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The commonest association of thymic stromal deficiency resulting in T-cell immunodefi-
ciency is the DiGeorge syndrome (DGS). This results from abnormal development of the
third and fourth pharyngeal arches and is most commonly associated with a microdeletion
at chromosome 22qg11 though other genetic and non-genetic causes have been described.
The immunological competence of affected individuals is highly variable, ranging from nor
mal to a severe combined immunodeficiency when there is complete athymia. In the most
severe group, correction of the immunodeficiency can be achieved using thymus allografts
which can support thymopoiesis even in the absence of donorrecipient matching at the
major histocompatibility loci. This review focuses on the causes of DGS, the immunolog-
ical features of the disorder, and the approaches to correction of the immunodeficiency
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INTRODUCTION

DiGeorge syndrome (DGS) was first described in the 1960’s and
classically comprises T-cell deficiency (due to thymic hypoplasia),
hypoparathyroidism, cardiac malformations, and facial abnormal-
ities. Subsequently, it was recognized that deletions of the long arm
of chromosome 22 at position q.11 were most commonly associ-
ated with DGS (1, 2). DGS is also found associated with other
genetic abnormalities and with certain teratogenic influences. It
was also recognized that multiple other clinical features could be
associated with this deletion. The DGS phenotype is very heteroge-
nous with variable expression of the different features including
the immunodeficiency.

CAUSES OF DGS

EARLY THYMIC DEVELOPMENT

At an early stage of embryonic development the pharyngeal appa-
ratus can be recognized. This becomes segmented into a series of
pharyngeal arches and pouches each comprising an outer ectoder-
mal and inner endodermal layer separated by mesodermal tissue
and neural crest cells (NCC) (3,4). The thymus, parathyroid glands
and great vessels of the heart develop from these structures notably
the third and fourth arch structures. Thymic epithelial develop-
ment is under the control of the transcription factor, FoxN1, and
studies of expression of this factor have demonstrated that the
thymus derives from an area of the endoderm in the ventral aspect
of the third pouch (5). The mesoderm and NCC contribute to
the thymic connective tissue including vascular endothelium and
mesenchymal cells, the latter thought to be important in regu-
lating early thymic epithelial development (6). Parathyroid gland
development is closely allied, this organ being derived from the
endoderm of the ventral part of the third pharyngeal pouch again
with mesodermal cells and NCC contributing the connective tissue
and vascular endothelium. From the eighth week of human ges-
tation, bone marrow derived T-cell precursors have been shown
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to enter the thymic structure (7). The further development of
the thymus is dependent on two-way interactions between these
lymphoid cells and the thymic stroma (8, 9).

Hematopoietic cell defects resulting in severe combined
immunodeficiencies lead to failure or disturbed thymic develop-
ment as a consequence of failure of this lymphoid — stromal inter-
action (10, 11) which can be reversed by successful hematopoietic
stem cell transplantation (12). These aspects of thymic stromal
deficiency are considered elsewhere in this Research Topic.

The classical features of DGS occur as a result of the early
embryonic disturbance of development of the pharyngeal arch
apparatus and are independent of the influence of hematopoietic
cell precursors on thymic development.

GENETIC ASSOCIATIONS OF DGS

DiGeorge syndrome overlaps considerably with velocardiofacial
(VCF) syndrome and to a lesser extent with conotruncal anomaly
face syndrome; all these are associated with hemizygous 22q.11
deletions manifesting with a wide array of clinical features (13).
The deletion is also associated with neurodevelopmental delay,
behavioral, and psychiatric features. The multitude of possible
clinical features (over 180) have been reviewed by Shprintzen (14).
DGS and VCF are sometimes collectively referred to as the 22q.11
deletion syndrome. The incidence of this deletion is high at around
1:4000 (15). In 90-95% of cases this arises de novo with the other
5-10% being inherited from an affected parent (13). Over 90% of
cases have a typical 3 Mb deletion including over 30 different genes
(16). This seems to occur between two regions with homologous
low copy repeats suggesting that deletion occurs through a process
of homologous recombination. Most other patients have a smaller,
1.5 Mb, deletion (17, 18). There is no correlation between the size
of the deletion and the clinical phenotype. Discordance between
phenotypes has been described in monozygotic twins carrying the
deletion (19). In rare cases mutations in a single gene, TBX1, have
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been described resulting in the DGS phenotype (20, 21). TBX1
is one of the T-box genes with an important role in regulating
the expression of transcription factors (22). Studies of a mouse
model with a syngenic deletion on chromosome 16 have helped
elucidate the role of Tbx1l. Homozygous deletions of this gene
result in a very severe, lethal phenotype including all the features
of DGS whilst hemizygous loss of the gene produces a milder phe-
notype with variable penetrance of the different clinical features
(23). However, implicating TBX1 as the sole gene causing DGS
in 22q deletion syndromes may not be the whole story. Adjacent
deletions not involving TBX1 can give a phenotype with some
overlapping features (24) as can atypical deletions covering dif-
ferent critical regions in the same part of the chromosome (25).
Other genes in the region, also affected in the typical DGS dele-
tion, may have a modifying effect on expression of the disorder.
These include CRKL, coding for an adaptor protein involved in
growth factor signaling. Crkl is expressed in neural crest derived
tissues and in mice null for the gene there is aberrant or absent
thymic development (26). However, hemizygous Crkl loss is not
associated with an abnormal clinical phenotype suggesting a gene
dosing effect. The effect of compound heterozygosity for Tbx1 and
Crkl deletions, on development of DGS features, is additive (27).
The function of TBX1 is complex and mediated through regu-
lation of downstream transcription factors. The detailed role of
TBX1 in 22q.11 deletion syndromes and in thymus development
in particular has been reviewed by others (28, 29).

A much rarer but well characterized genetic association with
a DGS phenotype occurs with interstitial deletions at chromo-
some 10p (30-33). This has been designated DGS 2.The clinical
phenotype overlaps with that associated with 22q.11 deletion but
with some important differences. Sensorineural hearing loss and
mental retardation are relatively common features in those with
10p deletions but rare in 22q11 deletion cases; renal anomalies,
and general growth retardation are more prevalent in 10p dele-
tion than in 22q11 deletion cases (34). Deletions at 10p syndrome
have been estimated as having an incidence of 1 in 200,000, some
50 times less common than 22q.11 deletions (35, 36). The role of
the genes deleted and responsible for the clinical picture is less
well understood than in 22q deletion DGS but on-going work
has identified some critical regions involved in developmental
abnormalities (32, 37).

Mutations in the Chromodomain Helicase DNA-binding pro-
tein 7 (CHD?7) gene are responsible for most cases of Colobo-
mata, Heart defect, Atresia choanae, Retarded growth and devel-
opment, Genital hypoplasia, Ear anomalies/deafness (CHARGE)
syndrome. A DGS phenotype including complete athymia may be
part of this syndrome but there is marked variability in expression
of the multiple clinical features. The incidence has been estimated
at 1 in 8500 (38). CHD7 acts as a regulator of transcription of
other genes. Its expression has been demonstrated in the NCC
of the pharyngeal arches. Normal development of these structures
has been shown to be dependent on the co-expression of Chd7 and
Tbx1 in mice suggesting the likely mechanism by which CHARGE
syndrome can lead to a DGS phenotype (39, 40).

NON-GENETIC ASSOCIATIONS OF DGS
Embryopathy induced by exposure of the fetus to retinoic acid
can include a DGS phenotype (41). Retinoic acid affects Tbx1

expression in avian embryos (42) whilst it has also been shown that
Tbx1 can, in at least some circumstances, regulate retinoic acid
metabolism (43). Fetal alcohol syndrome (44—46) and maternal
diabetes (47, 48) have also been associated with the DGS pheno-
type. In the latter, there is often an associated renal agenesis. It has
been postulated that maternal diabetes can lead to interference
with neural crest and mesenchymal cell migration (49).

IMMUNOLOGICAL FEATURES OF DGS

INCIDENCE AND SEVERITY

DiGeorge syndrome may be associated with a complete range of
T-cell deficiency from normal T-cell numbers and function to
complete DGS (cDGS) with a T-negative severe combined immun-
odeficiency (SCID)-like picture. It was recognized early on that the
T-cell immunodeficiency may be incomplete and the term partial
DGS (pDGS) was coined (50). In a large series of patients with
22q11 deletions, the proportion of affected individuals falling into
the ¢cDGS category was around 1.5% of the 218 who underwent
immunological testing or around 0.5% of the whole series of over
550 patients (13). A much higher proportion had minor laboratory
abnormalities suggesting pDGS. In one series, from a major refer-
ral center, mild-moderate lymphopenia, consistent with pDGS,
was reported in 30% of 22q.11 patients (51).

Less is known of the frequency of severe immunodeficiency in
10p deletion DGS. A review of published cases identified low levels
of T cells and immunoglobulins as well as a small or hypoplastic
thymus in 9 of 32 (28%) patients evaluated. However none of
these patients were reported as having significant infections, sug-
gesting that the immunodeficiency was likely partial rather than
complete (34).

In CHARGE syndrome, severe immunodeficiency has been
described (51-55). The proportion of cases affected with immun-
odeficiency is not well established as there is no reported large
series looking at immunological parameters. Inmunodeficiency
may not always be considered in CHARGE; one recent report of
a large series of 280 cases did not provide any information on the
prevalence of recurrent infections or immunodeficiency (56). Ina
series of 25 cases (51), 16 (60%) were found to have lymphopenia.
Only nine had full immunophenotyping performed and two of
these had a picture of cDGS. A further five of eight patients dying
in infancy had marked lymphopenia but did not have lympho-
cyte phenotyping performed so it is possible that the incidence of
cDGS was higher. The authors do however concede that this series
of patients referred to a specialist center might present a biased
view. Nevertheless, the proportion of children with CHARGE syn-
drome affected by a significant immunodeficiency is probably at
least as high as the proportion in DGS associated with 22q dele-
tion. This conclusion would be consistent with the report of a
series of 54 cases of patients referred for thymus transplantation
for cDGS where the numbers of CHARGE and of 22q deleted cases
were roughly in proportion to the incidences of the two genetic
defects (55).

IMMUNODEFICIENCY IN PARTIAL DGS

The majority of children with thymic insufficiency as part of
DGS, whatever the underlying cause, will have only a partial
form of immunodeficiency. The consequences are an increased
susceptibility to infections and sometimes immunodysregulation
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resulting in autoimmunity. A wide range of T-cell immunity is seen
in pDGS from near normal to near completely deficient. Normal
or near normal T-cell numbers can be found even in those with an
apparently absent or hypoplastic thymus and in these it is probable
that some thymic tissue is ectopically placed (57). There may be
a small subset of more severely deficient 22q.11 — pDGS patients
with T-cell numbers near the lower end of the range who have an
increased susceptibility to “T-cell” type pathogens such as Can-
dida albicans and viral infections and an increased non-cardiac
mortality (58, 59). Hypocalcemia was an associated feature of
this subgroup in one of these studies (58) and was also associ-
ated with lymphopenia in another study of CHARGE patients
(51). Otherwise there is no correlation between the severity of
immunodeficiency and the clinical phenotype in regard the other
features of DGS (60). Most pDGS patients do not suffer oppor-
tunistic or life-threatening infections. Their infections tend to be
of a sinopulmonary nature, more consistent with a humoral than
a T-cell immunodeficiency. Susceptibly to such respiratory tract
infections is likely to be at least partly due to non-immunological
issues such as velo-pharyngeal insufficiency, eustachian tube dys-
function, disco-ordinate swallowing, gastro-esophageal reflux, and
sometimes tracheo-bronchomalacia (59, 61).

As is the case with other partial T-cell deficient states, autoim-
mune disease can occur in pDGS. This has most commonly been
reported as manifesting with immune cytopenias, arthritis, or
hyper/hypothyroidism (62—73). The mechanism by which toler-
ance breaks down leading to autoimmunity in pDGS is not clear.
Many forms of primary immunodeficiency are associated with an
increased risk of autoimmune disease including conditions not
associated with dysregulation of T cells. It has been suggested
that persistent antigen stimulation from frequent and/or persis-
tent infections may predispose to autoimmunity (74). However,
in pDGS autoimmunity is not predominantly found in those with
the most severe or frequent infections (65, 75). It is more likely that
disturbance of central or peripheral tolerance or both occur as a
consequence of the thymic abnormality. In the normal situation,
central tolerance is generated through the presentation of tissue
specific peptides to developing thymocytes by medullary thymic
epithelial cells in the context of autologous major histocompat-
ibility antigens and under the regulation of the autoimmune
regulator (AIRE). There is subsequent deletion (negative selec-
tion) of thymocytes recognizing these self-antigens. It is possible
that a reduced bulk of thymic tissue in pDGS results in incomplete
negative selection or that AIRE expression in pDGS is reduced
or otherwise abnormal. The author is not aware of any reported
studies of AIRE expression in thymic tissue from pDGS cases.
Abnormalities of thymic tissue, including AIRE expression, has
been described in SCID due to recombination activating gene
(RAG) defects and may contribute to the multisystem inflam-
mation/autoimmunity seen in Omenn syndrome (76) though
these patients also have a defect of regulatory T cells suggest-
ing a possible peripheral tolerance defect in addition (77). In
pDGS, negative selection must occur in relation to most antigens
since the autoimmune disease seen is usually limited to one or
two organs or systems. By contrast, in autoimmune polyglandular
syndrome type 1 (APS-1) (78) caused by mutations in the AIRE
gene, multiple autoimmune disorders are typical. Breakdown of

peripheral tolerance is another possible explanation for autoim-
munity in pDGS. One study reported reduced numbers of circu-
lating CD4+ Foxp3+ T cells, described as natural T regulatory
cells (nTregs) in pDGS patients compared to controls. The lev-
els of these cells correlated closely with the numbers of recent
thymic emigrant cells suggesting they were at least partially thy-
mus derived (75). Another study (79) looked at CD4+ CD25+
cells which include Treg cells. In both studies these populations
were present in reduced numbers in pDGS patients compared to
controls at all ages but there was no difference between the lev-
els in patients with and without autoimmunity. Immunological
assessment of pDGS patients often shows low overall numbers
of T cells compared to normal with a tendency to improve after
the first year of life, although in 10p deletion syndrome a pro-
gressive T-cell lymphopenia has been reported (33). Mitogen
responsiveness is generally normal in pDGS (80, 81). An increase
in T-cell numbers with age may in part be due to the devel-
opment of oligoclonal expansions resulting in abnormal T-cell
receptor spectratypes. (75, 82—85). Naive T-cell proportions are
lower than normal and fall off more quickly with age than in an
age — matched control group (82). T-cell recombination excision
circles (TRECs) were found to correlate well with the propor-
tions of circulating naive T cells (86), though a cautionary note
was struck by the report of a patient, with what turned out to
be pDGS, showing very low TREC levels with good naive cell
proportions (87).

Humoral immune defects and disturbance of B-cell immunity
were recognized very early on after DGS was first described (50).
These may be relevant to the types of infections suffered. A num-
ber of relatively small series have looked at immunoglobulin and
antibody levels in DGS associated with 22q.11 deletion (62, 63, 65,
68,75, 88-90) and CHARGE syndrome (51). Low immunoglobu-
lin levels were reported with variable frequency, most commonly
affecting IgM but also occasionally causing a sufficiently low IgG to
merit immunoglobulin replacement therapy. Defective antibody
responses to polysaccharide antigens were reported in a signifi-
cant minority of patients. A recently published, much larger study
reported on over 1000 patients, with a median age of 3 years, from
the European Society for Immunodeficiency and US Immunode-
ficiency Network (91). Forty two percent were recorded as having
22q.11 deletion but the underlying cause was not reported in the
remainder. Overall, 2.7% were on immunoglobulin replacement
therapy (3% in those over 3 years old). In the over 3 years age
group 6.2% had IgG levels below 5g/l. Amongst patients over
3 years of age, around 0.7% had complete and 1% partial IgA defi-
ciency whilst 23% had low levels of IgM. There was no association
between low immunoglobulin levels, in any of the isotypes, and
T-cell counts nor between low T-cell counts and immunoglobulin
levels. The authors acknowledged that the data were incomplete
and that there may have been some reporting bias in that these
patients were registered through immunodeficiency networks.
Nevertheless, this study provides the best estimate of the preva-
lence of humoral immune deficit in DGS. B-cell numbers were
not reported in this study but in another study were found to be
generally normal though sometimes low in the first year of life,
normalizing later (92). The repertoire of IgH usage is also nor-
mal but further diversification through somatic hypermutation is
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deficient (93). It has also been shown that the maturation of B-cells
toward a memory phenotype is impaired in pDGS (88). Given the
specific role of the thymus in T- but not B-cell development it is
probable, but not proven, that B-cell abnormalities are secondary
to the T-cell deficiency in these patients.

IMMUNODEFICIENCY IN COMPLETE DGS

Complete DGS is associated with athymia and results in a pic-
ture of SCID in a patient showing other variable features of DGS.
Affected patients suffer opportunistic infections and, like other
infants with SCID, are likely to die early unless they can be treated
with a corrective procedure. In addition to susceptibility to infec-
tions these patients are at risk from transfusion acquired graft
versus host disease (55).

In the typical form of cDGS the T-cell numbers are <50/cumm
and mitogen responses are absent. B cells are usually present in
normal numbers and NK cells in normal or high numbers. In a
proportion of cases there may be some mature T cells present either
through maternal engraftment (94) or through oligoclonal expan-
sion of memory phenotype T cells which have developed without
thymic processing (95). In the latter case, as in SCID these cells can
mediate severe inflammation leading to an Omenn-like picture
with erythrodermic rashes, enteropathy, and lymphadenopathy
(53, 96) This is called atypical cDGS. The diagnosis of com-
plete athymia then depends on showing absence (<50/cumm)
of T cells with a naive (CD3 4+ CD45 RA4+CD62L+) phenotype
as well as abnormal T-cell receptor usage either by T-cell recep-
tor spectratyping or FACS analysis of usage of V Beta TCR chains

(96). An example of the abnormal spectratype in an atypical cDGS
patient is shown in Figure 1 which can be compared to the normal
spectratype achieved in the same patient after successful thymus
transplantation (Figure 2). Mitogen responsiveness is usually, but
not invariably, impaired in these atypical patients (96).

Diagnosis of cDGS depends on the findings of the clinical fea-
tures of DGS together with the above immunological findings with
or without identification of one of the associated genetic abnor-
malities. A recent report (97) describes two patients with absent
T cells and DGS associated with 22q.11 deletion who were also
found to have pathogenic mutations in the DCLRE1C (Artemis)
gene, a classical cause of SCID. A clue to the latter diagnosis was
the virtual absence of B cells as well as T cells which is very unusual
in cDGS alone.

Newborn screening for SCID using TREC detection on blood
spots has been in place in certain states of USA for around 3 years
(98, 99). Since TRECs will be absent or extremely low (86) this
allows the early diagnosis of cDGS. In the California program
(98) screening of nearly one million newborns picked up one
cDGS case who went on to thymus transplantation, eight with
T-cell lymphopenia associated with 22q.11 deletion and one with
CHARGE association. Picking up the latter group was useful in
the early identification of these children as having significant
immunodeficiency and allowed infection prevention measures to
be put in place including avoidance of live viral vaccinations. New-
born screening programs should offer the opportunity of a better
outcome through earlier intervention in both ¢cDGS and some
cases of pDGS.

VB1 VB2 VB3 VB4  VB5  VBGA

VBB  VB7 VB8 VB9 VBN  Vp12

| |
|

VB13A Vp13B  Vp14 Vp15  Vple  Vp17

FIGURE 1 | T-cell receptor spectratyping of 24 VB families obtained
using polymerase chain reaction amplification across the VDJ region
and then plotting according to the size of the PCR products. Patient

VB18 VP20 VB21 VP22 VP23 Vp24

with atypical cDGS showing very abnormal spectratype with several
completely missing families and abnormal skewed distribution in
other families.

VB1 VB2 VB3 VB4  VB5  VBGA

VBB VBT VB8 VP9  VB1  Vp12

VB13A VB13B Vp14  Vp15  Vp16  Vp17

FIGURE 2 | T-cell receptor spectratyping performed as in legend to Figure 1. Same patient as in Figure 1, 23 months after thymus transplantation.
Much more normal spectratype. All families represented mostly with Gaussian distribution.

VB18 VB20 VB21 Vp22 VP23  Vp24
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CORRECTIVE TREATMENT FOR cDGS

HEMATOPOIETIC CELL TRANSPLANTATION

Treatment with hematopoietic cell transplantation (HCT) for
athymia is dependent on the transfer of mature post-thymic T
cells. Long term survival after such transplants has been reported
(100, 101) though at a low rate (41-48%) compared to survival
after HCT for SCID (102). Survival in the subgroup receiving
matched sibling donor transplants was better at over 60% (100).
Mortality was related to other features of DGS, to graft versus host
disease and to pre-existing viral infections. The quality of immune
reconstitution achieved, as expected, is poor with no evidence of
naive T cells and often low CD4 counts with skewed distribution
of T-cell receptor usage. However immunoglobulin production
and antibody responses were relatively good. Though overall the
outcome after HCT for cDGS is not good, in some circumstances,
such as overwhelming viral infection, HCT from a matched sibling
may be life-saving (103).

THYMUS TRANSPLANTATION

Replacement of thymic function using allografted tissue was first
achieved using human fetal thymic tissue (104, 105). The use of
post natal human thymus, necessarily removed at the time of
cardiac surgery in infants undergoing median sternotomy, was pio-
neered by Markert at Duke University (106, 107) and has become
established as the treatment of choice for cDGS. More recently this
approach has also been used in London using an almost identical
approach (manuscript in preparation). The thymus is cultured for
12-21 days prior to transplantation into the quadriceps muscle of
the patient. During this period most thymocytes are washed out or
undergo apoptosis whilst the thymic stroma is preserved. Patients
with atypical cDGS are pre-treated with anti thymocyte globulin
and continuing cyclosporine A (108) whilst typical cases receive no
pre-conditioning. The results have been published (55, 109) and
of 60 patients treated 43 survived (72%). This compares favorably
with the outcome after HCT described above though strict com-
parison is not possible as the thymus transplant patients were a
selected group. After successful transplantation, patients develop
host derived naive T cells with a normal T-cell receptor reper-
toire (Figure 2), normal mitogen responses and antigen specific
immune responses restricted to the host major histocompatibility
complex (MHC). There is normalization of the TCR repertoire in
circulating regulatory T cells (110). Biopsies of transplanted thy-
mus taken from 2 months onward show thymopoiesis (111) and
normal thymus architecture (Figure 3). The levels of circulating T
cells achieved do not usually match normal age matched controls
and are more akin to the levels seen in children with pDGS. Tol-
erance to the donor’s MHC has been demonstrated (112) and this
has been exploited to enable parathyroid transplantation from a
parent in situations where there is coincidental partial MHC class
2 matching between the donor and the parent (113).

Deaths after thymus transplantation were related mainly to pre-
existing co-morbidities, mostly chronic lung disease and systemic
viral infections such as cytomegalovirus (CMV) (114). This virusis
a particular problem. Screening of potential thymic donors always
excludes CMV positive donors but a proportion of cDGS patients
will have acquired the virus before thymus transplantation. Biop-
sies of transplanted thymus tissue from two patients with CMV

FIGURE 3 | Low-power view of a biopsy of transplanted thymus
stained with Hematoxylin and Eosin. Normal looking thymic tissue
surrounded by striated muscle. There is good corticomedullary
distinction.

in the Markert series showed no evidence of thymopoiesis even
though the epithelium was viable (111). Both patients died. A sim-
ilar appearance was found in a CMV infected patient in London
who also died without evidence of thymopoiesis (manuscript in
preparation). The mechanism by which CMV interferes with thy-
mopoiesis is not clear but as a result of this experience, CMV infec-
tion should be considered at least a relative contraindication to
thymus transplantation. After successful thymus transplantation
patients are able to control infections and to come off antibiotic
prophylaxis and immunoglobulin therapy with normal responses
to immunization. The main problem that has been encountered is
the development of autoimmunity. Around one third of patients
have shown autoimmunity, mainly hypothyroidism but also with
a significant number of immune cytopenias (109). It is interesting
that this spectrum of autoimmunity is similar to that seen in pDGS
patients, as discussed above, and may have the same causation or
may be related to faulty thymic education related to the fact that
the transplanted thymic epithelial cells are not MHC matched,
as discussed below. No clinical or methodological correlates with
risk of autoimmune development could be identified in the Duke
University series. (114).

The success of transplantation of thymus which is not matched
at the MHC loci offers interesting insights into thymocyte devel-
opment. In particular, it suggests that positive and negative selec-
tion of developing thymocytes can occur in the absence of self
MHC expressed on thymic epithelial cells. The mechanism by
which this takes place is incompletely understood. Reconstitu-
tion experiments in nude mice with MHC incompatible thymic
tissue showed that functional T cell development could be sup-
ported by haematopoeitic cell-expressed MHC instead of TEC-
expressed MHC (115). Further work showed that development of
functional CD4 (but not CD8) cells however does seem to require
interaction with MHC on TECs but not any particular allelic form
of MHC (116). Under the influence of AIRE expressed on thymic
epithelium dendritic cells have been shown to have a role in neg-
ative selection in mice (117). Whilst negative selection may be
imperfect resulting in autoimmunity in some cases, it must be
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largely effective since multiple system/organ autoimmunity from
widespread lack of central tolerance has not been seen. Positive
selection has also been shown to be mediated by fibroblasts (118)
and by thymocytes (119, 120). Influx of these cell types expressing
host MHC to the developing thymus allograft could therefore have
the potential for mediating the selection processes.
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