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Helicobacter pylori colonizes the gastric mucosa of more than 50% of the human pop-
ulation, causing chronic inflammation, which however is largely asymptomatic. Never-
theless, H. pylori -infected subjects can develop chronic gastritis, peptic ulcer, gastric
mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Chronic exposure to
the pathogen and its ability to induce epithelial to mesenchymal transition (EMT) through
the injection of cytotoxin-associated gene A into gastric epithelial cells may be key triggers
of carcinogenesis. By deregulating cell–cell and cell–matrix interactions as well as DNA
methylation, histone modifications, expression of micro RNAs, and resistance to apopto-
sis, EMT can actively contribute to early stages of the cancer formation. Host response
to the infection significantly contributes to disease development and the concomitance of
particular genotypes of both pathogen and host may turn into the most severe outcomes.
T regulatory cells (Treg) have been recently demonstrated to play an important role in H.
pylori -related disease development and at the same time the Treg-induced tolerance has
been proposed as a possible mechanism that leads to less severe disease. Efficacy of
antibiotic therapies of H. pylori infection has significantly dropped. Unfortunately, no vac-
cine against H. pylori is currently licensed, and protective immunity mechanisms against H.
pylori are only partially understood. In spite of promising results obtained in animal models
of infection with a number of vaccine candidates, few clinical trials have been conducted
so far and with no satisfactory outcomes. However, prophylactic vaccination may be the
only means to efficiently prevent H. pylori -associated cancers.

Keywords: Helicobacter pylori, CagA, epithelial to mesenchymal transition, vaccine, junctions, cancer, type IV
secretion system

INTRODUCTION
Helicobacter pylori, since its culture from a gastric biopsy in 1982
(1), has become one of the most studied bacteria with a num-
ber of publications comparable to those on Staphylococcus and
Mycobacterium genus,which are second only to Escherichia coli, the
most cited bacterial species. Research on H. pylori had been truly
global due to the interest of investigators from many disciplines,
including microbiologists, gastroenterologists, cancer biologists,
and those in pharmaceutical industry.

Helicobacter pylori is a spiral-shaped, flagellated, micro-
aerophilic Gram-negative bacillus that colonizes the gastric
mucosa of more than 50% of the human population, with the
highest prevalence in developing countries (2, 3). The infection
is transmitted within the family in childhood (4, 5), likely by
fecal-oral transmission (6, 7). A recent meta-analysis related the
presence of H. pylori in the oral cavity to gastric colonization and
possible reinfection (6, 7). H. pylori presence in tonsils is contro-
versial (8–10); if confirmed, it could help further understanding
of H. pylori transmission and reinfection. An updated review on
the H. pylori epidemiology is presented in (11).

Helicobacter pylori is the etiological agent of severe gas-
tric diseases. In particular, a subset of the colonized individu-
als may develop corpus gastritis, gastric atrophy, gastric ulcer,

and increased risk of gastric cancer, whereas another subset
may develop antral-predominant gastritis, associated with gastric
hyperchlorhydria and increased risk of duodenal ulcer (12–15).

In 1994 the International Agency for Research on Cancer
(IARC) identified H. pylori as a group 1 carcinogen (75% attrib-
utable risk) on the basis of epidemiological data (16). Research
concerning the association with gastric cancer has achieved enor-
mous progress over time, and molecular pathogenesis studies are
providing strong evidences for an active role of the bacterium.

In the majority of H. pylori-infected population, however,
infection results in asymptomatic chronic active gastritis. Symp-
tomatic diseases occur in approximately only 10% of infected
individuals. The explanation of such a phenomenon may reside
on host factors, such as genetic predisposition to higher coloniza-
tion and to inflammatory response. Furthermore, epidemiological
studies suggest that H. pylori strain-specific virulence factors play
a major role in the pathogenesis. One of the best character-
ized toxins of H. pylori is cytotoxin-associated gene A (CagA),
the product of cagA which is associated with enhanced induc-
tion of gastritis, peptic ulcer, and higher risk of gastric cancer
(17–21).

The present manuscript focuses on the interaction between
H. pylori, and in particular CagA, with host cell, molecular
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mechanisms behind its association to gastric cancer, and on the
potential role of vaccines in preventing such a deadly disease.

INTRODUCING H. PYLORI -ASSOCIATED MALIGNANCIES
While various viruses have been successfully linked to human can-
cer, the oncogenic potential of bacteria remains less defined (22).
H. pylori is the only bacterium to date that has been clearly asso-
ciated with development of cancer (16). Several studies in animal
models provided the formal evidence that H. pylori infection is
able to promote cancer development (23–25).

According to the World Health Organization and the National
Cancer Institute, gastric cancer is only second to lung carcinoma
in terms of cancer-related mortality with 738,000 deaths annually
and the fourth most common form of cancer (7.8%) overall (26).

A recent update of the IARC H. pylori monograph included
a detailed overview of several studies on the association between
H. pylori infection and various types of cancer (23). It must be
noted that in some cases there is lack of agreement among the
conclusions of different studies. This contradictory data makes it,
for the moment, impossible to reach definitive statements about
the association of H. pylori infection with certain cancer diseases.
On the other hand, it can be stated that these contradictory results
might be often due to the different geographic areas in which the
studies were conducted, thus referring to subjects having different
genetic background and also different lifestyle, which include diet
and environmental conditions that can influence the outcome of
the infection and the disease. A further element that could have
influenced the outcome of those studies is constituted by the dif-
ferent methods used to assess H. pylori positivity of the subjects
included in the studies. The IARC data on H. pylori and cancers
are summarized in the following part of this paragraph.

The relationship of H. pylori infection with non-cardia gas-
tric carcinoma (i.e., in the stomach region distal to the esophageal
sphincter) is considered well established, with odds ratios (ORs)
ranging from 1.07 to 21.0. In particular, association between CagA-
positive strains and non-cardia gastric carcinoma was found. Sev-
eral studies found that, among the H. pylori-infected subjects, the
smoking habit, as well as diets including salted, smoked foods, and
processed meats, significantly increase the risk of non-cardia gas-
tric carcinoma; conversely, diets rich in fresh vegetables reduce
the risk of non-cardia gastric carcinoma in H. pylori-infected
subjects. Differently from non-cardia gastric carcinoma, associ-
ation of H. pylori infection with cardia gastric carcinoma appears
controversial, even when considering the CagA status.

Association of H. pylori infection with gastric mucosa-
associated lymphoid tissue (MALT) lymphoma is considered
proven by the fact that the eradication treatment of H.
pylori infection consistently results in remission of MALT
lymphoma (27).

Based on the epidemiological studies, there is no association
between H. pylori infection and increased risk of esophageal ade-
nocarcinoma; moreover, some of these studies, in contrast with
others, indicate the reduction of risk of esophageal adenocarci-
noma for H. pylori-infected subjects.

Liver cancers have been also evaluated for their possible associ-
ation with H. pylori. Although such association was proposed with
hepatocellular carcinoma and cholangiocarcinoma, the size of the

available studies are considered too small to reach a definitive con-
clusion. Moreover, at least in the case of hepatocellular carcinoma,
the conclusions of different studies are not in agreement.

Some studies reported association between H. pylori infection
and colorectal cancer, cancer of the pancreas, and cancer of the
lung (but in this case the studies were not adjusted for smoking
habit). However, other studies did not find such significant rela-
tionships. Among the cancers of the head and neck, significant
association with H. pylori infection was reported for squamous
cells laryngeal cancer and squamous cell cancer of upper aerodiges-
tive tract (excluding the esophagus), while moderate association
was found for squamous cell carcinoma of the laryngopharynx.
No association of H. pylori infection was found with childhood
leukemia.

PART 1 – CELLULAR AND MOLECULAR MECHANISMS
ASSOCIATED WITH CANCER INDUCTION BY H. PYLORI
Helicobacter pylori has been linked to a myriad of cancer-related
pathways in vitro and in vivo that provide a rationale for its ability
to transform cells and cause malignancies (28–30).

The presence of a pathogenicity island (cag ) renders H. pylori
more virulent (21, 31, 32). Encoded in cag is a type IV secretion
system (T4SS), which is made up of circa 20 Cag proteins, and
its substrate, the CagA (21). Although the role of other H. pylori
proteins, such as the vacuolating toxin A (VacA) in cancer has
been discussed, the CagA protein appears to be the major disease
specific bacterial factor in cancer development (Figure 1) (33).

CagA – A BACTERIAL ONCOPROTEIN
Cytotoxin-associated gene A was identified as a cancer-associated
factor long before its function was scrutinized, since isolates from
cancer patients frequently expressed CagA, while strains from
asymptomatic individuals or patients suffering from mild gastri-
tis did not (34). Indeed, transgenic expression of CagA in mice
was recently shown to cause multiple malignancies including gas-
tric epithelial hyperplasia and, in some cases, gastric polyps and
adenocarcinomas of the stomach and small intestine, or myeloid
leukemias and B cell lymphomas, establishing the role of CagA as
a bacterial oncoprotein (35). This study also demonstrated the rel-
evance of CagA phosphorylation to the development of H. pylori-
associated neoplasms, since mice expressing non-phosphorylable
CagA did not present pathological abnormalities (23).

Up to this date, CagA is the only identified protein substrate of
the T4SS and is delivered into the host cell during bacterial attach-
ment to the gastric epithelial cell layer (36–39). CagA translocation
requires binding of CagL, which is exposed on the surface of the
secretion pilus structure, to the α5β1-integrin located on the baso-
lateral surface of the cells (40–42). In addition, an amino-terminal
region of CagA was also shown to bind to α5β1-integrin and is
involved in CagA internalization into the host cell (43). There-
fore, only bacteria that have reached the paracellular space and the
lamina propria have access to the receptor and indeed H. pylori
has been shown to colonize these intercellular niches (44). While
it was originally thought that CagA uses the T4SS as a conduit to
pass from the bacterial cytosol directly into the cytoplasm of the
host cell, recent findings by Murata-Kamiya et al. demonstrated
T4SS-dependent localization of CagA to the bacterial surface (45).
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FIGURE 1 | Schematic of major CagA structural domains and
functions. The amino-terminal domain (D1; aa24–aa221) of CagA activates
inflammatory responses via NFκB and prevents apoptosis via the tumor
suppressor p53. The central domain (D2; aa303–aa644) contains the
β1-integrin binding domain, which is required for CagA translocation into
the host cell, and a segment of basic aa that tethers CagA to
phosphatidylserine in the inner leaflet of the cytoplasmic membrane. The

N-terminal binding sequence (NBS) located within the D3 domain
(aa645–aa824) binds to the C-terminal binding sequence (CBS) located
within the intrinsically unstructured C-terminus to form a loop-like structure
that exposes the CM dimerization motifs (blue circles) and the EPIYA
motifs (red circles). Both motifs trigger many of the CagA-dependent
signaling events including disruption of cell polarity, morphological changes,
cell motility, and invasion.

Here CagA interacts with phosphatidylserine of the host, which
is externalized from the inner to the outer leaflet of the plasma
membrane as response to bacterial contact. CagA binding to phos-
phatidylserine requires the K-Xn-R-X-R motif within the central
region of CagA. This interaction is followed by an as yet unchar-
acterized eukaryotic uptake mechanism. The K-Xn-R-X-R motif
is conserved in various PH domains that are known to bind to
acidic phospholipids. Inside the host cell, CagA is tethered to
the inner surface of the plasma membrane, once again by the
interaction between the central K-Xn-R-X-R motif of CagA with
phosphatidylserine (45). Recent structural data indicate that CagA
contains three distinct domains: a structural N-terminus followed
by the phosphatidylserine binding domain, and a third domain
that interacts intramolecularly with an intrinsically disordered
C-terminal region (46).

Following translocation, Src-family and Abl kinases then phos-
phorylate CagA on tyrosine residues within a specific motif,
EPIYA, which is found as part of a repetitive sequence within
the carboxyterminal region of the protein (39, 47, 48). Fol-
lowing these events, CagA interacts with various host signaling

factors and triggers cancer-related pathways that can be broken
up into two categories, those that depend on tyrosine phos-
phorylation of the EPIYA motif [SHP-2, C-terminal Src kinase
(CSK), Crk, E-cadherin] and those that depend on CagA, but
are phosphorylation-independent (Grb2, c-Met, Par-1b/MARK2,
ZO-1) (see below).

CELL MOTILITY AND PROLIFERATION
The first molecule that was shown to interact with phosphorylated
CagA was the protooncogen SHP-2, a tyrosine phosphatase that
links growth factor signaling with activation of Erk (49). Erk is
part of the mitogen-activated protein kinase (MAPK) signaling
pathway, which has been reported to play a role in carcinogene-
sis by inducing mitogenic responses (50). Indeed, CagA binding
to the Src-homology domain 2 (SH2) of SHP-2 caused aber-
rant activation of SHP-2 and consequently of the ERK-MAPK
pathway. Activation of this pathway by CagA may therefore act
in enhanced cell-cycle progression and increase cell proliferation
(51). In addition, SHP-2 activation also resulted in morpholog-
ical changes, which have been described in AGS (human gastric
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adenocarcinoma) tissue culture cells as the “hummingbird phe-
notype” (37). This phenotype is characterized by dramatic cellular
elongations and cytoskeletal rearrangements resembling those that
occur during hepatocyte growth factor receptor (HGFR) activa-
tion (52). In vitro, these morphological changes also coincide with
increased cell motility and a tendency of cells to detach from cul-
ture dishes. The search for SHP-2 phosphatase substrates that may
explain CagA morphogenic activity led to the identification of
focal adhesion kinase (FAK), a known regulator of the turnover
of focal adhesions and cellular motility (53). FAK dephosphos-
phorylation via activated SHP-2 reduced FAK activity leading to a
reduction of focal adhesion sites and contributing to cell detach-
ment and increased cell motility. In agreement with these findings,
reduced phosphorylation of FAK substrates like paxillin, which are
involved in cell adhesion processes, was reported (53).

Interactions of CagA with additional signaling proteins that
may contribute to cell morphological changes, cell substrate adhe-
sion, and increased cell motility and proliferation have been
described. These factors include Csk (54) the adapter proteins
Grb2 (55) and Crk (56), and HGFR (c-Met) (57). Inhibition of Csk
by phosphorylated CagA was shown to contribute to reduced cell–
matrix adhesion by reducing the phosphorylation state of vinculin
(54, 58). Vinculin was shown to be a major factor contributing
to cell spreading and reduced wound healing. Thus both signals,
CagA phosphorylation-dependent inhibition of FAK and Csk,
seem to reduce cell adherence to the extracellular matrix (ECM)
by causing dephosphorylation of cytoskeletal and FAK-associated
proteins. Grb2 binding was suggested to act as a transducer of
growth factor-like stimuli further contributing to the humming-
bird phenotype and also to promote cell proliferation (55). These
effects depended on activation of the Ras/MEK/ERK by CagA, but
did not require CagA phosphorylation. Interaction of phosphory-
lated CagA with Crk was also shown to contribute to cell prolifera-
tion via Erk activation, albeit by a different signaling cascade than
Grb2 (56). Additionally, Crk2 caused cytoskeletal changes by pro-
moting Rac1 activity through the Crk/Dock180/ELMO pathway.
Finally, the c-Met oncogene was activated by CagA independently
of the CagA tyrosine-phosphorylation status. Activation of c-Met
was suggested to deregulate growth factor receptor signaling and
to play a role in mobility and invasiveness of gastric cells (57).

EPITHELIAL BARRIER FUNCTION
Early studies by light and electron microscopy of stomach biopsy
specimens demonstrated that H. pylori accumulates in two loca-
tions: within the gastric mucus and associated with intercellular
junctions of gastric epithelial cells (59, 60). Human gastric mucosa
of patients with gastric ulcers can show discontinuity and decrease
in numbers of tight junctional strands, and H. pylori has been
found around intercellular junctions with abnormalities of the
tight-junction complexes (61). Despite these observations, the
significance of this localization was unclear. More recently, H.
pylori was demonstrated to interact with tight-junction compo-
nents explaining the preferential localization of the bacterium at
the cell–cell contacts observed in human mucosa (62). H. pylori
uses CagA to attach near the intercellular junctions and disrupt
the organization and function of the apical junctional complex
(AJC) of cultured epithelial cells (62). AJC of epithelial cells form

the barrier between the lumen and the interstitial space, and they
also regulate several basic epithelial functions, such as the estab-
lishment of apical and basal polarity, cell proliferation, cell–cell
adhesion, and cell movement. Independently of tyrosine phos-
phorylation, the N-terminus of CagA targets the protein to the
epithelial junctions (63). Here, it complexes with several junc-
tion proteins and can perturb the assembly and function of both
the tight and the adherens junctions (62–64). Phenotypically, this
leads to the deregulation of epithelial cell–cell adhesion and loss
of epithelial polarity. Recently, these effects of CagA on host cell
polarity have been linked to the ability of H. pylori to colonize the
surface of the host epithelial cell (65).

Evidence for how CagA causes disruption of cellular polar-
ity on the molecular level came from observations that non-
phosphorylated CagA interacts with the serine-threonine kinase
Par-1b (MARK2) (64, 66). In polarized epithelial cells Par-1b is
an essential component of the Par-aPKC system, which plays an
important role in establishing cellular polarity by phosphoryla-
tion of various cellular targets including microtubule-associated
proteins (MAPs) (67–69). CagA induced disruption of apical-
basolateral polarity by inhibiting Par-1b kinase activity at the lat-
eral cortex of MDCK polarized cell (66). In agreement, overexpres-
sion of Par-1b antagonized CagA-induced polarization defects.
The FPLKRHDKVDDLSK peptide, also described as the CM
(CagA multimerization) motif, which is located downstream of
the EPIYA motifs in the C-terminal part of CagA, was sufficient to
bind to the kinase substrate binding site of Par-1b and cause Par-1b
inhibition by acting as a structural analog of kinase substrates (70).
Association of CagA with Par-1b in MDCK cells not only caused
disruption of tight junctions, but also prevented lumen formation
and tubulogenesis,which are important hallmarks of epithelial dif-
ferentiation (64). Furthermore inhibition of Par-1b kinase activity
contributed to an increased hummingbird phenotype by acting on
the actin cytoskeletal system (71). The authors demonstrated that
inhibition of Par-1b prevented Par-1b-mediated phosphorylation
and thus inactivation of the RhoA specific guanosine exchange
factor GEF-H1, which is known to cause cortical actin and stress
fiber formation and cell motility (72).

Another important function exerted by the CM motif of CagA is
the association with E-cadherin (73–75). E-cadherin is a calcium-
dependent cell–cell adhesion glycoprotein, which is crucial for
the establishment of epithelial architecture as well as for main-
tenance of cell polarity and differentiation. Loss of expression of
E-cadherin and disruption of the β-catenin/E-cadherin complex is
considered an important factor in tumor development and loss or
aberrant localization of E-cadherin is observed at sites of epithe-
lial to mesenchymal transition (EMT) during tumor progression
(76–78). While cell-to-cell interaction is mediated by homophilic
E-cadherin interactions through the amino-terminal extracellular
domain, the cytoplasmic carboxyterminus is linked to the actin
cytoskeleton via α, β, and γ-catenins. In addition to stabilizing
cell-to-cell adhesion, the cadherin-catenin complex is also a key
regulator of the Wnt signaling pathway. In the absence of Wnt,
β-catenin is modified by serine-phosphorylation, which causes its
ubiquitination and subsequent degradation by the proteasomal
complex. In the presence of Wnt, however, β-catenin phospho-
rylation is inhibited and β-catenin accumulates in the cytoplasm
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and gains access to the nucleus, where it induces transcription
of various cancer-related genes, including NFAT (79, 80). CagA
was shown to directly bind to E-cadherin and this interaction
prevented association of E-cadherin with β-catenin causing desta-
bilization of the adherence junction complex and redistribution
of β-catenin into the nucleus (73). CagA-dependent activation of
β-catenin mediated transcription of cancer-related genes had also
been described in Mongolian gerbils and in patients infected with
CagA-positive strains of H. pylori (81). Mongolian gerbils, apart
from primates, are the only animal model available that develop
gastric cancer upon H. pylori infection, without additional treat-
ment with carcinogenic substances. In addition, CagA can induce
the β-catenin pathway via activation of c-Met-associated PI3K-
AKT signaling in vitro and in vivo (82). Further highlighting the
importance of the β-catenin pathway is the finding that H. pylori
can also induce β-catenin redistribution to the nucleus by addi-
tional CagA independent events (29). E-cadherin is also targeted
by secreted HtrA protein of H. pylori, which is a serine protease that
cleaves the ectodomain of E-cadherin further disrupting epithelial
barrier function (83).

Thus, by disrupting tight-junctions via inhibition of Par-1b,
adherence junctions via cadherin, and focal adhesions via acti-
vation of SHP-2, the CagA oncoprotein is potentially able to
disrupt cell–cell and cell–matrix interaction of gastric epithelial
cells. These are processes involved in EMT of cells.

EPITHELIAL TO MESENCHYMAL TRANSITION
Expression of CagA into polarized epithelial monolayer was found
to be associated with transition of epithelial cells from a polar-
ized state to an invasive phenotype, a cellular change charac-
teristic of EMT (63). CagA-induced EMT depends on signaling
triggered by the EPIYA motifs and localization of CagA to the
junctions (63).

Epithelial to mesenchymal transition and mesenchymal–
epithelial transitions (METs) have key roles in embryonic devel-
opment, and their importance in the pathogenesis of cancer is
increasingly recognized (84). EMT results from a complex molec-
ular and cellular program by which epithelial cells de-differentiate
loosing cell–cell adhesion and apical–basal polarity, and acquire
mesenchymal features, including motility, invasiveness, and a
heightened resistance to apoptosis. Similar to embryonic devel-
opment, both EMT and MET seem to have crucial roles in the
tumorigenic process. In particular, EMT has been found to con-
tribute to invasion, metastatic dissemination, and acquisition of
therapeutic resistance.

After the initial observation that CagA expression was able to
induce a EMT-like process (63), the phenomenon has been studied
in more detail and confirmed by other authors (85–87). Increased
levels of the mesenchymal markers vimentin and fibronectin were
detected in MDCK cells transfected with cagA (85). However,
CagA expression did not down-regulate epithelial markers such
as E-cadherin, α-catenin, β-catenin, and γ-catenin. Furthermore,
there was no upregulation of EMT-inducing transcription factors,
such as Twist and Snail, in cells expressing CagA. Therefore, CagA-
expressing MDCK cells may undergo a peculiar EMT process in
which both epithelial and mesenchymal markers are expressed
simultaneously.

However, in another study in which three gastric epithelial
cell lines (AGS, MGLVA1, and ST16) were co-cultured with H.
pylori, upregulation of the EMT-associated genes Snail, Slug, and
vimentin was observed (87). H. pylori also increased shedding
of soluble heparin-binding epidermal growth factor (HB-EGF).
Recent data suggest that soluble HB-EGF has a role in inducing
EMT by upregulating EMT factors such as Slug (88, 89). This phe-
nomenon was found to be partially dependent on both gastrin
and matrix metalloproteinase (MMP)-7 expression. Indeed, inhi-
bition of gastrin and MMP-7 expression through siRNAs, reduced
upregulation of HB-EGF shedding and EMT gene expression.
Interestingly, MMP-7 is a downstream transcriptional target of
β-catenin following E-cadherin deregulation and has been linked
to EMT and found upregulated in H. pylori infection.

Matrix metalloproteinase-7 is a member of a family of zinc-
dependent proteolytic enzymes and is expressed and secreted
primarily by well-differentiated epithelial cells. Increased levels
of MMP-7 are present in many epithelial-derived malignancies,
including gastric adenocarcinoma (90). Elevated levels of MMP-
7 have also been detected in a high proportion of pre-malignant
lesions in the stomach (gastric ulcers), suggesting that this pro-
tein plays an important role in early steps of the carcinogenic
process. H. pylori was shown to increase MMP-7 expression in
gastric epithelial cell lines in a cagPAI-dependent manner. This
association was confirmed in gastric epithelial cells isolated from
H. pylori infected patients. More recently, expression of MMP-7
was assessed by immunohistochemistry on 120 mucosal biop-
sies, of which 76 specimens with gastric epithelial dysplasia and
36 with intramucosal cancer (91). Greater expression of MMP-
7 was confirmed in early-stage gastric cancer in association with
cagPAI-positive strains.

Matrix metalloproteinases play an important role in controlling
cell interactions with the ECM. MMPs are involved in the break-
down of ECM in normal physiological processes, such as embry-
onic development as well as in disease processes, such as cancer
invasion and metastasis. However, an intriguing new hypothesis
proposes that changes in ECM may play an active role during early
stages of tumor formation prior to the onset of malignant invasion
(92). Therefore, deregulation of cell–matrix interactions occur-
ring during EMT would act as an epigenetic mechanism actively
promoting cancer development. Indeed, disruption of cell–matrix
interactions by ectopic expression of MMPs has been shown to be
enough to induce carcinomas in animal models (93).

ANTI-APOPTOTIC PATHWAYS
In an H. pylori experimental infection model in Mongolian gerbils,
accumulation of the tumor suppressor factor p53 occurred at 4–6 h
post-infection, followed by rapid decrease (94). Such a transient
upregulation and downregulation of p53 was confirmed in vitro.
This phenomenon was explained with the initial host response
that up-regulates p53 expression, followed by CagA action that
induces p53 degradation (94). Furthermore, H. pylori induces an
apoptotic response of infected cells, which is inhibited by the deliv-
ery of CagA (95). These mechanisms have then been investigated
in vitro, and it was demonstrated that CagA interacts with the
tumor suppressor apoptosis-stimulating protein of p53-2 (ASPP2)
(96). Upon DNA damage or oncogenic stimuli, ASPP2 binds and
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activates p53, inducing apoptosis. After interacting with CagA,
ASPP2 is still able to bind p53, but then proteasomal degradation
of p53 occurs, thus inhibiting the apoptotic response of the host
cell (96). Thus, CagA is able to modulate the apoptotic signal that
H. pylori itself induces. Even though the complete mechanism by
which CagA hijacks and deregulates the tumor-suppression func-
tion of ASPP2 remains to be elucidated, the demonstration that
CagA is involved in anti-apoptotic pathways is another important
finding that confirms its strong relationship with EMT.

STAT3 ACTIVATION
Signal Transducer and Activator of Transcription 3 (STAT3)
belongs to the STAT family of transcription factors and affects
expression of cancer-related genes (97). H. pylori activates STAT3
via the IL-6/gp130 receptor in various cell lines and activation was
dependent on CagA, but independent of CagA tyrosine phospho-
rylation (98). While a direct interaction of CagA with either IL-6
receptor or gp130 receptor could not been shown, the authors sug-
gested that CagA triggers receptor heterodimerization by an indi-
rect mechanism. The authors confirmed CagA-dependent STAT3
activation in vivo using the Mongolian gerbil model. Further evi-
dence of the importance of STAT3 came from the study that
demonstrated STAT3 activation in gastric tissue obtained from
human subjects that were infected with CagA-positive strains. A
study by Lee et al. also investigated CagA-dependent activation of
the IL-6/gp130 receptor (99). Their finding confirmed the impor-
tance of CagA in STAT3 activation and additionally showed that
the SHP-2/ERK was also induced following Helicobacter-mediated
IL-6/gp130 receptor activation. Interestingly, in this study STAT3
activation was much stronger using a phosphorylation-resistant
mutant of CagA than using wild type strains, while the opposite
observation was made for activation of the SHP-2/ERK pathway.
Thus, while CagA induces the ERK/MAP kinase pathway by direct
interaction with and activation of SHP-2 (see above) it also up-
regulates this pathway by indirect activation of the IL-6/gp130
receptor.

ANGIOGENESIS
The major characteristics of malignant cells are the following:
deregulated cell proliferation, failure to differentiate, loss of nor-
mal apoptotic pathways, genetic instability, loss of replicative
senescence, invasion, metastasis, evasion of the immune system,
and increased angiogenesis (100). As described in the previous
sections H. pylori affects most of these pathways and the following
section summarizes the effects of H. pylori on angiogenesis.

Angiogenesis is defined as the physiological process through
which new blood vessels form from pre-existing vessels (100).
The newly formed endothelial cells (ECs) then migrate into the
tumor and provide the condition for tumor growth and ulti-
mately hematogenous spread. H. pylori appears to affect EC in
different ways depending on the disease presentation. In peptic
ulcer disease (PUD), presence of H. pylori was associated with
delayed ulcer healing (101–104). In HUVEC cells water extracts
of H. pylori-induced apoptosis independently of CagA or VacA
(103), inhibited expression of angiogenic growth factor receptors
(104) and triggered cytostasis of EC, likely by blocking the G1 to S
phase cell-cycle transition (101, 102). Delayed wound healing and

decreased proliferation together with increased epithelial damage
caused by the infection may, in this scenario, cause chronic ulcer
development. However, in gastritis and gastric cancer, opposite
effects on angiogenesis do occur. Infection of the gastric mucosa
with H. pylori causes a strong pro-inflammatory response, includ-
ing activation of NF-kB and IL-8 (105). NF-kB induces expression
of MMPs and angiogenic factors (106). Inflammation together
with the effect of bacterial signaling factors may therefore act
on EC in the vicinity of bacteria in the stomach and disturb
their physiological function favoring tumor vascularization (107).
Indeed, observations in patients with gastric adenocarcinoma have
demonstrated a higher density of blood vessels in tumors before H.
pylori eradication compared to after, suggesting a role of H. pylori
in angiogenesis (108). In vitro, H. pylori also induced an increase
in mRNA expression for IL-8, VEGF, angiogenin, urokinase-type
plasminogen activator (uPA), and MMP-9 all of which are impor-
tant mediators of angiogenic processes and gastric cell invasion
(109, 110).

Cyclooxygenase 2 (COX-2) is an enzyme involved in
prostaglandin biosynthesis and increase in COX-2 expression has
been associated with various human cancers including colorectal,
lung, pancreatic, esophageal, brain, and gastric cancers (111, 112).
The cancer promoting functions of COX-2 may be explained by
its ability to enhance cell proliferation, tumor cell invasion, and
to induce angiogenesis (113). Indeed, COX-2 inhibitors reduce
angiogenesis (114, 115). Chronic infection with H. pylori was
shown to trigger upregulation of COX-2, which affects inflam-
matory processes and increased tissue damage (116). COX-2
expression was also upregulated in the human gastric mucosa of
infected patients with gastric cancer suggesting that COX-2 upreg-
ulation plays a major role in gastric cancer development following
infection.

EFFECTS ON STEM/PROGENITOR CELLS
Although H. pylori and specifically CagA trigger many cancer-
related signaling pathways in vitro and in vivo, many questions
remain to be elucidated to fully understand the mechanisms
behind the association of the pathogen with cancer. For example,
it is not clear which cell type carries the potential for malignant
transformation or which mechanisms trigger tumor initiation.
The major cell type colonized with H. pylori is represented by
the gastric pit or mucous-producing cells (117). Since this cell
type is replaced too rapidly to allow the accumulation of muta-
tions that promote transformation, recent research focuses on the
potential role of long-lived gastric stem/progenitor cells localized
in the isthmus region of the gland (118). The stem/progenitor
cells are thought to make up a small fraction of all cancer cells
(<1%). A model is emerging, in which H. pylori recruits and affects
progenitor cells through chronic inflammation and cagPAI/CagA-
induced oncogenic pathways. As a consequence the progenitor
cells accumulate genetic and epigenetic modifications, which ulti-
mately cause loss of homeostatic control and initiation of tumor
development (119).

Research to characterize the interaction of H. pylori with prog-
enitor cells is still in its infancy. However, H. pylori has been shown
to interact with and invade epithelial progenitor cells (44). A gno-
tobiotic mouse model of chronic atrophic gastritis has been used
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to demonstrate that loss of parietal cells causes amplification of
stem cells, which express sialylated receptors that can be used by
H. pylori for adherence and cell invasion (120). A recent publi-
cation has demonstrated in a mouse model that H. pylori caused
preneoplastic lesions, which contained bone marrow derived cells
that were recruited to the gastric mucosa (121). The bone marrow
derived cells are considered an alternate source of stem cells and
likely are recruited along other stem cells to the isthmus region of
the gland to produce the various types of gastric gland cells in the
mucosa: pit, parietal, neck, and zymogenic cells (118, 122, 123).

These experiments indicate that CagA and possibly other H.
pylori factors likely participate in the regulation of stem cell
differentiation and contribute to the initiation of gastric cancer.

PART 2 – H. PYLORI EPIGENETIC MECHANISMS AFFECTING
GENE EXPRESSION OF HOST CELL
Epigenetics has been defined as “the study of heritable changes
in gene expression that occur independent of changes in the pri-
mary DNA sequence”(124). In other words, epigenetics studies the
chromatin structure and its impact on gene function. Epigenetic
modifications include DNA methylation, post-translational his-
tone modification, nucleosome positioning along the DNA strand,
and microRNA expression (125). These modifications are typically
acquired during cell differentiation and control the accessibility of
the genetic information by regulatory proteins (126).

Recent studies link epigenetic mechanisms to EMT that lead to
oncogenesis (127, 128). Cancer cells have to acquire genetic as well
as epigenetic changes to undergo through EMT and DNA methy-
lation, histone modifications, and miRNAs appear to be associated
with EMT and cancer progression.

DNA METHYLATION
DNA methylation occurs mainly on cytosine in repetitive CpG
dinucleotides sequences, which are part of the majority of human
promoter sequences (112, 129). Methylation of these CpG islands
causes transcriptional silencing and furthermore may regulate
active promoters (126). Various studies have reported that infec-
tion with H. pylori is associated with promoter methylation of
various gastric cancer-associated genes (130–132) and eradica-
tion of the bacteria was able to reverse the process in patients
with gastritis, but not in patients with intestinal metaplasia (133–
135). Methylated genes included the O6-methylguanine DNA
methyltransferase (DNA repair factor) (136), the trefoil factors
1 and 2 (regulators of gastric cell differentiation and prolifera-
tion) (137, 138), E-cadherin (133), GATA-4 and GATA-5 (134),
p16 (cell-cycle control) (139), and IRX1 (cell-cycle control) (135).
Another targeted promoter, the FOXD3 promoter, was identified
using a genome-wide microarray-based approach, which com-
pared methylation patterns of ca. 4500 CpG islands in mucosa
samples of mice either infected or not infected with H. pylori
(140). The study also compared mucosa of infected but asympto-
matic individuals with mucosa of gastric cancer patients. FOXD3
is a member of the family of forkhead box transcriptional regula-
tors. The FOXD3 promoter was found to be hypermethylated in
both screens and progressively hypermethylated in more advanced
lesions with the highest methylation level in human cancer cases.
In agreement, FOXD3 was repressed in various gastric cancer

cell lines and in more than 80% of gastric cancer cases. Fur-
thermore, increased FOXD3 expression in cancer cell lines caused
reduced proliferation rates, enhanced apoptosis, and reduced cell
line invasiveness.

HISTONE MODIFICATIONS
Chromatin is made of repeating units of nucleosomes, which con-
tain DNA wrapped around an octamer of four histones proteins
(H2a, H2b, H3, and H4). The N-terminus of histones can be
post-translationally modified by methylation, acetylation, phos-
phorylation, ubiquitination, or sumoylation and the modification
status affects DNA packing as well as gene transcription and DNA
replication and repair (141). Nucleosome-free regions (NFRs)
allow gene activation and transcription (142), while occlusion
of the transcription start site with a nucleosome causes epi-
genetic gene silencing (143). Nucleosome remodeling has been
closely linked to DNA methylation and histone modifications
(144, 145).

Several recent reports have investigated the effects of H.
pylori on histone modification. A chromatin immunoprecipi-
tation analysis of NCI-N87 and primary gastric cells revealed
that H. pylori-induced expression of the cell-cycle control fac-
tor p21(WAF)1. Induction followed the hyper-acetylation of his-
tone H4 likely as a response to the release of HDAC-1 from the
p21(WAF)1 promoter (146). HDAC-1 is a histone acetyltrans-
ferase that acetylates key lysine residues on H3 and H4 histones
and acetylation activates transcription (147). cag PAI dependent
dephosphorylation of histone H3 at serine 10 and threonine 3 was
also shown, likely following transient pre-mitotic cell-cycle arrest
and indeed, cell division cycle phosphatase CDC25C was strongly
decreased during H. pylori infection (148). Similar effects on his-
tone H3 phosphorylation were also reported by Ding et al., which
furthermore demonstrated decreased acetylation of lysine 23 on
histone H3 and this modification was associated with upregulation
of the c-Jun proto-oncogene independent of the ERK/p38 path-
ways (149). Angrisano et al. demonstrated that H. pylori infection
of gastric cells caused chromatin changes at the iNOS promoter.
These changes included decreased methylation of lysine 9 on his-
tone H3, but increased methylation and acetylation on histone
H4, which were followed by increased iNOS expression (150).
iNOS is the inducible nitric oxide synthase isoform, which is most
commonly associated with malignant disease. Finally, H. pylori
caused decreased expression of the gastric tumor suppressor pro-
tein p27 (151). Since p27 transcription was previously reported to
be epigenetically regulated through histone acetylation via the G-
protein coupled delta opioid receptor (DOR), histone acetylation,
and acetyltransferase (p300) levels within the p27 promoter and
DOR phosphorylation levels were measured. Infection of AGS and
HS3C cells was associated with low p27 expression and reduced
p27 promoter histone H4 acetylation. Recruitment of the p300
acetyltransferase and DOR phosphorylation were also decreased
following infection with H. pylori.

MICRORNA EXPRESSION
miRNAs are small, non-coding RNAs that regulate gene expres-
sion through posttranscriptional gene silencing. They are typically
20–24 nucleotides long and pair with the 3′ untranslated regions
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of target messenger RNA to form the RNA-induced silencing com-
plex (RISC). As a result of the complex formation the target RNA
is then degraded or its translation inhibited (152). MicroRNAs
are tissue specific and control many regulatory processes such
as signal transduction, cell proliferation, apoptosis, angiogene-
sis, and differentiation and may also act as tumor suppressor
genes (153). Considering such diverse regulatory functions it is
not surprising that aberrant expression of miRNA has been linked
to tumorogenesis (153) and various reports describe the role of
miRNA in the development of gastric cancer specifically (154,
155). The effect of H. pylori on miRNA was recently compre-
hensively reviewed (156). It is becoming increasingly obvious that
a considerable number of miRNAs is altered following infection
with H. pylori and specific miRNA deregulation was found to
contribute to host inflammation, cell-cycle progression, inhibi-
tion of apoptosis, cell invasion, and metastasis (156). One study of
particular interest was using high throughput microarray screen-
ing to investigate the difference of miRNA signatures in H. pylori
infected and uninfected gastric mucosa. The study found signif-
icant differences in the expression of 31 miRNAs and some of
these, including the let-7 family members, required the expres-
sion of the cagPAI (157). Newer studies also pointed toward a role
of the cagPAI and specifically CagA in regulating miRNA path-
ways. Zhu et al. demonstrated upregulation of miRNA-584 and
miRNA-1290 in CagA-transformed cells and overexpression of
both miRNAs induced intestinal metaplasia of gastric epithelial
cells in knock-in mice (86). Interestingly, CagA-induced miRNA-
584 and miRNA-1290 promote EMT through Foxa1, a critical
factor in epithelial cell differentiation. These findings support a
possible role of miRNA-584 and miRNA-1290 in deregulating cell
differentiation and in promoting cancer through EMT. Saito et
al. demonstrated that in polarized cells CagA-induced a mito-
genic response via ERK activation. ERK prevented expression of
p21(Waf1/Cip1) cyclin-dependent kinase inhibitor by activating
c-Myc. c-Myc induced miRNA-17 and miRNA-20, which were
both required to suppress p21(Waf1/Cip1). The opposite effect
was observed in non-polarized cells, where upregulation of p21
(Waf1/Cip1) expression caused cell senescence (85). Interestingly,
CagA was also shown to contribute to cell-cycle arrest in proliferat-
ing gastric tissue culture cells. CagA translocation caused a strong
inhibition of miRNA-372 and miRNA-373, which both promote
cell proliferation by silencing large tumor suppressor homolog
2 (LATS2) (158). The author suggested that this process might
inhibit gastric epithelial renewal in favor of the colonizing bacteria.
Future studies will be required to address these seemingly opposite
effects of miRNAs during infection of the gastric epithelium with
H. pylori.

PART 3 – THE IMMUNE RESPONSE AGAINST H. PYLORI :
ROLE IN CANCER PROMOTION AND AGAINST THE
INFECTION
The knowledge of the immune response to H. pylori is still incom-
plete: why the natural response seems to be ineffective and what
is the protective response are questions that have been answered
only in part. H. pylori infection elicits a strong immune response,
at both B and T cell level. Nevertheless, the natural response seems
unable to clear the infection, while the inflammatory response

contributes to the pathology development, creating a microen-
vironment that may facilitate cellular transformation. Even early
inflammatory events occurring upon H. pylori infection are rel-
evant to the understanding of mechanisms behind malignant
transformation. Indeed, atrophic gastritis, which is the most com-
mon and early outcome of H. pylori infection, leads to a significant
increase in the risk of developing gastric cancer (159, 160).

Helicobacter pylori infection induces both innate effectors and a
complex mix of Th1, Th17, and T regulatory cells (Treg) adaptive
immune responses (161). Th1 response drives an inflammation
that, if prolonged, results in pathological sequelae. On the other
hand, experimental data showed that polarized Th2 response
alone does not guarantee protection, suggesting that specific Th1
response appropriately tuned by Th2 cells would lead to a balanced,
protective response (162–165). In the recent years, some advances
in the knowledge of the contribution of both bacterial and host fac-
tors in determining the outcome of H. pylori infection have further
filled some parts of the puzzle (166). To maintain colonization in
the gastric tissue in spite of the robust immune response, H. pylori
activates escaping mechanisms and exerts on the host immune
system immunomodulatory action, through various factors (167,
168), establishing a relatively pacific coexistence. Nevertheless, the
concomitance of certain host genetic background and particularly
virulent H. pylori factors, such as CagA, can break this balance and
lead to pathological outcomes including malignant lesions.

INNATE IMMUNE RESPONSE: PATHOGEN-RECOGNITION RECEPTORS
Mammalian toll-like receptors (TLR) allow recognition of micro-
bial molecules, with consequent initiation of the innate cellular
responses against the invading pathogens. TLR2, TLR4, and TLR5
have been involved in the H. pylori recognition in the stomach
(169–173), with bacterial factors such as CagA and HP-NAP mod-
ulating the interaction of the bacterium with TLR (169, 174),
eventually leading to activation of nuclear factor-kappaB (NF-κB)
and secretion of inflammatory cytokines. Interestingly, polymor-
phisms of these TLR have been reported to be associated with
gastric carcinoma development (175, 176). However, TLR4 poly-
morphisms do not influence the risk of gastric cancer in Caucasian
population (177). Also, association of gastric carcinogenesis with
decreasing levels of TLR inhibitors and increased TLR2 and TLR4
levels has been reported (178), and chronic activation of TLR has
been associated with tumor genesis (179).

The nucleotide-binding oligomerization domain (NOD) pro-
teins are other important constituents of the innate immune
response. NOD1 recognizes the bacterial peptidoglycan, result-
ing in signaling cascade that activates NF-κB and the production
of pro-inflammatory cytokines (180). H. pylori activates NOD1
responses (181), dependent on cag PAI and its ability of deliver-
ing the bacterial peptidoglycan via the T4SS (182, 183). Also for
NOD1, polymorphisms have been found to be associated with H.
pylori-induced gastric mucosal inflammation (184), but not in the
Caucasian population (177).

PRO-INFLAMMATORY CYTOKINES
Helicobacter pylori infection generates in the host a cytokine
response that takes part in the disease development. Several stud-
ies indicate that polymorphisms of pro-inflammatory cytokines or
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of related genes may strongly influence the pathological outcome
(181, 185, 186).

Some IL-1β and IL-1 receptor antagonist (IL-1RN) polymor-
phisms may increase the risk of malignant disease (187–190). This
is conceivably linked to the suppression of gastric acid secretion
induced by IL-1β. In a recent meta-analysis, ILRN2 polymorphism
was found significantly associated with risk of gastric cancer in
non-Asian populations, while reduced risk for Asian population
was observed with IL-1β-31C polymorphism (191).

Polymorphisms of the human TNF-α (186, 192, 193), TNF-α
promoter (194), and IL-10 (186, 195, 196) have been associated to
higher risk of gastric cancer.

Polymorphisms in the Heat-shock protein 70 (HSP70)-1 have
been reported to constitute possible risk factor for the develop-
ment of precancerous lesions, gastric cancer, and duodenal ulcer
(193). On the other hand, the BB genotype of HSP70-2 was found
to be associated with a reduced risk of gastric pre-malignant
condition in H. pylori-infected older individuals in the Japanese
population (197). The effects of HSP70 can be due to the inhibitory
activity exerted by HSP70 on IL-1 β and TNF-α production (198).

An IL-8 promoter polymorphism (IL-8-251A/T), which causes
increased expression of IL-8, has been reported to be associated
with progression of gastric atrophy in patients with H. pylori infec-
tion, thus increasing the risk of gastric ulcer and gastric cancer
(199), as confirmed by a recent meta-analysis (200). The associ-
ation of this IL-8 polymorphism with the risk of gastric cancer
varies according to histological type, tumor location, H. pylori
infection, and ethnicity/country (201, 202).

T CELL RESPONSE
T-cell-mediated adaptive immunity is considered to play a major
role in antitumor immunity (203). High density of tumor-
infiltrating T cells (cytotoxic and memory in particular) was found
associated with longer survival time of gastric cancer patients
(204), and a specific T cell response of type I to cancer antigens,
detectable in gastric cancer patients, has been proposed to have
the potential of hampering tumor cell growth (203).

T regulatory (Treg) cells are a CD4+CD25+ population able to
suppress the activation/proliferation of other T cells (205). Treg
play a physiological role in protecting against autoimmune dis-
eases suppressing T responses to self-antigens, and in controlling
immune responses to pathogens (206). In H. pylori-infected sub-
jects, suppression of the responsiveness of CD4+ memory cells
has been observed, depending on the presence of H. pylori-specific
Treg (207). Retrospective histopathological analysis performed on
167 subjects confirmed the local increase of Treg, finding an associ-
ation between Treg, H. pylori infection, gastritis, peptic ulcer, and
gastric adenocarcinoma (208). The Treg presence in the gastric
mucosa of H. pylori-infected subjects suggested their involvement
in suppressing mucosal immune responses, contributing to the
infection persistence and modulating the H. pylori-induced gastri-
tis (161, 209–211). With regard to gastric cancer, the accumulation
of Treg in H. pylori-induced gastritis may prevent carcinogene-
sis, but in already established tumors they may promote tumor
progression and metastasis (168).

A very recent study in a neonatal mouse model provided new
insights on the role of Treg. Neonates responded to whole-cell

H. pylori vaccination and were protected to an extent similar to that
of the adults. The most intriguing results were observed in non-
vaccinated animals: indeed, when infected with H. pylori, non-
vaccinated neonates were protected from preneoplastic lesions,
while adults were not (212), suggesting an active mechanism of
peripheral tolerance induction. TGF-β was required for the devel-
opment of tolerance. Depletion of Treg resulted in clearance of H.
pylori accompanied by induction of gastric pathology (212). These
observations indicate that tolerance can protect from severe dis-
ease outcomes, and may contribute to develop new gastric cancer
prevention strategies.

A recent study observed that H. pylori infection induced a pre-
dominant Treg response in children, while the response was of
Th17-type in adults (213). If on one hand this might account
for the susceptibility of children to the infection and the lower
degree of inflammatory cell infiltration observed in infected chil-
dren (213), on the other hand it could further support the idea
that immune response to H. pylori infection and the pathological
outcome might be different depending on the age at which the
colonization establishes.

Interestingly, CagA appears to be involved in mechanisms of
T cell regulation. In mice, CagA-positive bacteria promoted the
migration of H. pylori-primed CD4+ T cells to the site of infec-
tion, and CagA-dependent T cell priming elicited Treg-cell dif-
ferentiation (214). Understanding of T cell response and of the
mechanisms that H. pylori uses to shape the T cell response could
be key to shedding new light on the mechanisms of H. pylori
pathogenesis and to develop successful strategies against bacterial
colonization and disease.

VACCINES TO PREVENT H. PYLORI -RELATED CANCER ARE STILL
LACKING
Helicobacter pylori infection in symptomatic subjects is generally
treated. Current therapies include one proton pump inhibitor plus
two antibiotics for 1–2 weeks. Eradication of H. pylori results in
regression of gastric and duodenal ulcer as well as MALT lym-
phoma (215), and if performed before transformation process
is too advanced, may prevent development of gastric cancer
(216–218).

Unfortunately, the efficacy of the treatment has dropped below
80% (219, 220), mainly due to increasing antimicrobial resistance
(clarithromycin in particular), but also to poor patient compliance
with the multi-drug therapy. For this reason, several modifications
in the combination and/or in the sequence of drug administration
are under investigation (220–223). Although there are evidences
that modified treatments and/or regimens are able in some cases to
significantly increase the efficacy of the H. pylori eradication rates
in comparison with the current standard therapy, antibiotic resis-
tance remains a concern. Moreover, after a successful eradication,
recurrence, or reinfection can occur (224).

Vaccination represents a valid alternative approach to overcome
issues associated with reduced efficacy of antimicrobial-based
therapies. An effective vaccine would prevent H. pylori-related
diseases, including gastric cancer.

A large number of pre-clinical efficacy studies for vaccine
candidates against H. pylori have been published, with promis-
ing results. However, a limited number of clinical trials were
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performed [reviewed in Ref. (225)]. In particular, several stud-
ies, conducted with urease-based vaccines, either administered as a
purified recombinant protein along with mucosal adjuvants or as a
Salmonella-vectored vaccine, showed limited immunogenicity and
poor efficacy in humans. These disappointing results could dis-
courage pharmaceutical companies to further invest in a H. pylori
vaccine discovery and development. Nevertheless, in one of the
latest studies with Salmonella-vectored vaccine, which included
experimental challenge of volunteers, a small number of subjects
cleared the infection, regardless of vaccination. In these subjects a
T cell response to infection was observed that could be helpful in
understanding mechanisms of protective response (226). Another
vaccine, containing recombinant CagA, VacA, and HP-NAP pro-
teins, was immunogenic and safe in a phase I clinical trial (227).
No further results on clinical trials of H. pylori vaccines, and in
particular of efficacy trials, were disclosed in the recent literature.
Presently, there is not any anti-H. pylori vaccine licensed.

There are several reasons why currently the development of a H.
pylori vaccine seems to be discontinued [exhaustively reviewed in
Ref. (228)]. A major issue is the still incomplete knowledge of the
mechanisms behind protective immunity against H. pylori. The
majority of pre-clinical studies resulted in a significant decrease of
bacterial colonization rather than complete, sterilizing, protection.
This extent of efficacy against experimental infection in animals
could be insufficient when translated to the human infection.
Moreover, ideally a H. pylori vaccine would be both prophylactic
and therapeutic, given the high rate of the currently infected popu-
lation. Therefore,more research is needed to understand protective
mechanisms and identify vaccine formulations able to prevent and
cure the infection.

A further element that may limit the development of a H. pylori
vaccine is represented by reports suggesting some beneficial roles
of H. pylori colonization for the host (229, 230). Beneficial effects
would be exerted in the first part of the host life, while detrimental
effects start to appear over 50 years of age (229). Although it is
clear that H. pylori infection can eventually lead to development
of gastric cancer, the feeling that it could also provide the host with
some advantages could adverse the compliance with a vaccination
campaign.

In the frame of all these considerations, it could be now pro-
posed for H. pylori vaccination an objective different than that of
obtaining sterilizing immunity. Given that some of the most dan-
gerous factors of H. pylori are already known, and that the relation-
ships between CagA and H. pylori-induced carcinogenesis is well
documented, it could be proposed a vaccine specifically targeting
those factors. Such a vaccine should be aimed at affecting H. pylori-
induced pathology rather than bacterial colonization. In other
words, a still valuable H. pylori vaccine would be able to prevent
gastric cancer, even without providing sterilizing immunity.

DISCUSSION
Unlike oncogenic retroviruses, H. pylori does not insert its genome
into that of the host and CagA is a not an inheritable signal, so how
can it contribute to carcinogenesis? The answer likely relies on the
nature of H. pylori infection itself: it normally causes chronic infec-
tion persisting in the patient’s stomach virtually for his entire life.
Therefore, the association between H. pylori and cancer might

FIGURE 2 | Model of H. pylori -associated carcinogenesis through
CagA-induced epithelial to mesenchymal transition (EMT). H. pylori
injects CagA into gastric epithelial cells through a type IV secretion system.
CagA disrupts cell–cell junctions by targeting the apical junction complex
(AJC), causing loss of cell polarity. Thereafter, CagA induces cell motility and
formation of actin pseudopodia, invasive behavior with the expression of the
matrix metalloproteinase 7 (MMP-7), expression of EMT-associated genes,
and resistance to apoptosis. Therefore, life-long exposure of the gastric
mucosa to H. pylori and sustained injection of CagA into gastric epithelial
cells may provide the epigenetic promoting forces toward carcinogenesis.

stem from the sustained injection of CagA and its ability to
cause epithelial cell de-differentiation by disrupting cell–cell adhe-
sion and apical–basal polarity, and acquire mesenchymal features,
including motility, invasiveness, and a heightened resistance to
apoptosis, in one word by inducing EMT (Figure 2).

Carcinogenesis is commonly discussed in terms of genetic
alterations that lead to deregulation of cell growth. Recently, a
role of epigenetic factors in promoting tumor initiation and pro-
gression by controlling cell–cell and cell–matrix interactions (92)
as well as DNA methylation, histone modifications, and expres-
sion of micro RNAs (127) has been consolidated. By deregulat-
ing these processes, EMT may actively contribute to early stages
of the carcinogenic process prior to malignant transformation
(Figure 2).

Clearly, gastric cancer has a multifactorial etiology (185). On
top of infection with H. pylori, and particularly with CagA-positive
strains, contributing factors include diet and genetic background
of the host. Variation of host immune response to the infection
probably plays a key role in the disease outcome.

Current therapeutic approaches based on antibiotics, although
are instrumental for curing H. pylori infected patients from most
symptoms, present several limitations. Antibiotic resistance is rais-
ing and infection relapses are increasingly observed (219, 220).
Eradication therapy is often administered to adults, who are gen-
erally thought to be exposed to the pathogen since their childhood.
Indeed, infection normally occurs in infancy and persists for life
(231). Therefore, prolonged exposure to the pathogen may cause
irreversible damages in the patient. Over time the gastric mucosa
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infected with H. pylori undergoes through several changes. A
model which describes the progression of gastric adenocarcinoma
as consequence of H. pylori infection has been proposed (232).
After the bacteria have colonized the gastric mucosa, over a period
of few weeks, the infection causes acute gastritis. With the persis-
tence of infection, gastritis can progress to atrophic, and during
the years turn into intestinal metaplasia, dysplasia and, eventually,
gastric adenocarcinoma.

Cancer progression may not be blocked by antibiotic therapy
if it is done when pre-malignant lesions are already present (233–
237). Unfortunately, no vaccines are commercially available as of
today. If vaccines able to prevent and/or cure H. pylori infection
would exist, they could substantially decrease the burden of gas-
tric cancer. Indeed, vaccination would be the ideal approach to
control H. pylori spread in the population. The success of such
an approach has already been shown with vaccines against hepati-
tis B virus (HBV) in preventing liver cancer (238). Furthermore,
reduction of the incidence of cervical cancer is expected with the

use of human papillomavirus (HPV) vaccines, as reduction in
precancerous lesions has been demonstrated in vaccinees (239).

Given the established association of CagA with cancer, a vac-
cine aimed at preventing this disease should most likely contain
the toxin. However, further research on mechanisms of protection
against the pathogen are needed in order to develop an effective
vaccine. Given the lack of natural protection associated with H.
pylori antibodies present in infected patients, it is likely that cellu-
lar immunity plays a major role. Therefore, the association of new
generation adjuvants stimulating potent cellular response with the
appropriate antibody response against key virulence factors (228),
may represent the cornerstone of H. pylori vaccine development.
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