledge could be used to effectively manipulate
and generate functional Treg cells for therapeutic purposes.

CONCLUSION

Treg cells have attracted intense attention, due to their thera-
peutic potential for a number of different conditions including
autoimmune diseases, allergies, transplantation, and even obesity
related diseases, such as type 2 diabetes. In this review we were
able only to scratch the surface of different qualities of Treg cells
in different tissues, but even this short glimpse makes it easy to
realize that Treg cells have multiple functions in the body, with
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