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Immune reconstitution of functional virus-specific T cells after allogeneic hematopoietic
stem cell transplantation (HSCT) has been intensively investigated. However, the possible
role of crossreactivity of these virus-specific T cells against allogeneic targets is still unclear.
Theoretically, as in the field of organ transplantation, virus-specific T cells possess cross-
reactivity potential after allogeneic HSCT. Such crossreactivity is assumed to play a role in
graft-versus-host disease and graft-versus-leukemia effects. In this article, we aim to give
a comprehensive overview of current understanding about crossreactivity of virus-specific
T cells.
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INTRODUCTION
The reconstitution of functional virus-specific T cells and the
importance of these T cells in the control of viral diseases follow-
ing allogeneic hematopoietic stem cell transplantation (HSCT) has
been extensively investigated (1). This led to a successful trans-
fer into the clinical setting within adoptive immunotherapeutic
approaches (2).

Among various viruses, immune reconstitution against
cytomegalovirus (CMV) has been most intensively studied.
Regarding the recovery of CMV-specific T cells after allogeneic
HSCT, several reports showed that subclinical CMV antigenemia
drives the reconstitution of functional CMV-specific T cells (3–5).
The rapid homeostatic expansion of CMV-specific T cells suggests
that such T cells might be largely memory T cells, considering the
insufficient regeneration of T cells due to the poor thymic function
early after allogeneic HSCT. Similar to the immune response after
primary CMV infection (6, 7), the proportion of virus-specific T
cells including CMV-specific T cells can be high and in some cases
CMV-specific T cells make up more than 10% of the circulating
T cells after allogeneic HSCT (8, 9). If the number and/or func-
tionality of CMV-specific T cells is insufficient in recipients of an
allogeneic stem cell graft, they are at high risk of persistent viremia
and CMV disease (10, 11).

Although immune reconstitution of virus-specific T cells has
been intensively studied, the fact of possible alloreactivity of virus-
specific T cells in the allograft recipient has only been evaluated in
few trials (12, 13). However, as suggested in other fields like organ
transplantation, virus-specific T cells are assumed to play a role in
alloreactivity similarly in the field of allogeneic HSCT (14, 15).

In this review, we focus on crossreactivity of virus-specific T
cells against allogeneic targets, and discuss the possible implica-
tion of such reactions on the allogeneic immune responses after
allogeneic HSCT.

CROSSREACTIVITY OF VIRUS-SPECIFIC T CELLS
Virus-specific T cells, which dominate the memory pool in
humans, have been reported to have the potential of crossreac-
tivity (14). Crossreactivity of T cells is the ability to recognize
several different peptide/human leukocyte antigen (HLA) com-
plexes. CD4+/CD8+ and naïve/memory T cells were shown to
mediate crossreactivity against allogeneic targets (16, 17). Upon
activation, memory T cells proliferate more quickly and produce
more cytokines than naïve T cells (18, 19). Considering these rapid
and vigorous T-cell responses mediated by memory T cells when
compared to naïve T cells, one could assume that such alloreac-
tivity of virus-specific memory T cells could play a role in the
pathogenesis of early-onset acute GVHD, in particular hyperacute
GVHD, following HLA mismatched HSCT. The difference of these
T cells in the ability to expand and express cytotoxic molecules
might also contribute to the difference in the outcome in patients
with acute GVHD. Virus-specific T cells might have much higher
avidity against allogeneic targets after HLA mismatched HSCT
when compared to that after HLA-matched HSCT, considering
the mechanism of negative selection in thymus (20, 21). Virus-
specific T cells possessing high avidity against autologous HLA
molecules with a self-peptide should originally be deleted in thy-
mus. However, if virus-specific T cells recognize the complex of a
peptide and non-autologous HLA molecule via their T-cell recep-
tor, the avidity of T cells against this complex can be high because
this HLA molecule is not expressed in the thymus and thus cannot
induce the negative selection in the thymus (22). One hypoth-
esis could be that, if such strong peptide-specific crossreaction
exists against tumor-associated antigen (TAA)-derived peptides
expressed in leukemia cells accidentally, it should lead to a strong
graft-versus-leukemia (GVL) effect. However, there is no data
available so far which could support this idea. Furthermore, cross-
reactivity against non-self HLA presenting a non-polymorphic
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hematopoietic cell-specific peptide or TAA-derived peptide might
provide therapeutic tools for immunotherapy, similar to the
concept for minor histocompatibility antigens like HA-1.

In addition, virus-specific T cells which have weak to moder-
ate avidity against autologous HLA molecules with a self-peptide
might theoretically remain in vivo, considering the mechanism
of positive selection in thymus. Such virus-specific T cells might
subsequently exert alloreaction in the setting of HLA-matched
HSCT, only when the strong activating signals by various cytokines
stimulate them (20, 21). However, such crossreactivity by virus-
specific T cells against autologous HLA molecules has not yet been
demonstrated so far.

Regarding crossreactivity of virus-specific T cells, Epstein–Barr
virus (EBV)-specific T cells have been studied in detail (14). Bur-
rows et al. demonstrated crossreactivity of EBV EBNA3A-specific
T-cell clones for the immunodominant peptide FLRGRAYGL pre-
sented on HLA-B*08:01 against the alloantigen HLA-B*44:02 (23).
This finding was reconfirmed by other researchers (24, 25). These
reports did not demonstrate the requirement of a specific pep-
tide presented on HLA molecule for crossreactivity. Later on, it
has been demonstrated that crossreactivity of this EBV EBNA3A-
specific T-cell clones is dependent on the presentation of the
self-peptide derived from the ABCD3 gene (EEYLQAFTY) (26).
Here, we have to point out the significant difference between the
two peptides’ sequences, suggesting that crossreactivity does not
necessarily require a homology in sequences indicating promis-
cuity of the T-cell receptor. Another EBV EBNA3A-specific T-cell
clone, recognizing the complex of HLA-B*08:01 and an EBNA3A-
derived peptide FLRGRAYGL, has been shown to react with
the complex of HLA-B*35:01 and the self-peptide derived from
Cytochrome P450 (KPIVVLHGY) (22). This study demonstrated
a similar avidity of the EBNA3A-specific T-cell clone against
the complex of HLA-B*08:01 with EBNA3A-derived peptide and
the complex of HLA-B*35:01 with Cytochrome P450-derived
peptide.

Regarding other viruses, Amir et al. reported that crossreactiv-
ity of virus-specific T cells against mismatched foreign allogeneic
HLA was common (25). They used expanded T cells which were
isolated using various combinations of tetramers loaded with a
virus-derived immunogenic peptide. The target cells were a panel
of lymphoblastoid cell lines (LCL) expressing various combina-
tions of HLA molecules. A major finding was that a large number
of virus-specific T-cell clones have crossreactivity potential against
various HLA molecules. It is also important that some CD8 T-cell
clones showed crossreactivity against HLA class II, even though
most CD8 and CD4 T cells were crossreactive against HLA class
I and class II molecules, respectively (25). A similar phenomenon
showing the recognition of HLA class II by CD8 T cells was also
reported by Rist et al. (27).

However, in a clinical trial using expanded virus-specific cyto-
toxic T-cell lines for the treatment of viral diseases, GVHD was
rarely (6.5%) observed even when crossreactivity of expanded
virus-specific T cells was observed in vitro (13). The fact of rarely
observing GVHD clinically in expanded virus-specific T cells in
this study might be caused by the absence of the correct crossreac-
tive HLA molecule in the mismatch combinations, the difference
in homing capacities and the lack of respective target molecules on

the GVHD-target organs. Therefore, the clinical relevance of cross-
reactivity which was detectable in vitro should be further clarified
in clinical trials.

Previously, it has been assumed that crossreactivity against allo-
geneic HLA is independent of the peptides in the HLA groove
but that the allogeneic mismatched HLA molecules are the tar-
get of this cross-reactivity. In contrast, recent reports support
the idea that crossreactivity against allogeneic HLA is peptide-
dependent as reviewed previously (28). Actually, it is still difficult
to demonstrate non-peptide-dependency experimentally, because
even transporter-associated with antigen processing (TAP) defi-
cient cell lines, which were believed to be completely deficient in
antigen processing- and antigen presenting-capability, are able to
load endogenous peptides on HLA molecule (28). Weinzierl et
al. have demonstrated the presentation of many peptides by HLA
molecules on the TAP-deficient cell line (29).

Peptide-specificity of alloreactive T cells is also supported by
tissue/cell type-specific alloreactivity of clinical samples. Vari-
ous reports showed the presence of tissue-specific alloreactive
T cells in patients with graft failure after organ transplant (30–
33). Deckers et al. have reported that the cytotoxic potential of
graft-infiltrating CD8+ T cells against proximal tubular epithe-
lial cells (PTEC), gonadal vein endothelial cells (GOVEC), and
splenocytes depends on the clone of graft-infiltrating CD8+ T
cells in renal allografts (30, 31). In this report (30), 46 graft-
infiltrating CD8+ T cells were cloned. Out of 46 clones, 7 lines
recognized PTEC but not splenocytes derived from the same
donor. Thirty lines recognized PTEC and splenocytes equally. One
line preferentially recognized splenocytes over PTEC. Eight lines
were not cytotoxic either to PTEC or to splenocytes. Therefore,
each clone recognized different targets of the recipient. Jutte et
al. also showed the specific cytotoxicity against heart endothe-
lial cells by expanded graft-infiltrating T cells in heart allografts
(32, 33). Other reports using virus-specific T cells also support
the idea of cell type-specific crossreactivity of virus-specific T
cells. For example a VZV-IE62-specific HLA-A2 restricted T-cell
clone recognizes allogeneic HLA-B*57:01-expressing LCLs, phyto-
hemagglutinin (PHA) blasts, and monocyte-derived dendritic cells
(DCs), but does not recognize HLA-B*57:01-expressing B-cells, T
cells, monocytes nor fibroblasts in a standard 51Cr release assay.
Such tissue/cell type-specific crossreactivity has been also reported
by D’Orgogna et al. showing that allogeneic HLA-B*44:02-positive
PTECs and human umbilical vein endothelial cells (HUVECs)
are poor targets for EBV EBNA3A-specific T cells due to the
lack of EEYLQAFTY peptide presentation (34). Amir et al. also
reported that certain cell types with the correct HLA mismatch
were recognized by virus-specific T cells while other cell types
were not (25).

Regarding T cells in a patient with acute GVHD after HLA mis-
matched HSCT, single-peptide specificity was documented using
a single small hairpin RNA (shRNA) system (12). There is no data
available for chronic GVHD. The concept of tissue-specific allore-
activity also might be applied to GVHD following allogeneic HSCT
which is also restricted to a few organs (especially skin, gut, and
liver), even though other factors such as proinflammatory envi-
ronment caused by the conditioning regimen affect the specificity
of target organs. Tissue damage could change the expression of
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genes as well as the expression of HLA molecules. Furthermore,
the effects of cytokine/chemokine are expected to differ among
different organs.

CLINICAL DATA SUGGESTING ALLOREACTIVITY AND VIRAL
INFECTION
Over the last decades, various retrospective studies have shown
the possible association between viral infection and graft rejec-
tion/GVHD (15, 35). Although there is no published data assessing
the impact of CMV prophylaxis on the incidence of GVHD,
prospective studies assessing the impact of CMV prophylaxis
using ganciclovir in organ transplantation have demonstrated a
reduced risk of graft rejection in the group receiving prophylactic
CMV therapy, which supports the idea that CMV infection can be
associated with an increased risk of graft rejection (35).

One recent report evoked the attention of researchers on the
importance of CMV infection regarding the effects on the GVL
effect in allogeneic HSCT (36). In this study, Elmaagacli et al.
demonstrated a significant association between early CMV reac-
tivation and a reduced risk of relapse in acute myeloid leukemia
(AML) patients after allogeneic HSCT. Patients who developed
early CMV replication detected by pp65 antigenemia assay had a
significantly lower risk of relapse compared with those without
early CMV replication. Another group reported a similar finding
in patients with chronic myeloid leukemia (CML) (37). A very
recent report from Fred Hutchinson Cancer Research Center also
supported the hypothesis that early CMV reactivation in AML but
not in other diseases including CML may be associated with a
reduced risk of relapse, even though the impact was much less in
this study compared to the previous report (38). Regarding the dif-
ference among the diseases, it is potentially due to the difference in
epitopes expressed on HLA molecules. The identification of target
molecules recognized by virus-specific T cells might give us a clue
to this issue. In contrast to these trials (36–38), persistent CMV
antigenemia was associated with a poor clinical outcome possibly
due to the fact that the impaired immune status is also associated
with an insufficient GVL effects by functional T cells (39).

Previously, Parkman and colleagues reported that the pres-
ence of immune response to herpes viruses was associated with
a reduced risk of relapse in patients with acute leukemia after
cord blood transplantation, which led to a better progression-free
survival (40). In this study, there was no association between the
absolute count of lymphocytes and the presence of an antigen-
specific immune response. Interestingly, neither acute nor chronic
GVHD had any significant impact on the likelihood of leukemic
relapse, suggesting that virus-specific T cells specifically induced
GVL effects and graft-versus-host reaction. Hoegh-Petersen et al.
also showed the significant impact of herpes virus-specific T cells
at 56 days after HSCT on the incidence of subsequent relapse (41).
In this study, in patients without relapse, functional T cells against
various viral antigens including BZLF1 and EBNA3 were detected.
There is a possibility that anti-viral immunity may be just a sur-
rogate factor for the immunocompetence of the recipient after
allogeneic HSCT and thus not have a direct causal relation with
GVHD/GVL but being an epiphenomenon of other factors such as
inflammation, cytokine storm, and so on. Thus, more detail about
the crossreactivity of virus-specific T cells should be clarified in the

FIGURE 1 | Possible crossreactivity of CMV-specific T cells in allogeneic
HSCT and the impact of anti-viral drugs. (A) Without anti-CMV drugs. (B)
With anti-CMV drugs.

setting of allogeneic HSCT. A better understanding of their role in
alloreactivity will help to reduce acute and chronic GVHD but also
to mediate the important GVL reactivity by more sophisticated
immunosuppressive strategies, which makes allogeneic HSCT still
the most effective form of immunotherapy – allowing to cure
patients with hematological malignancies which are incurable by
any other form of treatment.

CONCLUSION
Virus-specific T cells can recognize and target allogeneic HLA in
a peptide-dependent manner. In an HLA mismatched HSCT, the
avidity of such crossreactivity can be theoretically high enough to
exert clinically meaningful alloreaction. Furthermore, in an HLA-
matched HSCT, there is a possibility that virus-specific T cells
develop alloreaction, even if virus-specific T cells have only low
to intermediate avidity against autologous targets, considering the
high frequency of virus-specific T cells and the unique milieu of
cytokine storm after a conditioning regimen. Furthermore, inten-
sive prophylaxis of virus infection after allogeneic HSCT might be
beneficial to reduce the incidence of GVHD similar to that after
organ transplantation because such intervention could reduce the
amount of antigen exposure, which is expected to decrease the
expansion of donor-derived virus-specific T cells (Figure 1).

In conclusion, elaborate basic and clinical research to clarify
the detail of crossreactivity of virus-specific T cells after allogeneic
HSCT is warranted.
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