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The characteristic serologic feature of systemic lupus erythematosus (SLE) is autoantibod-
ies against one’s own nucleic acid or nucleic acid-binding proteins – DNA and RNA-binding
nuclear proteins. Circulating autoantibodies can deposit in the tissue, causing inflamma-
tion and production of cytokines such as type 1 interferon (IFN). Investigations in human
patients and animal models have implicated environmental as well as genetic factors in
the biology of the SLE autoimmune response. Viral/Bacterial nucleic acid is a potent stim-
ulant of innate immunity by both toll-like receptor (TLR) and non-TLR signaling cascades.
Additionally, foreign DNA may act as an immunogen to drive an antigen-specific antibody
response. Self nucleic acid is normally restricted to the nucleus or the mitochondria, away
from the DNA/RNA sensors, and mechanisms exist to differentiate between foreign and
self nucleic acid. In normal immunity, a diverse range of DNA and RNA sensors in different
cell types form a dynamic and integrated molecular network to prevent viral infection. In
SLE, pathologic activation of these sensors occurs via immune complexes consisting of
autoantibodies bound to DNA or to nucleic acid-protein complexes. In this review, we will
discuss recent studies outlining how mismanaged nucleic acid sensing networks promote
autoimmunity and result in the over-production of type I IFN. This information is critical for
improving therapeutic strategies for SLE disease.
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INTRODUCTION
The normal immune system strikes a delicate balance between
defense against foreign invasion and the prevention of misdi-
rected responses against self-antigens. Sometimes, this intricate
balance becomes faulty due to genetic, environmental, or other
factors leading to breakdown of self-tolerance and the onset of
an autoimmune disorder. Systemic Lupus Erythematosus (SLE)
is a prototype autoimmune disease that affects the skin, kidney,
musculoskeletal, and hematologic systems and is characterized by
presence of various autoantibodies against self-components, espe-
cially double-stranded DNA (dsDNA) and RNA-binding nuclear
proteins. Amongst SLE patients, the female to male ratio is 9:1, sug-
gesting that sex-related factors are important in the development
of the disease (1, 2). Many genetic factors have been strongly asso-
ciated with disease susceptibility (3, 4). Exposure to several viruses
and bacterial infections, and also UV light are known to trigger SLE
(5). Thus, it is considered that SLE occurs when an environmental
trigger acts on a genetically predisposed individual, leading to a loss
of tolerance toward native proteins (6). Multiple immune system
abnormalities contribute to the pathogenesis of SLE, including
abnormal clearance of apoptotic cells and immune complexes,
over-production of type I interferon (IFN), reduced thresholds
for B and T lymphocyte activation, and production of autoanti-
bodies against self-antigens (7). These autoantibodies are directed
against nucleic acids and RNA-binding proteins such as Ro, La,
and Sm (8). Tissue damage is mediated in part by deposition of
immune complexes in the affected organs, followed by activation
of downstream inflammatory pathways mediated by complement

and FcR engagement of innate immune cells (9). Viruses such
as Cytomegalovirus (CMV), Epstein–Barr (EBV), and Parvovirus
B19 are frequently involved as environmental triggers in lupus.
Hypomethylated bacterial and viral DNA are potent inducers of
immune responses through TLR signaling cascade finally leading
to type 1 IFN over-expression, B cell activation, production of
autoantibodies, and interleukin (IL)-6 (10).

Many patients with SLE have high circulating levels of type I
IFN (11). Some individuals treated with IFN-α for chronic viral
infections developed de novo SLE that was resolved when IFN-α
was withdrawn (12, 13). Additionally, within SLE families abnor-
mally high IFN-α levels have been found clustered (14). A recent
genome-wide association study has identified additional novel
genetic loci associated with high serum IFN-α in SLE patients
(15, 16). Taken together, these data support the idea that genet-
ically determined endogenous elevations in IFN-α predispose to
human SLE.

HOW DOES LUPUS START?
The etiology of lupus is considered to be multifactorial involv-
ing multiple genes and environmental factors such as infec-
tions, hormones, and drugs (Figure 1) (17). It is considered that
unrestrained immune response to apoptotic cells and decreased
disposal of apoptotic material are important initiators of the
autoimmune response in SLE. Genomic DNA is not accessible
to the immune system under standard conditions as it is safely
sequestered in the nucleus or in mitochondria under the tight
control of DNA damage and repair response systems. However,
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FIGURE 1 | Factors associated with SLE pathogenesis. Genetic factors, environmental influences such as radiations, repeated infections, hormonal
imbalances, and certain drugs may act on innate immune system and disrupt the intricate balance between protection against foreign invasion and self-defense.

when cells die through apoptosis, apoptotic bodies containing
fragmented cellular material and abnormal surface antigens, cir-
culate in the body enabling the immune system to access new
epitopes (18). Under normal conditions cellular mechanisms exist
to ensure that apoptotic debris is not immunogenic to self, but
these mechanisms can fail. It seems likely that defective clear-
ance of apoptotic material and modifications to DNA such as
hypomethylation can promote SLE (19). Recent reports suggest
that neutrophil extracellular traps (NETs) are a potent stimulus
for type 1 IFN release by plasmacytoid dendritic cells (DCs), and
play an important role in propagation of the lupus phenotype
(20–23). Neutrophils are specialized immune cells that are rapidly
recruited to sites of inflammation in response to microbial infec-
tions. One of the mechanisms of neutrophil action is the formation
of “NETs” (24). NETs are made of processed chromatin bound
to granular and selected cytoplasmic proteins. NETs are released
by neutrophils to control microbial infections (24). This release
of chromatin is the result of a unique form of cell death, called
“NETosis.” Material derived from NETosis can contribute to SLE
by serving as source of autoantigen, propagating inflammation,
and tissue damage (21, 23, 25, 26). In an interesting recent study,
Sangaletti et al. suggested that NETs may provide antigens to DCs
and in this way promote immune responses against neutrophil
antigens in the autoimmune disease small vessel vasculitis, which
is characterized by antibodies against cytoplasmic proteins in neu-
trophils (23). It is possible that NETs may provide nuclear antigens
to immune cells in a similar way in SLE.

Pathways through which our own nuclear material is able to
induce pro-inflammatory responses are a topic of active research.
At least three distinct types of nucleic acid recognition receptors
are recognized: (1) the toll-like receptors (TLRs), which recog-
nize nucleic acids on the plasma membranes and endosomes;
(2) the nucleotide binding and oligomerization domain (NOD)
receptors (NLRs), which monitor the cytosolic compartment

and also interact with TLR pathways; and (3) the retinoid acid
inducible gene (RIG)-I-like receptors that recognize RNA or DNA
in the cytoplasm (RLRs). Many of these receptors may directly or
indirectly participate in the pathogenesis of SLE (27).

TOLL-LIKE RECEPTOR MEDIATED SIGNALING IN LUPUS
Toll-like receptors are major components of the innate immune
system that activate multiple inflammatory pathways and coor-
dinate systemic defense against microbial pathogens. Data from
animal models and human patients suggest that improper engage-
ment of TLR pathways by endogenous or exogenous ligands may
lead to the initiation of autoimmune responses and tissue injury
(28). Endosomal TLRs (TLR-3, -7, -8, and -9) are potent acti-
vators of DCs and B cells. TLR-3 is specific for double-stranded
RNA (dsRNA), TLRs-7 and -8 for single-stranded RNA (ssRNA),
and TLR-9 is specific for dsDNA (29, 30). TLRs are expressed
predominantly in DCs, B cells, macrophages, monocytes, and neu-
trophils. Cell surface receptors, such as the B cell receptor (BCR)
and FcγRIIa, facilitate the endocytosis of nucleic acid containing
material or immune complexes (31, 32). Chromatin-containing
immune complexes can stimulate B cells up to 100-fold more
effectively than complexes without nucleic acids apparently due
to collective engagement of BCR and TLR (31–34). Thus, dual
engagement of the BCR and the TLR can induce abnormal activa-
tion of B cells and break immune tolerance. In human lupus, an
increased proportion of B cells and monocytes expressed TLR-
9 among patients with active SLE compared to patients with
inactive disease (35). TLR activation in combination with T cell
derived IL-21 markedly increased B cell differentiation into plasma
cells (36).

All TLR family members, including TLRs-7, -8, -9 are
type I membrane proteins composed of a ligand-binding
ectodomain containing 18–25 tandem copies of leucine-rich
repeats (LRRs), a transmembrane domain, and a conserved
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cytoplasmic toll/interleukin-1 receptor (TIR) domain. Ligand-
induced dimerization and conformational rearrangement of the
TIR domains leads to the creation of two symmetry-related sites
which allow binding of the cognate signaling adaptor mole-
cules (37, 38). Two main adaptors are utilized by TLRs, namely
Myeloid Differentiation Factor-88 (MyD88) (TLR-7, -8, and -
9) and TIR domain-containing adaptor inducing IFN-β (TRIF)
(TLR-3). These adaptors mediate the recruitment of a series of
kinases that lead to the formation of specific macromolecular
signaling platforms for inflammatory reactions. IL-1 receptor-
associated kinase 4 (IRAK-4) is recruited to MyD88 and is activated
after recruitment (38). IRAK-4, in turn, activates IL-1 receptor-
associated kinase 1 (IRAK 1) via phosphorylation (39, 40). These
activated kinases recruit tumor necrosis factor receptor-associated
factor 6 (TRAF-6), which is an E3 ubiquitin ligase required for acti-
vation of NFκB by freeing it from its inhibitor, I kappa B (IκB) (41).
In addition to this, interferon regulatory factors (IRFs) IRF5 and
IRF7 are recruited to the MyD88/IRAK/TRAF6 complex, where
they become phosphorylated and activated (42, 43). Ultimately,
the transcription factors NFκB and IRF5 and IRF7 are activated
and translocate into the nucleus where they initiate gene transcrip-
tion and production of pro-inflammatory cytokines and type I IFN
(Figure 2) (43–45). Unlike TLR-7, -8, and -9, TLR-3 signaling is
MyD88-independent and utilizes adaptor protein TRIF (46). TRIF

also recruits additional proteins necessary for downstream signal-
ing, including TRAF-family member-associated NFκB-activator-
binding kinase 1 (TBK1), TRAF3, and receptor-interacting protein
1 (RIP1) (40). TRIF interaction with TBK1 is necessary for the
activation of IRF-3, which is a transcription factor involved in the
production of interferon beta (IFNβ). (47). TLR-3 can also activate
NFκB by the interaction of TRIF with TRAF-6 or RIP1 (40, 48)
leading to up-regulated IFNα production and secretion of other
pro-inflammatory cytokines.

GENETIC FACTORS ASSOCIATED WITH TLR-DEPENDENT
IFNα PATHWAY IN LUPUS
One of the most striking immune system abnormalities in SLE
patients is the frequent up-regulation of the type I IFN pathway
(49, 50). IFNα is critical player in SLE progression and severity,
and has been shown to induce the production of autoantibodies
when administered to non-SLE patients (12, 51). An interesting
report describes remission of SLE in a patient which was attrib-
uted to unresponsiveness to both TLR-7 and -9 stimulation after
development of common variable immunodeficiency – (CVID-)
like disease (52). Genetic variations in many of the components
of the TLR signaling pathway have been associated with SLE,
such as TLR-7, IRF5, IRF7, IRF8, IRAK1, and TNFAIP3 (53–59).
Three of the nine genes in the IRF family have been genetically

FIGURE 2 |Toll-like receptor mediated signaling in SLE. Cells use TLRs as
sensors to detect the presence of viruses and apoptotic debris via TLR-3, -7,
-8, and -9. Nuclear material is trafficked to the endosome triggering TLRs
signaling. Binding of cognate ligands to these TLRs recruits MyD88, a main
signaling intermediate involved in TLR-7, -8, and -9 signaling. MyD88 recruits
interleukin-1 receptor-associated kinase (IRAK)-4. IRAK-4 binds and

phosphorylates IRAK-1, which in turn recruits Tumor necrosis factor (TNF)
receptor-associated factor (TRAF) 6. IRF5 and IRF7 are then shuttled to the
nucleus and these events set the stage for the transcription of IFN-α and
other pro-inflammatory cytokines. TLR-3 signaling is MyD88-independent and
utilizes TRIF and TRAF3 as signaling intermediates finally leading to activation
of IRF3 and production of IFN-α and other pro-inflammatory cytokines.
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associated with SLE (60). Additionally, some of these genetic poly-
morphisms have been associated with increased type I IFN in SLE
patients, supporting the idea that these genetic variations modu-
late the output of the TLR pathway (42, 60–64). The implication
of these genes in SLE strongly supports the primary relevance of
the TLR and IFNα pathway in the disease phenotype (63, 65).
Additionally, many of these genetic polymorphisms in the TLR
pathway are associated with the formation of autoantibodies (62–
64, 66), supporting the concept of a feed-forward loop in which
genetic variations in the TLR pathway enhance autoantibody pro-
duction, and then the autoantibodies form immune complexes
which stimulate the TLR pathway and result in increased type
I IFN production in the setting of the same genetic variations.
The TLR pathways are important in B cell maturation, and it is
possible that genetically programed TLR pathway over-activity
could promote autoantibody formation in B cells. Then after
immune complexes are formed, these stimulate the TLR pathway
in DCs and macrophages, and the same polymorphisms promote
increased cytokine output from these cells.

TOLL-INDEPENDENT SIGNALING IN LUPUS
SIGNALING THROUGH RIG-1 LIKE RECEPTORS IN LUPUS
After viruses enter the cytoplasm and start replicating, infected
host cells can sense and activate anti-viral responses in response
to viral nucleic acids. This sensing occurs in the cytoplasm, and
is independent of the cell surface and endosomal TLRs. Thus far,
three cytosolic RNA helicases have been identified, RIG-I (retinoic
acid – inducible gene I), MDA5 (melanoma differentiation – asso-
ciated gene 5), and LGP2 (laboratory of genetics and physiology
2) that act as RNA sensors to mediate TLR-independent IFN-α/β
induction in the presence of replicating RNA viruses (37, 67).
Unlike membrane-bound TLRs, RLRs reside in the cytoplasm and
sense cytoplasmic RNA. RIG-I contains tandem caspase recruit-
ment domain (CARD)-like regions at its N-terminus and the
central DExD/H helicase domain which has an ATP-binding motif
and a C-terminal repressor domain which binds to RNA (68, 69).
MDA5 contains tandem CARD-like regions and a DExD/H heli-
case domain, but it is unknown whether the C-terminal region
of MDA5 really functions as repressor domain. LGP2 contains a
DExD/H helicase domain and a repressor domain, but lacks the
CARD-like region. LGP2 was suggested to be a negative regula-
tor of RNA virus-induced responses, because the LGP2 repres-
sor domain binds to that of RIG-I and suppresses signaling by
interfering with the self-association of RIG-I (70, 71). Findings
suggest that RIG-I and MDA5 have specificities in their detec-
tion of RNA viruses, through recognition of distinct viral RNA
structures. RIG-I can recognize ssRNA bearing a 5′-triphosphate
moiety (72, 73). In the case of self-RNA, 5′-triphosphate struc-
tures are removed or masked by a cap structure, which suggests
a discrimination mechanism between self- and non-self RNA.
RIG-I and MDA5 can distinguish dsRNA by size; RIG-I can bind
short dsRNA whereas MDA5 can bind long dsRNA (74). Although
LGP2 was considered a negative regulator, LGP2-deficient mice
exhibited complicated phenotypes (75) and higher levels of type
I IFN in response to polyinosinic: polycytidylic acid (Poly I:C)
and vesicular stomatitis virus (VSV), but decreased type I IFN fol-
lowing encephalomyocarditis virus (EMCV) infection, suggesting

that LGP2 can negatively or positively regulate RIG-I and MDA5
responses depending on the type of RNA virus (75).

Ligand binding to RLRs induces conformational changes lead-
ing to association with mitochondrial-associated IFN-β promoter
stimulator 1 (IPS-1) through card-card domain interactions (76–
79). IPS-1 then recruits TRAF3, which activates TANK-binding
kinase 1 (TBK1) and IκB kinase (IKK) – related kinases IKKε

(80). This leads to the phosphorylation and nuclear transloca-
tion of IRF-3 and -7 resulting in the transcription of IFN type 1
genes (81, 82) (Figure 3). IPS-1 also interacts with FAS-associated
death domain protein (FADD) and receptor-interacting protein 1
(RIP-1) (76), which activate caspase-8 and caspase-10, resulting
in NF-κB activation and production of inflammatory cytokines
(83, 84). Genetic studies in SLE have strongly implicated the RLR
pathways in SLE susceptibility. Variants in both MDA5 and IPS-1
have been associated with SLE susceptibility and with altered acti-
vation of the type I IFN pathway in SLE patients in vivo (85, 86).
This again supports the idea that multiple nucleic acid recognition
pathways are involved in SLE pathogenesis.

SIGNALING THROUGH NUCLEOTIDE BINDING AND OLIGOMERIZATION
DOMAIN (NLR) RECEPTORS IN LUPUS
The NOD (NLR) family of receptors are key molecules that
drive inflammatory responses by forming a multi-protein complex
called “inflammasome.” The inflammasome drives the processing
and release of cytokines such as the pro-inflammatory cytokines
IL-1β and IL-18. Several inflammasome complexes have been
identified in recent years. Of the known inflammasomes, NLRP3,
absent in melanoma 2 (AIM2), and IFN inducible protein 16
(IFI16) inflammasomes have been linked to immune responses
to intracellular DNA, as well as bacterial and viral infections (87).
IL-1β is important in activating neutrophils, macrophages, DCs,
and T cells, whereas IL-18 is crucial for IFN-γ production by
NK cells and T cells (88). IL-1β and IL-18 are regulated at both
transcriptional and post-translational levels. Upon transcriptional
induction by TLRs and other sensor systems, IL-1β and IL-18 are
synthesized as inactive precursor proteins, which are subsequently
processed by the cysteine protease caspase-1 (IL-1β converting
enzyme) (89). Conversion of procaspase-1 into an enzymatically
active form, caspase-1, occurs upon formation of a multi-protein
inflammasome complex (89). Previous reports have suggested that
the NLRP3 inflammasome is involved in mediating the inflamma-
tory responses to both DNA and RNA viruses (90, 91). In human
SLE macrophages, NETs induce robust activation of the NLRP3
inflammasome (92).

Several groups independently identified AIM2 as a receptor
for cytosolic DNA that leads to caspase-1 activation and IL-1β

secretion (93, 94). AIM2 binds cytosolic DNA of self and non-
self origin, including bacterial, viral, and mammalian DNA, in
a sequence-independent manner (95). Recent evidence indicates
that the AIM2-related protein IFI16 also forms an inflamma-
some complex following Kaposi sarcoma – associated herpes virus
infection of endothelial cells (96). Several groups independently
identified STING as a key component of the DNA-sensing path-
way (97, 98). STING/MITA translocates to perinuclear regions
where it interacts with TBK1 to relay downstream signals to IRF3
(Figure 4). STING deficiency in macrophages or DCs leads to a
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FIGURE 3 | Signaling through RIG-1 like Receptors in lupus. Following
recognition of the cytosolic RNA, RIG-I, and MDA5 associate with the
adapter IPS-1 via CARD-like domains. IPS-1 is localized to the

mitochondrion and initiates signaling leading to activation of IRF3 and NFκB
that finally lead of over-production of type 1 IFN and other inflammatory
cytokines.

FIGURE 4 | Signaling through NLR receptors in lupus. Intracellular DNA
following microbial infection or phagocytosis of immune complexes can
potentially trigger the assembly of NLRs. The nucleic acid-induced signaling

pathway converges on the adaptor STING and the kinase TBK1, which
phosphorylates IRF3 to mediate downstream signaling events leading to
transcriptional induction of type 1 IFN and other inflammatory cytokines.
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markedly impaired type I IFN response to B-DNA and immunos-
timulatory DNA or to infection with DNA viruses, including
HSV-1, human CMV, and vaccinia virus (97, 98). Initial studies
showed that STING also interacted with components of the RNA-
recognition machinery, such as RIG-I, where it was linked to type
I IFN induction in response to VSV, a negative-strand RNA virus
(97, 99). Murine models support the relevance of AIM2 in suscep-
tibility to lupus-like disease in the NZB×NZW mouse (100).

OTHER CYTOSOLIC NUCLEIC ACID SENSORS
DNASE-I, II, AND III
Production of type I IFN and inflammatory cytokines are impor-
tant for protecting the host against infections; however overstimu-
lation of innate immune pathways can induce autoimmune disease
(101). Normally, host nucleic acid is limited to the nucleus and
mitochondria whereas; host cellular DNA/RNA sensors are local-
ized in the cytoplasmic compartment. Thus, accidental activation
of inflammatory cytokine pathways by host defense sensors is
largely averted. However, faulty clearance of self-nuclear mater-
ial from apoptotic/necrotic bodies can cause improper activation
of cytokines including type I IFN production.

One level of self-defense is provided by cellular endonucle-
ases, such as Dnase-I, Dnase-II, and Dnase-III/Trex-1, which are
involved in the clearance of extracellular, lysosomal, and cytoso-
lic DNA, respectively. Genetic deficiencies of Dnase-I have been
identified in SLE patients (102), and Dnase I – deficient mice
develop a lupus-like syndrome (103). Dnase-I defects lead to the
accumulation of extracellular DNA produced by apoptotic and
necrotic cells, which is immunogenic and can lead to type I IFN
production (101, 104). Dnase-II is expressed in lysosomes, where
it degrades DNA from engulfed apoptotic/necrotic cells (105).
Dnase-II knockout mice are embryonically lethal. However, they
are viable on the IFNR1 knockout background, indicating that type
I IFN mediates the lethality of Dnase-II genetic deficiency (101,
106). This finding supports the concept that inefficient nucleic
acid degradation promotes type I IFN excess and subsequent SLE
disease. Dnase-III is another nuclease that is normally involved
in the clearance of cell-intrinsic ssDNA (107, 108). DNAse-III is
3′-5′ exonuclease and is localized to the endoplasmic reticulum.
In the absence of DNAse-III, there is an accumulation ∼60-bp
ssDNA, believed to be produced during replication, which leads to
the activation of ATM-dependent DNA-damage associated check-
point pathways (109). Stetson et al. (110) revealed a role for
DNAse-III in preventing cell-intrinsic initiation of autoimmunity.
Trex-1 substrates are ssDNA, which are either the by-products of
replication and/or reverse transcribed from endogenous retroele-
ments. Loss of function mutations in the human DNAse-III gene
cause Aicardi–Goutieres Syndrome (AGS) (111, 112). Different
rare DNAse-III mutations also cause monogenic chilblain lupus,
and common genetic variations in DNAse-III have also been asso-
ciated with risk of SLE, suggesting that a common mechanism may
underlie these disorders (113–115).

OTHER DNA AND RNA SENSORS
DNA-dependent activator of IRFs (DAI) is another cytoplasmic
DNA sensor capable of activating IRF-3 and NF-κB, resulting
in type I IFN production. DAI interacts directly with dsDNA

in vitro and this interaction in turn enhances DAI association
with IRF-3. DAI-induced IRF-3 phosphorylation is dependent on
TBK1 (47, 116). Recently, Zhang et al. (117) reported that DAI
expression is predominantly increased in SLE patients as well
as in activated lymphocyte-derived self-apoptotic DNA (ALD-
DNA)-induced lupus mice. ALD-DNA could induce the dimer-
ization/oligomerization of DAI and activate DAI signaling path-
ways via regulating calcium signaling, thus resulting in aberrant
macrophage activation and lupus nephritis, implying the possible
mechanisms for the recognition and regulation of ALD-DNA-
induced pathological macrophage activation in the context of SLE
disease (117).

Recently, Kondo et al. (118) identified MRE11 as a sensor for
exogenous dsDNA, which is required for STING trafficking and
type I IFN induction. The report reveals that MRE11 contributes to
recognition of a broad spectrum of dsDNA and MRE11-mediated
intracellular DNA recognition is to respond to damaged host cells,
rather than defense against foreign pathogens (118). DDX41 is
another DExD/H-box helicase that can interact with synthetic
dsDNA through the DEAD domain in vitro and DDX41 is required
for DNA-dependent induction of type I IFN in myeloid DCs
through a pathway dependent on STING and TBK1 (119).

Found in the cytoplasm, RNA polymerase III is known to
transcribe AT-rich DNA into dsRNA transcripts characterized by
uncapped 5′-triphosphate moieties. This can act as a ligand for
RIG-I. Subsequently, RIG-I signals via IPS-1 to induce the expres-
sion of type I IFN and other cytokines (72, 120). Ku80 is an
abundant nuclear protein that is known to bind dsDNA with high
affinity.

A recent study (121) identified Ku70, as the newest member
of the cytosolic DNA-sensing machinery with in IFN produc-
tion. Ku70 was identified as a DNA-binding protein in HEK-293
cells by DNA-affinity purification followed by mass spectrome-
try. Notably, Ku70 is involved in the production of type III IFN
(λ1), but not type I IFN (α or β) in response to a variety of trans-
fected DNA (>500 bp) in HEK-293 (121). It seems likely that we
will continue to identify additional DNA and RNA sensors, and
that some of these novel mediators will also play a role in SLE
pathogenesis.

CONCLUSION
In recent years, there has been tremendous progress in under-
standing how cells recognize and respond to microbial threats.
Many DNA and RNA sensors have been identified that are ded-
icated to detection and elimination of microbial infection and
clearing cellular damage. Sometimes these beneficial immune
responses lose their fidelity and thus contribute to pathogen-
esis of autoimmune diseases. It is striking that many of the
classical components of these pathways have been genetically
associated with risk of SLE. This emphasizes the primary impor-
tance of nucleic acid handling and innate immune sensors in
the pathogenesis of SLE. In SLE, it seems likely that stimula-
tion of these pathways occurs via the combined contribution
of microbial nucleic acids as well as self-tissue-derived stimuli.
Work from our group and others supports a model in which
immune complexes containing nucleic acid and free nucleic acid
are a micro-environmental factor that cooperates with genetic
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variation in the nucleic acid sensing pathways to produce immune
system dysregulation and risk of SLE (62). Understanding the
molecular mechanisms of how the innate nucleic acid recogni-
tion system is dsyregulated in SLE will suggest new therapeutic
avenues directed toward the inhibition of nucleic acid recognition
by their sensors, downstream signaling events, and inhibition of
end-stage mediators. This will lead to the new era of molecular

medicine for the treatment of intractable autoimmune diseases
like SLE.
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