
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 24 October 2013

doi: 10.3389/fimmu.2013.00343

Host factors and HIV-1 replication: clinical evidence and
potential therapeutic approaches
Mariana Santa-Marta1,2*, Paula Matos de Brito1,2, Ana Godinho-Santos1,2 and Joao Goncalves1,2*
1 URIA-Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
2 Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal

Edited by:
Nitin Kumar Saksena, Westmead
Hospital, Westmead Milennium
Institute, Australia

Reviewed by:
Clive Maurice Gray, University of
Cape Town, South Africa
Nitin Kumar Saksena, Westmead
Hospital, Westmead Milennium
Institute, Australia

*Correspondence:
Mariana Santa-Marta and Joao
Goncalves, URIA – Centro de
Patogénese Molecular, Faculdade de
Farmácia, Universidade de Lisboa, Av.
Prof. Gama Pinto, 1649-003 Lisboa,
Portugal
e-mail: msanta_marta@ff.ul.pt;
joao.goncalves@ff.ul.pt

HIV and human defense mechanisms have co-evolved to counteract each other. In the
process of infection, HIV takes advantage of cellular machinery and blocks the action of
the host restriction factors (RF). A small subset of HIV+ individuals control HIV infec-
tion and progression to AIDS in the absence of treatment. These individuals known as
long-term non-progressors (LNTPs) exhibit genetic and immunological characteristics that
confer upon them an efficient resistance to infection and/or disease progression.The iden-
tification of some of these host factors led to the development of therapeutic approaches
that attempted to mimic the natural control of HIV infection. Some of these approaches
are currently being tested in clinical trials. While there are many genes which carry muta-
tions and polymorphisms associated with non-progression, this review will be specifically
focused on HIV host RF including both the main chemokine receptors and chemokines as
well as intracellular RF including, APOBEC,TRIM, tetherin, and SAMHD1.The understand-
ing of molecular profiles and mechanisms present in LTNPs should provide new insights to
control HIV infection and contribute to the development of novel therapies against AIDS.

Keywords: human immunodeficiency virus, nonprogressors, APOBEC,TRIM, tetherin, SAMHD1, chemokine recep-
tors, chemokine

INTRODUCTION
Both pathogens and host have an inherent variability that plays
a critical role in the consequences of the infection process. When
infected by a specific pathogen, some individuals show no sign of
HIV infection or react with moderate manifestations, while oth-
ers rapidly succumb to the disease. Likewise, heterogeneity in the
predisposition to HIV-1 infection has been reported in numerous
cohort studies. Approximately 5% of infected patients seem to be
unaffected by HIV-1 infection regardless of repeated exposure to
the virus by unsafe sexual practices or blood transfusion. Subse-
quent studies showed the presence of fully replication-competent
virus in these long-term non-progressors (LTNPs), which changed
the attention to the host.

Understanding what makes non-progressors “immune” to HIV
infection is a challenge, as the cohort is not homogeneous. A
particular phenotype is the result of specific combinations of fac-
tors including the virus strain, each individual immune response
and genetic background. Individual variability results from the
exchange of genes during meiosis and various mutational events.
However, population variability results from natural selection,
migration, and bottleneck effects, phenomena that can be ana-
lyzed to obtain relevant information about a specific research
subject. The study of HIV non-progressors is therefore critical for
the understanding of the underlying mechanisms of HIV control
that results in low viral replication and/or slow disease progression
(>15 years to AIDS) in the absence of therapy (1).

The initial studies on these patients were based on DNA profil-
ing and single nucleotide polymorphism (SNP) genotyping stud-
ies that only covered about 0.1% of the entire genome. Although

limited in terms of information, they led to the identification
of important population-specific polymorphisms that influence
HIV-1 infection and progression to disease. One of the most stud-
ied genetic variations influencing HIV-1 infection and progression
is the ∆32 mutation in the CCR5 gene (2), and SNPs in vari-
ous chemokine receptors or HLA class I and class II alleles (3, 4).
More recently, the use of genome-wide association studies (GWAS)
and meta-analysis studies highlighted relevant information on
the genetic backgrounds of progressors and non-progressors at
a genome-wide level (5).

Non-progressor phenotypes can be explained, at least in part, in
terms of host factors that limit HIV infection and disease progres-
sion. Here, we review the latest advances in the identification of
host factors that determine the vulnerability of cells to viral infec-
tion, and discuss their current therapeutic usage and potential. We
focus on those factors which restrict the entrance of HIV into the
host cell and its later release, such as chemokine co-receptors and
their ligands, SAMHD, TRIM, APOBEC, and tetherin.

ROLE OF CHEMOKINE RECEPTORS AND THEIR GENETIC
VARIABILITY IN HIV INFECTION
Several chemokine receptors have been described as mediators
of HIV-1 entry. However, CCR5 and CXCR4 are considered the
clinically relevant receptors in vivo [reviewed in Alkhatib (6)].
CCR5 and CXCR4 are two structurally related chemokine recep-
tors that belong to different classes (C-C and CXC, respectively) of
the superfamily of G protein-coupled receptors (GPCRs). GPCRs
are transmembrane proteins characterized by seven transmem-
brane α-helices (TM1-TM7) which are connected by six loops
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(ECL1-ECL3 and ICL1-ICL3) (Figure 1). CCR5 was first charac-
terized as a receptor for MIP-1α, MIP-1β, and RANTES (7) and
later described as a co-receptor for HIV-1 (8). This receptor is
highly expressed at the surface of B cells, monocytes, macrophages,
dendritic cells (DC), microglial cells, and memory T cells, but
rarely in näive CD4+T cells (9,10). CXCR4 is also a co-receptor for
HIV-1 (11), and its natural ligand is SDF-1/CXCL12. This recep-
tor is expressed on the surface of näive CD4+ T cells, peripheral
blood B cells, monocytes, but not on mature macrophages (9, 10).
Viruses capable of exploiting CCR5 (R5-tropic) are predominant
during the asymptomatic phase of HIV infection, whereas viruses
found in late-stage disease use preferentially CXCR4 as their co-
receptor (being X4- and R5X4-tropic if they can use both) (12,
13). CXCR4 has an essential role during development (14), which
might explain the lack of non-coding variants for CXCR4. The
only non-silent CXCR4 polymorphism identified in several HIV-1
infected individuals, the CXCR4 T278C change, was not yet proven
to be associated with progression to AIDS (15). However, there are
polymorphisms in CCR5 and other chemokine co-receptors that
play a key role in natural protection against HIV transmission and
progression (16).

The ∆32 mutation in the CCR5 gene (CCR5∆32) is probably
the most studied genetic variation of a host protein in relation to
HIV-1 infection and progression. Due to a 32 bp deletion in the
gene sequence, a premature stop codon is introduced, leading to
the production of a truncated CCR5 protein. This polymorphism
is mostly present in European populations, with higher prevalence
in Northern Europe, and is virtually absent in African, Asian, and
American Indian populations.

Individuals homozygous for the CCR5∆32 polymorphism (1%
in Europe) do not express CCR5 at the cell-surface and are there-
fore naturally resistant to the infection by HIV R5-tropic strains,
but not by HIV-1 strains that can use a different co-receptor.
Indeed, the rare cases of seropositive homozygotic individuals
reported so far were infected with CXCR4 HIV strains alone or
in combination with a CCR5 tropism (2, 17–25). Heterozygotic
individuals are not protected against HIV-1 infection but, in most
cohort studies, they have been found to have lower viral loads,
slower decrease in the CD4+ T cell count and slower progression
to AIDS by an additional 2–3 years when compared to CCR5-wild-
type individuals (26–29). The discrepancies found in other studies
that failed to correlate CCR5∆32 heterozygocity with delayed dis-
ease progression could be due to small sample size, infection by
dual-tropic HIV-1 strains or individual differences at the level of
functional expression of CCR5 receptors, which also depends on
epigenetics and trans-acting factors, for instance (30–32). Despite
these contradictory results, meta-analyses of published cohorts
associate the CCR5∆32 allele with lower HIV-1 RNA, decreased
risk of progression to AIDS and lower mortality rate in adults (33,
34). GWAS performed on individuals from Euro-CHAVI, MACS
cohort, and the International HIV controllers study 2010 further
confirmed the protective effect of the CCR5∆32 allele in viral
load control and progression to AIDS (35, 36). Another trun-
cated form of CCR5, the CCR5-m303A, also conferred resistance
to HIV-1 infection in vitro. CCR5-m303A is a T→A transition
at nucleotide 303 which also introduces a premature stop codon
resulting in a CCR5 protein that no longer facilitates cell fusion

(37). This further supports the putative relevance of CCR5 as a
target for HIV therapies.

Several SNPs in the CCR5 cis-regulatory region, grouped in
at least 10 haplotypes (CCR5-P1 to P10), have been described as
changing the course of AIDS. Studying the effects of specific poly-
morphisms has been challenging due to linkage imbalance across
the locus, particularly with CCR2 (Figure 1). Of particular interest
is the CCR5-59029 A/G polymorphism, which has been associated
with different rates of AIDS progression. HIV-1-infected CCR5-
59029 G/G homozygotic individuals progressed slower to AIDS

FIGURE 1 | Human chemokine receptors. (A) Chromosomal map of the
human chemokine receptor genes at chromosome 2 and 3. Of notice that
the chromosome 3p harbors two chemokine receptor clusters.
(B) Schematic representation of a chemokine receptor. Chemokine
receptors belong to the superfamily of G protein-coupled receptors
(GPCRs) which are transmembranar proteins characterized by possessing
an extracellular N-terminus and an intracellular C-terminus structure and
seven transmembrane α-helices (TM1-TM7) connected extracellularly and
intracellularly by six loops (ECL1-ECL3 and ICL1-ICL3).
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and/or death than HIV-1-infected CCR5-59029 A/A homozygotic
individuals (38–40). The frequency of the 59029G allele is signifi-
cantly increased in exposed seronegative Caucasian men compared
to healthy controls (41). G/G, A/G, and A/A promoter geno-
types correlated with low, medium, and high viral propagation
and CCR5 receptor density, respectively, in in vitro studies (42).
Promoters containing the 59029G allele showed reduced activity
(45%) versus promoters containing the 59029A allele (40). These
data strongly suggest that the mechanism underlying the protective
effect of the 59029G allele is a lower expression of CCR5. More-
over, the combination of haplotypes CCR5∆32/CCR5-59029A
(in complete linkage disequilibrium) and CCR5wt/CCR5-59029G
had a cumulative negative effect on CCR5 expression that con-
ferred an advantage in resisting sexual HIV-1 transmission (41).
The CCR5-59353 C allele has been associated with accelerated
disease progression and its frequency has been reported to be
higher in AIDS patients than in LTNPs (38, 43, 44). On the other
hand, Easterbrook et al. (45) observed a correlation between the
CCR5-59353 CC genotype and a delay on ∼40% of the subjects
in progression to a CD4+ cell count lower than 200; and a higher
prevalence of the CCR5-59353C promoter polymorphism among
non-progressors compared with those with progressing disease
(45). However, they also found that the CCR5-59353 CC genotype
was not associated with a delay in the CDC stage IV disease.

The CCR2 chemokine receptor (also termed CKR2; CCR2A;
CCR2B; CD192; MCP-1-R; CC-CKR-2) is an alternative co-
receptor for HIV-1 infection that is only used by a few strains.
CCR2 constitutively forms homodimers and heterodimers with
both CCR5 and CXCR4 (46–50). This gene is located in the
chemokine receptor gene cluster region, and it codes for two
alternatively spliced transcript variants (CCR2a and CCR2b)
(Figure 1). The CCR2 V64I (rs1799864) polymorphism identified
with similar frequencies (10–20%) in all ethnicities, has an alter-
ation within the first transmembrane domain of the receptor. This
polymorphism does not affect CCR2 co-receptor levels of expres-
sion and activity. It is associated with reduced levels of CXCR4 in
PBMCs from healthy donors (51); and with a delayed progression
to AIDS or death (52–56). However, it does not confer any pro-
tection against HIV-1 transmission (57), as exposed uninfected
individuals present the same CCR2-64I genotype frequency as
HIV-infected individuals and healthy controls in an Indian cohort
(58) and in exposed uninfected individuals from both Thai and
Puwmani sex worker cohorts (59). The V64I polymorphism is in
linkage disequilibrium with point mutations (59353 T/C; 59402
G/A, and 59653 C/T) located in the CCR5 regulatory region due
to their close proximity in the chemokine receptor cluster located
in chromosome 3 (Figure 1) (60). These observations suggested
that the CCR2 V64I polymorphism might prevent HIV progres-
sion due to a side-effect on CCR5 receptor expression. However,
no association was found between this SNP and CCR5 down-
regulation. A post-entry regulatory mechanism such as the one
resulting from co-receptor heterodimerization or receptor desen-
sitization, cannot be ruled out. CCR2 V64I polymorphism has
been described to interfere with cell-surface location of CCR5
(61) and CXCR4 (51), as well as with the CCR5 to CXCR4 transi-
tion (62, 63). It can also modulate the heterodimerization of the
co-receptors, thus antagonizing HIV infection during the course

of the disease (46, 49, 50, 64). Consistent with this second option,
the monoclonal antibody CCR2-01 prevents HIV-1 replication by
inducing heterooligomerization of CCR2 with CCR5 or CXCR4
viral co-receptors (64). The protective effect conferred by the
V64I polymorphism was confirmed in a meta-analysis of indi-
vidual patient data of European and African descent (34); and,
more recently, by a GWAS where a total of 2554 seroconverters
and seroprevalent Caucasians were related to their viral load and
disease progression (35). These observations led to the develop-
ment of alternative anti-HIV-1 therapies that target alternative
co-receptors like CCR2 (65).

CXCR6 (also termed STRL33/BONZO/TYMSTR) is the main
co-receptor for the simian immunodeficiency virus (SIV) and a
secondary co-receptor for HIV that mediates the fusion of HIV-
1 M-tropic and dual-tropic strains to CD4 T+ cells. GWAS of
LTNPs of a French Caucasian cohort led to the identification of
the CXCR6 rs2234358 polymorphism (66). This was further con-
firmed in three other cohorts of European descent. This CXCR6
variant alters CXCR6 levels of expression and acts independently
from the CCR2–CCR5 loci as individuals carrying the CXCR6
mutation did not present any alteration in their CCR2–CCR5 loci.
In addition, its action was not linked to a decrease in viral load,
as LTNPs had a similar viral load mean as controls (66). Another
CXCR6 variant, the CXCR6-E3K or rs2234355, has been related
to an increased survival from Pneumocystis carinii pneumonia
(PCP) in African-Americans infected with HIV-1 (67). This poly-
morphism results in the substitution of an acidic residue by a basic
amino acid residue in the third codon of the co-receptor, located
extracellularly. This could interfere with the receptor-ligand or
receptor-gp120 affinity, or lead to a CXCR6 trafficking problem,
decreasing the levels of CXCR6 at the cell-surface (68). However,
patients carrying the CXCR6-E3K allele and under highly active
anti-retroviral therapy (HAART) show a faster virologic failure
(sustained viral load < 200 copies/mL) revealing a harmful effect
under HAART (69).

The CX3CR1 chemokine receptor (also termed CCRL1) is an
alternative co-receptor for HIV-1 infection that seems to play
an important role in HIV-1-associated dementia, immune cell
recruitment, and possibly in infection expansion. The possible
role of two non-synonymous SNPs, CX3CR1-V249I (rs3732379),
and CX3CR1-T280M (rs3732378), in HIV progression to AIDS
remains controversial. Both SNPs were initially associated with a
faster disease progression in three HIV-1-infected French cohorts
(70): patients with intermediate progression (IMMUNOCO
cohort), patients with asymptomatic long-term progression (ALT
cohort), and patients with a known date of seroconversion
(SEROCO cohort) (71–73). However, in three North American
cohorts of HIV-1 seroconverters [D.C. Gay cohort (DCG), the
Multicenter AIDS Cohort Study of homosexual men (MACS), and
the Multicenter Hemophilia Cohort Study (MHCS)] and in the
Genetics of Resistance to Immunodeficiency Virus (GRIV) cohort,
which are also representative of Caucasian descent, no association
was found between these polymorphisms and disease progression
(74, 75). On the other hand, the CX3CR1-V249I was found to be
more frequent in Spanish HIV-1-infected LTNPs for more than
15 years in a study with a total of 271 Spaniards (LTNPs, progres-
sors, and uninfected controls) (76) and in another study, patients
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carrying CX3CR1-V249I or T280M polymorphisms showed an
improved immunologic response to HAART (69). The CX3CR1-
T280M allele was also associated with higher peripheral CD4+
T cell counts in HIV-infected and healthy subjects, showing that
these polymorphisms confer protection in the presence of HAART
(54). In summary, the role of CX3CR1 polymorphisms in HIV
infection and disease progression remains to be elucidated.

CYTOKINES AND CHEMOKINE VARIANTS
HIV-1 transmission and progression to AIDS can be influenced by
allelic polymorphisms in several chemokine and cytokine genes.
Cytokines are small signaling peptides that modulate cell func-
tions by means of matching cell-surface receptors. Chemokines
are a group of cytokines especially involved in immunological
and inflammatory responses that are ligands to GPCRs and share
common structural features.

CCR5 LIGANDS
CCR5 ligands can be divided in two groups. MIP-1α (CCL3), MIP-
1β (CCL4), and RANTES (CCL5) bind efficiently to CCR5 and
are full agonists, while MCP-2, MCP-3, and MCP-4 exhibit diverse
efficiency and potency in receptor activation (6). Two additional
variants, CCL3L1 and CCL4L1, are encoded by genes arising from
the duplication of CCL3 and CCL4, respectively (77).

The genes coding for chemokines MIP-1α (CCL3) and MIP-1β

(CCL4) are clustered together within a 47-kb region on chro-
mosome 17q12 (77). These are potent chemokines produced by
a variety of cell types, such as macrophages, NK cells, fibrob-
lasts, and T cells that stand as natural ligands for the primary
HIV-1 co-receptor CCR5 (8, 78). These ligands decrease HIV-
1 R5-trophic infection by desensitizing the CCR5 receptor (79).
Saha and collaborators have shown that CD4+ T cells from 6
LTNPs produce high levels of MIP-1α and MIP-1β in comparison
with AIDS subjects, who produce extremely low amounts of these
chemokines (80).

One of the isoforms of MIP-1α, the CCL3L1 also known as
MIP-1αP, can physically block HIV-1 entry (81). Variations in
CCL3L1 copy number are observed among different ethnic groups;
people of African descent have more copies when compared with
people of European descent (82). High doses of CCL3L1 could
affect HIV-1 infection either by (1) inhibiting HIV-1 gp120 bind-
ing to CCR5; (2) reducing CCR5 levels at the cell-surface due
to receptor internalization; or (3) affecting leukocyte traffick-
ing important for antiviral responses. However, it seems that
chemokine dosage is only significant when compared to the aver-
age copy number within an ethnic population. A lower CCL3L1
copy number in one individual, compared with the average copy
number in their population, is associated with enhanced suscep-
tibility to HIV-1 infection (82, 83). Both CCL3L1 copy number
and CCR5-59029 A/G polymorphisms are associated with delayed
disease progression among HIV-1 seropositive subjects and repeat-
edly sexually exposed HIV-1 seronegative individuals from a North
Indian population (84).

The RANTES (CCL5) gene is located in chromosome 17, and
encodes a chemokine ligand for CCR1, CCR3, and CCR5. This
chemokine is able to block the CCR5 co-receptor, inhibit the recy-
cling of internalized CCR5 to the cell-surface, and subsequently

suppress HIV-1 infection by R5-strains (8). Thus, some RANTES
derivatives, notably N-terminally modified RANTES variants
(AOP-, 5P12-, and PSC-RANTES), have been explored as anti-
HIV molecules (85–87). PSC-RANTES and 5P12-RANTES have
been also explored as a topical microbicide, after their antivi-
ral activity was demonstrated in non-human primate models
(88, 89). Furthermore, three SNPs in this gene (−28C to G,
−403G to A, and In.1.1C) were reported to play a role in pro-
gression to AIDS. The variant alleles 28G and 403A are asso-
ciated with delayed progression to AIDS by increasing levels of
RANTES transcripts in an Asian population (90, 91). Increased
RANTES expression may also contribute to reducing rates of
CD4+ T-cell depletion, as it was observed among HIV-infected
Japanese individuals (90). Another study on the MACS cohort
confirmed the protective role of the 403A allele in disease pro-
gression but also described it as a risk factor for HIV transmis-
sion (91). However, different results were obtained in a study
performed in a Spanish cohort (92), which reflects the con-
troversies around chemokine polymorphisms. These discrepan-
cies may be due to the existence of different allelic frequencies
across ethnic groups or to a dominant effect of one variant.
For instance, the SNP In.1.1C nested within an intronic reg-
ulatory sequence shows the opposite effect of previous alleles,
as it accelerates the progression to AIDS in African-Americans
and European Americans through downregulation of RANTES
transcription (93).

CXCR4 LIGANDS
The stromal cell-derived factor 1 (SDF-1) (also termed CXCL12)
is the only known CXCR4 ligand, and a potent entry inhibitor for
X4-tropic HIV-1 strains (94, 95). It down-regulates the levels of
CXCR4 co-receptor at the cell-surface (96, 97). An SDF-1 variant
(SDF1-3′A) was identified at position 801 in the 3′untranslated
region (3′UTR) of the β variant transcript. Conflicting reports
exist regarding the role of SDF1-3′A in HIV infection and AIDS.
Homozygotes for SDF-3′A progress slower to AIDS in at least
three independent studies that analyzed the GRIV cohort, contain-
ing 200 non-progressors and 90 fastprogressors; the ALIVE study,
containing 2419 HIV-1-infected patients and 435 HIV-1-exposed
uninfected individuals; and a cohort of 12 LTNPs and 12 rapid
progressors recruited at the Immunodeficiency Services Clinic at
the Erie County Medical Center (98–100). However, other stud-
ies found no correlation between the SDF1-3′A allele and disease
progression (101–104). Once again the different results obtained
in the different studies are probably related to the type of sample,
the different readouts and the fact that the SDF1-3′A/3′A effect
is recessive, and therefore probably underrepresented in some
studies.

CHEMOKINE RECEPTOR-BASED THERAPY
Therapeutic targeting at an early phase (pre-integration) of the
HIV-1 life cycle is expected to be more effective than acting at later
stages of viral replication (post-integration). Early-stage interven-
tion could reduce: (1) the integration of HIV into the host’s DNA
as a provirus, and the subsequent establishment of cellular reser-
voirs of latent virus; and (2) the emergence of viral resistance due
to viral mutations.
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Table 1 | CCR5-directed therapies.

Entry inhibitors

Inhibitor Development phase Reference

ALLOSTERIC INHIBITORS

Aplaviroc

(GW873140)

Terminated at phase 2b

(idiosyncratic hepatotoxicity)

Nichols et al. (105)

Vicriviroc

(SCH-417690,

SCH-D)

Stopped at phase 3 (failure to

demonstrate superiority to

optimized background therapy)

Caseiro et al. (106)

Cenicriviroc*

(TBR-652)

Phase 2 Klibanov et al. (107),

Lalezari et al. (108),

and Marier et al. (109)

Maraviroc

(UK-427857)

FDA approved

COMPETITIVE INHIBITORS

AOP-RANTES Pre-clinical Toossi et al. (87)

PSC-RANTES Pre-clinical Hartley et al. (86)

5P12-RANTES Pre-clinical Gaertner et al. (85)

PRO140 Phase 2 Jacobson et al. (110)

*Dual CCR5/CCR2 antagonist.

The observation that CCR5∆32 delays or prevents HIV-1 infec-
tion without affecting health encouraged the development of
related anti-AIDS therapeutic strategies, from the disruption of
the virus-CCR5 interaction to the inhibition of expression of func-
tional CCR5 co-receptors (summarized in Tables 1 and 2). Both
competitive and allosteric entry inhibitors have been designed
to disrupt the binding of the virus to CCR5. Competitive
inhibitors developed include derivatives of natural ligands of
CCR5 (RANTES) and anti-CCR5 monoclonal antibodies. Beyond
their ability to compete with the viral Env protein for CCR5 bind-
ing, chemokine derivatives can also exert their antiviral activity
by inducing internalization of CCR5 from the cell-surface (111).
However, one drawback of CCR5 ligand derivatives is the unde-
sired agonistic effect on CCR5. Allosteric inhibitors are small
molecules that do not compete with the virus to bind CCR5.
Instead, upon binding to a hydrophobic pocket in the transmem-
brane domain of CCR5, they induce a conformational change
of the extracellular loops required for HIV entry. This different
approach to inhibit HIV-1 entry has been shown to be very success-
ful giving rise to several compounds that efficiently inhibit HIV-1
replication in vitro and in vivo (Table 1), including maraviroc and
enfuvirtide, the two entry inhibitors approved by the FDA for HIV-
1-infected patients (112). Monoclonal antibodies, engineered to
block HIV-1 infection without affecting CCR5-mediated signal-
ing, can be administered less frequently than chemokine deriv-
atives and small-molecule inhibitors. The PRO140 monoclonal
antibody, for example, has been demonstrated to significantly
reduce viral load of patients (110, 113).

In addition, several gene therapy (GT) approaches have been
developed to inhibit CCR5 expression. CCR5 expression has been
successfully repressed in different models at a gene-editing level by
means of zinc-finger nucleases (ZFN); at the RNA level by means
of RNA interference or ribozymes (RZB); and at the protein level

Table 2 | CCR5 gene therapy strategies.

CCR5 gene therapy

GT mechanism Development phase Reference

siRNA-mediated knockdown Pre-clinical Kim et al. (115)

shRNA-mediated knockdown Pre-clinical Shimizu et al. (120)

RBZ- mediated knockdown Pre-clinical DiGiusto et al. (114)

ZFN-gene-editing Phase 1/2 Clinicaltrials.gov

NCT00842634

NCT01252641

NCT01044654

by means of intrabodies (114–117) (Table 2). The possible efficacy
of CCR5-targeting GT to cure AIDS has been strongly supported
by the results of the “Berlin patient” who still has no detectable
HIV-1 after receiving a hematopoietic stem/progenitor cell (HSC)
transplantation from a CCR5∆32 HLA-matched donor 6 years
ago despite discontinuing antiviral therapy (118, 119). Of note,
the risks associated to allogenic (i.e., from donors) transplanta-
tion, which implicates chemotherapy and radiation, and the low
number of CCR5∆32 homozygotic HLA-matched donors limits
the widespread application of this approach. Alternative strate-
gies are to create autologous (i.e., self-donation) CCR5−/− stem
cells or CD4+ T cells to be engrafted to the patients. RNAi-based
therapies can be achieved either by delivery of siRNA, with a
transient effect, or by shRNA lentiviral vectors with stable effects.
Both strategies have been shown to be valid. Specific delivery of
siRNA against CCR5 to T cells and macrophages by nanoparti-
cles via an antibody to the LFA-1 integrin reduced HIV-1 loads
and CD4+ T cell loss in humanized BLT mice (115). Inhibition
of HIV-1 replication was also observed ex vivo in differenti-
ated spleenocytes from BLT mice engrafted with human CD34+
HSCs transduced with anti-CCR5 shRNA (120). To maximize the
blockage of HIV-1 replication, vectors that combine anti-CCR5
shRNA with other therapeutic targets, like TRIM5α (discussed
below), have been tested. A combinatorial lentiviral vector with
a CCR5 ribozyme, Tat/Rev shRNA, and a TAR decoy was tested
in AIDS lymphoma patients (114). The non-toxic expression of
vector, shRNA, and ribozyme 24 months following autologous,
gene-modified HSC transplantation, established that this thera-
peutic approach was safe. However, in vivo efficacy remains to
be proven. Although encouraging results have been reached with
these GT approaches, these vectors can be associated with geno-
toxicity and malignancy. Therefore, the safety of the integrative
vector systems needed for stable transgene expression needs to be
optimized. These vectors can integrate in undesired places of the
host’s genome, inactivating essential genes or activating deleteri-
ous genes, such as proto-oncogenes. Additionally, sufficient levels
of anti-CCR5 activity need to be reached and maintained. Gene-
editing with ZFNs has been tested to overcome these problems.
ZFNs are engineered proteins composed by a DNA-binding zinc-
finger protein fused to the catalytic domain of a FokI restriction
endonuclease (121). Upon binding to the targeted DNA sequence,
the ZFN introduces DNA double-strand breaks that are repaired
by the error-prone NHEJ repair pathway of the host cell. This
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usually introduces permanent nucleotide insertions and deletions
in a gene sequence that will produce a non-functional protein.
Thus, ZFNs only need to be transiently expressed to achieve a per-
manent modification of the CCR5 gene, and this can be achieved
by means of standard DNA delivery (nucleofection) or non-
integrating vectors systems. Perez and collaborators reported that a
CCR5-targeted ZFN disrupted approximately 50% of CCR5 alleles
in primary human CD4+ T cells (116). By using new immuno-
suppressed mouse models that widely accept heterologous cells,
such as the NOG mouse model [NOD/SCID/IL2rgamma (null)],
these CCR5-modified T cells were able to grow stably and block
R5-tropic HIV-1 replication both in vitro and in vivo. Disruption
of CCR5 by means of ZFNs has also been achieved ex vivo in
human CD34+HSCs (122). CCR5-modified HSCs retained their
ability to engraft NOG mice and displayed normal multi-lineage
differentiation. Mice engrafted with CCR5-modified HSC had sig-
nificantly lower HIV-1 levels and higher CD4+ T cells counts than
control mice. The safety and tolerability of CCR5- modified CD4+
T cells are being tested in one completed and two ongoing clinical
trials (Table 2).

RESTRICTION FACTORS
Restriction Factors (RFs) are cellular proteins that can restrict
or block viral replication in a cell-specific way. Generally RFs
are not sufficient to block HIV-1 replication as HIV-1 developed
several countermeasures to abolish its activity via virus-specific
proteins and degradation by the proteasome. RFs are part of
the innate immune response and normally respond to Interferon
(IFN) stimulation. Several RFs of HIV replication have been iden-
tified, which act at several key steps of the HIV-1 life cycle. As
RFs naturally control HIV infection, it is conceivable that RF
genetic alterations or levels of expression are related to differ-
ences in HIV progression. Consequently, RF-based therapeutic
strategies can be envisioned to control HIV replication. For an
overview of the retroviral life cycle and the RF discussed herein see
Figure 2.

APOBEC PROTEIN FAMILY
Apolipoprotein B-editing catalytic polypeptide 3 proteins
(APOBEC3, A3) are members of the cytidine deaminase family
that share a common structure. During evolution, several
members of the human APOBEC3 gene cluster (A3B, A3DE, A3F,
and A3G) suffered duplication and/or recombination [reviewed
in Conticello (123)]. With the exception of A3C, all members of
the A3 family have anti-retroviral activity.

APOBEC protein expression and activity must be strictly
regulated in order to maintain genome stability and cellular
metabolism, as overexpression leads to the appearance of can-
cer (124). A3G and A3F are highly potent single-stranded
DNA (ssDNA) cytidine deaminases. These editing enzymes likely
evolved to control the replication of endogenous retroelements
and exogenous retrovirus, including HIV-1. A3G specifically
restricts the replication of incoming viruses in resting CD4
T cells and monocyte-derived macrophages (MDM cells)
(125–127). A3G and A3F activity is mainly regulated through
their association with other cellular factors, and switches
from an active low-molecular-mass (LMM) ribonucleoprotein
complex to an inactive high-molecular-mass (HMM) com-
plex (128). Their activity can also be modulated by other
complementary mechanisms, including tissue- and stage-specific
signaling, transcriptional regulation, subcellular localization,
posttranslational modifications, interaction with specific cofac-
tors, and accessibility of the target sequence [reviewed in
Smith et al. (129)].

Both A3G and A3F RF need to be incorporated into the viral
particle to be capable of exerting their restriction phenotype in
the target cell (130, 131). However, recent studies indicate that
A3G does not always need to be packaged in the viral particle to
exert its antiviral function, as endogenous LMM A3G can restrict
HIV in resting CD4 T cells (132, 133). A3G antiviral activity
can either be deaminase-dependent or deaminase-independent.
For deaminase-dependent activity, A3G exerts its action in tar-
get cells during reverse transcription of the growing minus

FIGURE 2 | Host restriction factors and their action during HIV-1
replication. Schematic representation of (A) HIV-1-infected producer cell, and
(B) HIV-1 target cell. Cellular restriction factors are represented by red ovals,

and viral counterpartners are represented by gray hexagons. Black arrows
represent the course of viral replication and actions. Broken arrows represent
inhibition. Question marks (?) represent unresolved questions.
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strand of viral DNA, which is deaminated independently of
the reverse transcriptase (134, 135). The resulting dU-rich tran-
scripts have two possible fates. They are either degraded by the
cellular uracyl-DNA-glycosylase (UDG), causing the failure of
reverse transcription (136, 137), or yield G-to-A hypermutated
proviruses that are largely non-functional, with the consequent
reduction in viral fitness (125, 134, 138–141). More recently,
the deaminase-independent restriction activity of A3G against
HIV-1 was discovered as cells bearing catalytically inactive A3G
mutants kept their ability to block HIV-1 infection (142, 143). In
addition, A3G inhibits several steps of viral cDNA synthesis and
integration by: (1) reducing the efficiency of plus-strand transfer
(144); (2) reducing tRNALys3-priming and initiation of viral DNA
synthesis (145–147); and (3) interfering with reverse transcription,
DNA elongation, and proviral integration (146, 148–150). A3F
showed similar, but more pronounced, effects on HIV-1 infection
(149–152).

HIV escapes the cellular restriction exerted by A3G and A3F
by expressing the viral infectivity factor (Vif) (153–155). Vif
specifically depletes A3G and A3F from the virus-producing cells
by inducing its proteasomal degradation (137, 156–161). Vif is
part of the RING-finger E3-ubiquitin complex with Elongin B
(EloB) and C (EloC), Cullin 5 (Cul5), and Ring-box protein 2
(Rbx2) and the recently identified core-binding factor β (CBF-β)
(162–165). Vif also reduces A3G translation (131) and competes or
directly blocks A3G viral incorporation (166–168), besides block-
ing A3G catalytic activity (169). A3G overexpression overcomes
the action of Vif-positive viruses (159), indicating that higher A3G
expression is responsible for the high-incidence of G-A muta-
tions in the proviral DNA from many HIV-1-infected subjects,
even in the presence of Vif (157, 170–175). This A3-mediated
hypermutation of the proviral genome can confer a selective
advantage or disadvantage for viral replication (176) and result
in the appearance of either more virulent or innocuous strains
(173, 174, 177).

APOBEC CLINICAL STUDIES
Population-based studies have tried to establish a relationship
between A3 polymorphisms, expression, and/or activity and
the rate of disease progression (174, 175, 178–182). However,
the different experimental setups and readouts, sample size,
types of populations, host, and viral specific genetics and
analysis contribute to data entropy and inconsistent results.
An A3G polymorphism identified (H186R or rs8177832)
in African-Americans and the 6,892C allele present in
European-American populations were associated with acceler-
ated disease progression (174, 178, 181). Nevertheless, protective
A3G or A3F polymorphisms have yet to be identified. An exten-
sive study where the genetics of the GRIV cohort were analyzed
led to the identification of several new SNPs in APOBEC3G.
However, none of them presented any association with AIDS pro-
gression in this cohort (183). In other studies, A3G/A3F mRNA
levels were measured as a readout of A3G/A3F expression in acti-
vated cells (179) or in non-activated cells (181, 184), and they
were compared with markers of disease progression such as viral
load and CD4+ T cell counts (179–181, 185, 186). They found
an inverse correlation between A3G mRNA levels and disease

progression in LTNPs (179), but not in progressors (184). Other
groups measured proviral genome hypermutation as a readout for
A3G/A3F activity (174, 187–189). Some studies found a correla-
tion between hypermutation and high CD4+ T cell counts (188)
or reduced plasma RNA levels (174), while another report did
not find any relationship between hypermutation and either viral
load or CD4+ T cell counts (189). In addition, a study comparing
elite suppressors and patients under antiviral treatment showed
no statistical differences between their hypermutation frequencies
(187). As deamination is not the sole A3 antiviral mechanism,
deamination (catalytic activity) might not represent A3G/A3F
antiviral activity properly and might explain the different conclu-
sions obtained from different studies. For instance, studies on elite
suppressors showed that these subjects have lower levels of inte-
grated proviral DNA and generated more proviral 2-LTR forms
than HIV-1 patients on treatment, probably due to cell-specific,
integrase-independent mechanisms (190, 191). More recently,
a study with 19 anti-retroviral-naïve HIV-positive patients [12
LTNP (<5000 RNA copies/ml over the prior 5 years) and seven
non-controllers (>10000 copies/ml)] established a relationship
between the control of HIV-1 infection by elite suppressors and
A3G and A3F expression and activity (192).

These observations support the possible use of pharmacological
modifiers of A3 expression as an alternative strategy to increase the
natural protection against HIV replication. The upregulation of
A3G expression can be mediated by the stimulation of CCR5 and
CD40 (part of a major co-stimulatory pathway) with CCL3 and
CD40L (CD154) chemokines, respectively, as well as by the heat
shock protein 70 (HSP70). In fact, the use of HSP70 as a preventive
measure was already tested in rhesus macaques with success (193).
CCR6 ligands also increase the natural protection of CCR6+ cells
against HIV by inducing A3G expression (194). Since the A3G
activity is tightly regulated in the HMM complexes, an increase in
A3G expression might not be enough to overcome HIV replica-
tion in all cells. Thus, the use of HMM inhibitors might serve as a
complement to this strategy, as they would activate A3G (125, 127,
133). However, these strategies must be strictly regulated to avoid
unwanted side-effects.

The Vif-A3G, Vif-Cullin5, or Vif-CBF-β interaction sites are
also promising sites for the development of new anti-HIV mol-
ecules such as the RN-18 (195, 196) or the 4BL intrabody (197),
that specifically target the HIV-1 Vif protein. However, drugs that
specifically interfere with A3G degradation by targeting Vif cel-
lular partners are preferable to avoid the generation of resistant
mutants, e.g., the IMB-26/35 small molecules that bind A3G and
block its Vif-mediated degradation (198). Alternative strategies to
inhibit HIV by enhancing viral incorporation of A3G into HIV-
1 Vif+ viral particles have been tested: theVpr14-88-Apobec3G
fusion protein strategy (199) and the Nef7-A3G fusion protein
strategy (200). More recently, the use of Chim3, a Vif-dominant
negative protein, was shown to block HIV-1 replication by acting
at the pre-integration step of HIV-1 (201).

TRIPARTITE MOTIF FAMILY PROTEINS
The TRIM family includes approximately 100 proteins
characterized by a highly conserved tripartite motif (TRIM) struc-
ture on their amino-terminal region, called RBCC motif. This
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motif is constituted by a RING (Really Interesting New Gene)
domain, one or two B-box domains and a coiled-coil domain
(CC) (202). The RING domain is a zinc-binding motif with
E3-ubiquitin ligase activity which mediates the conjugation of
proteins with ubiquitin, small ubiquitin-like modifier (SUMO), or
with the ubiquitin-like IFN-stimulated protein of 15 kDa (ISG15)
(203). The B-box domains are zinc-finger proteins. The CC is a
helical structure important for homo- or heteromeric interactions
that lead to the formation of high molecular-mass complexes that
could determine the function of TRIM proteins. The diversity of
the TRIM family results from the 10 different C-terminal domains
that can be found alone or in combination allowing TRIM proteins
to be classified in 11 different classes (204). Two of the most com-
mon C-terminal domains are the PRY and SPRY domains, which
can combine to form a PRYSPRY domain (also known as B30.2).
TRIM proteins are involved in several biological processes such as
innate immunity, cell differentiation, and transcriptional regula-
tion (203,205). Several TRIM family members have been identified
as HIV-1 RF acting at different steps in the HIV-1 life cycle,
namely TRIM5, TRIM11, TRIM15, TRIM19, TRIM22, TRIM31,
and TRIM32. However, the TRIM5 proteins are the best studied.

TRIM5 is expressed along the primate lineage and is encoded
by the TRIM5 gene. This gene codes for different TRIM5 isoforms,
amongst which only TRIM5α and TRIM5Cyp show antiviral
properties (206, 207). TRIM5Cyp from the New World Owl
monkey is structurally different from TRIM5α at its C-terminal
end, containing a cyclophilin A domain instead of the PRYSPRY
domain present in the α isoform. Primate TRIM5α orthologs
inhibit several retroviruses and lentiviruses but are ineffective
against their own host-specific viruses. For example, while human
TRIM5α (huTRIM5) strongly restricts N-tropic murine leukemia
virus (N-MLV), it only weakly restricts HIV-1 infection. Rhesus
monkey TRIM5α (rhTRIM5) efficiently blocks HIV-1 but not
the infection by the autologous simian immunodeficiency virus
(SIVMAC) (207–209).

It is well-established that TRIM5 proteins block HIV-1
infection at an early-stage of reverse transcription but their exact
antiviral mechanism remains unclear. TRIM5 proteins bind to
the HIV-1 capsid (CA) and induce its premature disassembly
before reverse transcription can occur (207). The biochemical
interactions between the CA and TRIM5 proteins are complex
and important for their restriction activity. They involve: (1) the
binding of their C-terminal domain (B30.2 domain for TRIM5α

and cyclophilin A for TRIM5Cyp) to the CA lattice (206, 210–212);
and (2) the dimerization and higher-order multimerization of
TRIM5 (213–215), which ultimately leads to the formation of
an hexameric protein lattice (216). Both coiled-coil and B-
box2 domains of TRIM5 are required for its dimerization and
multimerization (213, 217–219). In addition to a direct antivi-
ral mechanism, it has been suggested that TRIM5 acts as a pattern
recognition receptor that“senses”the CA lattice, leading to the acti-
vation of the innate immune response (220). This CA sensing trig-
gers the E3-ubiquitin ligase activity of the RING domain of TRIM5
proteins that, together with the heterodimeric E2 Ubiquitin-
conjugating enzyme complex UBC13-UEV1A, generate unat-
tached K63-linked ubiquitin chains, leading to its multimerization
and the activation of the TAK1 kinase complex. Subsequently,

TAK1 activates NF-κB and AP-1 signaling (220). However, the
exact contribution of innate immune response and E3-ubiquitin
ligase activity in TRIM5 antiviral activities still needs to be eval-
uated. Deletion of the RING domain only partially abrogates
restriction of HIV-1 by TRIM5 proteins (211, 221) and while
proteasome inhibitors prevent TRIM5 blockade on CA disrup-
tion and reverse transcription, they do not affect TRIM5 antiviral
activity (222, 223).

TRIM5α GENETIC-VARIANTS CLINICAL STUDIES
Several studies have addressed the relationship between
huTRIM5α and its genetic-variants and HIV disease progres-
sion to AIDS. However, this is still a controversial subject. The
huTRIM5α gene has several SNPs but only two of them have been
studied for their effect on disease progression (H43Y huTRIM5α

and R136Q huTRIM5α) (224, 225). The huTRIM5α H43Y poly-
morphism occurs at the RING domain of TRIM5α and may
therefore affect its E3-ubiquitin ligase activity (225). In vitro assays
showed that the 43Y variant exhibits an antiviral activity lower or
similar to the 43H variant (224–227). However, the discrepancies
among these studies could be due to the different expression sys-
tems used, as the H43Y polymorphism shows protective effects
against HIV-1 infection in African-Americans and Chinese intra-
venous drug users (226, 228). However, other epidemiological
studies failed to correlate the H43Y polymorphism with resistance
to HIV-1 infection or AIDS progression (224, 226, 227, 229). Like-
wise, and consistent with its lower in vitro antiviral activity, a H43Y
homozygous genotype is predictive of an accelerated progression
to AIDS (230). As the H43Y polymorphism results in differ-
ent protective effects in different populations, it is conceivable
that the genetic background may account for these conflicting
results among epidemiological studies. The other huTRIM5α

polymorphism (R136Q) occurs at the CC which is, as mentioned,
important for TRIM5 protein oligomerization and antiviral activ-
ity. The antiviral activity of the 136Q variant is higher than 136R
which is consistent with the HIV-1 protective effect observed in
both US-based natural history and Pumwani sex workers cohort
studies (226, 229). However, this protective effect appears to be
dependent on the strain of HIV, as it was only observed after
the emergence of X4-strains and not with R5-strains (230). Con-
versely, Goldschmidt and co-workers were unable to correlate
the R136Q polymorphism with disease progression (224). Thus,
besides the strong significance of TRIM5 proteins as antiviral fac-
tors, more data on genetic polymorphisms needs to be gathered
and analyzed in large cohorts. This assumption is crucial to deter-
mine the species-specific activity of TRIM5 proteins and how they
relate to the innate immunity of different populations.

TRIM5α-BASED THERAPIES
TRIM5α is an attractive cellular host protein for HIV-1 gene-based
therapies as it acts at a post-entry level, which is a therapeutic
advantage as already mentioned. A pioneer study by Anderson
and Akkina (231) showed that human macrophages differentiated
in vitro from CD34+ HSCs and transduced with rhesus macaque
TRIM5α resisted HIV-1 infection, thus providing the proof of
principle that TRIM5α could be used in gene therapy. However,
since rhTRIM5 is not human, it would likely elicit an undesirable
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immune response. On the other hand, the use of human TRIM5α

would not trigger these immune responses, but unfortunately it
has less potent antiviral activity. To overcome these limitations
the hTRIM5α has been engineered. One strategy was to construct
a chimeric human-rhesus (HRH) isoform that contains the rhe-
sus macaque TRIM5α 13 aa sequence in place of the human 11
aa region located in the PRYSPRY domain (232). CD34+ HSC
transduction with this HRH chimeric isoform originated normal
macrophages in vitro, normal T cells in vivo, and hindered HIV-1
infection of CCR5- and CXCR4-tropic HIV-1 clones. To further
increase the efficacy of HIV-1 gene therapy, Anderson and col-
laborators combined the HRH chimeric isoform with two other
transgenes that act at different stages of the HIV-1 life cycle: a
CCR5 shRNA (pre-entry) and a Transactivation response element
TAR decoy (post-integration) (233). This anti-HIV-1 vector dis-
played complete protection from productive viral infection and
integration of multiple HIV-1 strains upon transduction into HIV
target cells in vitro (233) NOD-RAG1−/−IL2rγ−/−mice [immun-
odeficient mice carrying mutations in the recombination activat-
ing gene-1 (Rag1null) and interleukin (IL)-2 receptor common
gamma chain (IL2rγnull)] were engrafted, with CD34+ HSCs
and transduced with the anti-HIV vector described above. They
exhibited normal multi-lineage hematopoiesis and no decrease
on human CD4+ T cells levels upon infection with R5 and X4-
tropic strains of HIV-1 (234). However, the latter observation was
not accompanied by a decrease of plasma viremia, and blockade of
HIV-1 infection was only observed in ex vivo experiments. Another
promising engineered human TRIM5α protein is huTRIM5Cyp,
a design inspired by TRIM5Cyp from New World owl monkey, a
potent inhibitor of HIV-1 replication (235). This molecule, result-
ing from the fusion of human TRIM5α and human CypA, blocked
CCR5-, and CXCR4-tropic HIV-1 clones and primary isolates of
HIV-1 replication in several cell types, including CRFK, Jurkat,
and primary T cells (CD4+ T cells and macrophages). HIV-1
infection was also impaired in other humanized immunodeficient
mouse line, the NOD-RAG2−/-γc−/− strain, when these mice were
engrafted with CD4+ T cells or CD34+ HSCs transduced with
huTRIM5Cyp (235). Interestingly, a higher restriction in HIV-1
infection was achieved by engrafting mice with transduced CD4+
T cells than with transduced CD34+ HSC cells. Additionally, a
functional screening of huTRIM5α mutants generated by PCR-
based random mutagenesis identified that an R335G mutation
efficiently prevented HIV-1 infection in vitro (236). Additionally,
a functional screening of huTRIM5α mutants generated by PCR-
based random mutagenesis identified that an R335G mutation
efficiently prevented HIV-1 infection in vitro (236). Thus, novel
huTRIM5α proteins with few mutations could be engineered to
effectively inhibit HIV-1 infection with limited immunogenicity.
Mutations could also be achieved in vivo by using ZFN as described
above for the CCR5 receptor. Overall, these encouraging results
confirm the potential of TRIM5α and gene therapy approaches to
treat HIV-1 and pave the way for clinical studies, which, to our
knowledge, are not underway.

TETHERIN
Tetherin (BST-2/CD317/HM1.24) is a type 2 transmembrane pro-
tein anchored by a transmembrane domain near the N-terminus
and a glycosylphosphatidylinositol (GPI) anchor at the C-terminal

that may be a second transmembrane domain (237, 238). This pro-
tein is also composed of an N-cytoplasmic tail and an ectodomain
that links the two anchors. Through its GPI anchor, tetherin is
located in lipid rafts at the plasma membrane, trans-Golgi Net-
work (TGN), and early and recycling endosomes (238–241). The
ectodomain contains an α-helical coiled-coil region with cys-
teine residues that allow the formation of parallel homodimers by
disulfide bonds (242–244). The coiled-coil region has structural
irregularities believed to provide conformational flexibility (244,
245). Crystal resolution also showed that two tetherin dimers could
associate to form a tetramer (243, 244).

Tetherin is constitutively expressed in mature B cells, bone
marrow stromal cells, plasma cells, plasmacytoid DC, and some
cancer cell lines (242, 246). Its expression can also be induced in
several cell lines following stimulation with type-I IFN, IFN-γ, or
other pro-inflammatory stimuli (242, 246–249). Tetherin’s cellu-
lar expression pattern suggests a role in the development of pre-B
cells and tumor invasion. Recently, it was proposed to negatively
regulate IFN production by binding to immunoglobulin-like tran-
script 7 (ITL7) in plasmacytoid DC (250). However, probably the
best established physiological function of tetherin is its antiviral
activity against various virus families.

Tetherin was first identified as the cellular factor responsible for
the inhibition of the spread of vpu-defective HIV-1 mature viri-
ons, by preventing their release from the cell (251, 252). Tetherin
exhibits an antiviral activity against a wide range of enveloped
viruses as its main target is the lipid bilayer derived from the host
cell (253). Tethered viral particles can remain at the cell-surface or
suffer endocytosis and potentially be degraded in a process pro-
moted by Rabring7 (254). It has also been suggested that these
tethered virus could influence the cell-to-cell virus transmission
which occurs through virological synapses. While two in vitro
studies reported that tetherin is capable of decreasing cell-to-cell
transmission, a third one describes the opposite effect (255–257).
A recent in vivo study where tetherin reduces viral burden and
inhibits pathogenesis supports the hypothesis that tetherin does
not favor cell-to-cell transmission (258). However, more studies
are needed to clarify the role of tetherin in cell-to-cell transmission
in vivo.

Several observations strongly support that tetherin prevents
virion release through a direct mechanism, which involves a physi-
cal binding between the host cell and the virion (Figure 3A). First,
tetherin was shown to localize between the cell and the virion
(239, 259–261). Secondly, its antiviral activity could be mimicked
by a synthetic protein, with low amino acid sequence similarity
but similar topology containing two-membrane anchors at either
end and a coiled-coil ectodomain in between (261). Two topo-
logical models for tethering activity are suggested (Figure 3B)
[reviewed in Kuhl et al. (262)]. Viruses escape tetherin restriction
in a species-specific manner. Vpu is the HIV-1 viral antagonist of
tetherin (251, 252). This viral protein is a small transmembrane
protein that interacts with tetherin, through its respective trans-
membrane domains, trapping it at the TGN or targeting it for
degradation through proteasomal or lysosomal pathways (263–
268). Both situations lead to a decrease of tetherin levels at the
plasma cell membrane and thus at the HIV-1 assembly sites. HIV-2
lacks Vpu, but it counteracts tetherin antiviral activity through its
Env protein in a similar way. HIV-2 Env diminishes tetherin levels
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FIGURE 3 | Antiviral mechanism of tetherin. (A) Tetherin prevents
Vpu-defective virus release by tethering newly formed virus to the
cell-surface. Vpu counteracts tetherin by trapping it at the TGN or
targeting it for proteasomal or lysosomal degradation. (B) Topological
models for antiviral tetherin mechanisms. One end of tetherin is
anchored at the cell plasma membrane and the other end is anchored
at the surface of the virion (top); or both ends of one monomer of
tetherin parallel homodimers are inserted in either the cell plasma
membrane or the viral membrane (bottom). V stands for viral
membrane and C stands for cellular membrane.

at the plasma membrane by sequestering it at the TGN, while the
total cellular levels of tetherin remain unaltered (269, 270). Besides
HIV-1 Vpu and HIV-2 Env, SIV Env, SIV Nef, SIV Vpu, KSHV K5,
and Ebola envelope glycoprotein have also been shown to thwart
tetherin through distinct mechanisms (253).

TETHERIN CLINICAL STUDIES AND TETHERIN-BASED
THERAPEUTICS
With few clinical studies on tetherin, its impact in disease pro-
gression and in LTNPs is still largely unknown. So far, no signifi-
cant differences in tetherin expression levels were found between
HIV-1-exposed seronegative subjects and healthy controls (271).
However, tetherin expression was shown to be increased in
mononuclear leukocytes, including CD4+ T lymphocytes, from
untreated HIV-positive patients when compared to cells of unin-
fected controls during the acute phase of infection (271, 272). This
increase was more pronounced during the acute phase of infection
(272). In addition, it was also reported that subjects under anti-
retroviral treatment, who present reduced viremia, also exhibit
total tetherin protein levels similar to those observed in uninfected
controls (271, 272). Altogether, these observations suggest that
tetherin, as an interferon-stimulated gene, can be involved in the
control of the acute phase of infection. However, as the disease
progresses it becomes inefficient. A role of tetherin in IFN-α path-
way in HIV-1 infection is further supported by the observation that
pegylated IFN-α/ribavinin combination therapy for HIV/hepatitis
C virus co-infected individuals decreased HIV-1 viral load, which

is correlated with an increase in tetherin levels in CD4+ T cells
(273). The notion that tetherin is a part of the IFN pathway to con-
trol HIV infection in vivo was further investigated in vitro. PBMCs
treated with IFN-α show an increase in the expression of tetherin
to levels high enough to counteract the Vpu protein, resulting in
the viral tethering that blocks the release of wild type HIV virions
(272). In vitro and in vivo results led to the proposal that induction
of tetherin expression may be a valid therapeutic approach in the
fight against AIDS (272, 273). The easiest way to induce tetherin
expression would be to treat patients with IFN-α. However, not
only is IFN-α treatment accompanied by several side-effects, it was
also associated with an increase in AIDS progression (274). A more
effective and safer therapeutic approach should not increase
tetherin expression levels, but, rather, increase its functional levels
at the cell-surface by competitively inhibiting its interaction with
Vpu. This could be achieved by peptides or other type of molecules
with higher affinity for the transmembrane domain of Vpu than
the transmembrane domain of tetherin. This therapeutic strat-
egy has now been supported by a recent in vitro study, where the
expression of the tetherin delGPI mutant inhibited the release of
HIV-1 wild type from tetherin-positive HeLa cells by competi-
tively inhibiting the interaction of Vpu with endogenous tetherin
through its transmembrane domain (275). In vitro and in vivo
studies with other inhibitors should now follow to fully understand
if inhibition of Vpu/tetherin interaction is a viable therapeutic
approach to control HIV spread in infected individuals.

SAMHD1
The sterile alpha motif (SAM) and histidine-aspartate (HD)
domain-containing protein 1 (SAMHD1) contains a SAM and
a HD domain in tandem. SAM domain-containing proteins puta-
tively interact with other proteins and RNA (276, 277). The SAM
domain of SAMHD1 protein harbors a nuclear localization sig-
nal (11KRPR14) within the first 15 amino acids of the protein
sequence that specifically localizes SAMHD1 to the nucleus (278–
280). However, SAMHD1 also localizes in the cytoplasm of rest-
ing and activated CD4 T cells and macrophages (281, 282). The
HD domain is found in a superfamily of proteins with a metal-
dependent phosphohydrolase activity (283). Enzymatic and struc-
tural studies showed that this domain is the sole determinant of the
activity, oligomerization and RNA binding activity of SAMHD1
(280, 284). SAMHD1 is expressed in a variety of tissues at dif-
ferent levels. It is highly expressed in myeloid-derived cells, such
as monocytes, macrophages, DC, and resting CD4 T cells (naïve,
central memory, and effector memory). These cells are highly
refractory to HIV-1 infection, supporting the role of SAMHD1 as a
RF. SAMHD1 expression is independent of the cell activation state
(281), is inducible by type-I IFN in monocytes (285) and is tran-
siently sensitive to type-I IFN in DC (286). The transient response
of DC to type-I IFN consists of an increase in SAMDH1 mRNA
levels early after IFN treatment that do not result in protein expres-
sion (286). SAMHD1 appears to be part of an immune evasion
strategy to escape antiviral responses mediated by the detection of
dsDNA by dsDNA-sensors (dsDNA-sensor antiviral responses).
SAMHD1 is a deoxynucleotide triphosphate (dNTP) hydrolase
that is activated by the binding of GTP to its allosteric site, cleav-
ing dNTPs into deoxynucleoside and triphosphate products (284,
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287). Consequently, SAMHD1 reduces the intracellular dNTP
pool below levels that support HIV-1 reverse transcription, block-
ing HIV-1 replication and avoiding the induction of IFN responses
(281, 288–290). This phenotype can be reverted by addition of
deoxynucleotides to the culture medium or by transduction of
cells with the HIV-2 accessory protein-Viral Protein X (Vpx). In
cellular models using primary SIV, SAMHD1 restriction can also
be overcome by transduction of cells with the Viral Protein R (Vpr)
(289, 290).

Vpx is a small lentiviral accessory protein with 12–16 kDa that
is packaged into the budding virion during assembly, allowing it
to act on newly infected cells prior to proviral integration. In the
host cell, Vpx is translocated into the nucleus, where it associates
with the cullin-4A-ring-E3-ubiquitin ligase (CRL4) (Figure 4).
The formation of this complex leads to degradation of SAMHD1
restriction factor by the 26S proteasome (281). While SAMHD1
activity as a restriction factor is independent of its subcellular
location, Vpx is ineffective against cytoplasmic SAMHD1 (279).
SAMHD1 proteosomal degradation causes an indirect increase
in the intracellular pool of dNTPs, allowing HIV-1 reverse tran-
scription and the infection of cells that are otherwise very resis-
tant to the virus. For example, full-length viral cDNA accumu-
lates in resting CD4 T cells and HIV-1 infectivity is restored
in monocyte-derived macrophages (MDMs) and DC cells upon
Vpx expression and SAMHD1 degradation (279, 281, 286, 288–
292). However, these cells possess an unknown sensor in their
cytoplasm that detects newly synthesized viral proteins and trig-
gers IFN responses (293). Therefore it is conceivable that HIV-1
did not evolve an anti-SAMHD1 counteracting protein to avoid
the cellular detection of viral proteins and consequent immune
activation.

FIGURE 4 | Schematic representation of SAMHD1 Vpx-mediated
proteosomal degradation during HIV-1 infection. In the presence of Vpx,
SAMHD1 is recruited to a CUL4-DDB1-DCAF1 protein complex in the
nucleus, leading to the proteosomal degradation of SAMHD1. The SAMHD1
reduction leads to an increase in the dNTP pool allowing the HIV replication
in these cells.

SAMHD1 activity is not correlated with its expression levels,
as only resting CD4 T cells restrict HIV-1 infection (288). This
observation and the identification of naturally occurring splice
variants of SAMHD1 suggest a post-transcriptional regulation
of SAMHD1 activity (288, 294). SAMHD1 mutations are asso-
ciated with rare genetic disorders including the Aicardi-Goutieres
syndrome (AGS). AGS reproduces a biologic state of viral infec-
tion due to excessive production of IFN-α and increased immune
activation (295). In addition, monocytes from AGS patients are
highly susceptible to HIV-1 infection (285), and mutations that
block hydrolase activity result in the loss of SAMHD1 antivi-
ral activity (278). Viral RNA binding to SAMHD1 increases its
dNTP hydrolase activity, leading to a rapid elimination of DNA
intermediates and the subsequent blockade of HIV-1 replication.
Thus, SAMHD1 seems to play a key role in a strategy of the
immune system to avoid immune cellular responses upon viral
infection.

SAMHD1 CLINICAL STUDIES AND SAMHD1-BASED
THERAPEUTICS
There is evidence that naturally occurring splice variants destabi-
lize SAMHD1 leading to its rapid elimination (294). Such evidence
highlights the role of alternative regulatory pathways to con-
trol of HIV-1 infection, such as miRNA or post-transcriptional
modifications; and the potential relationship between alterations
in SAMHD1 activity and disease progression. The therapeutic
manipulation of intracellular dNTP pools and the development of
SAMHD1 inhibitors to trigger the innate immune response have
been suggested as potential anti-retroviral therapies (281, 282).
However, there is a lack of clinical studies in this direction, and
consequently a direct association between SAMHD1 and HIV-1
infection remains to be established. A recent study evaluated the
association between SNPs and SAMHD1 expression and activity
(296). In this study the authors identified a SAMHD1 SNP, where
an A/G substitution occurred at position 59885 (rs1291142),which
significantly interfered with the expression of SAMHD1 in B cells
from 70 healthy donors. However, they found that this SNP is
not present in the genome-wide study of HIV-1 controllers and
non-progressors from the larger published European and African-
American cohorts (296). The authors consequently claim that this
SAMHD1 polymorphism probably does not contribute to the con-
trol of HIV-1 infection. However, this conclusion is based on their
observations of a very small cohort of healthy subjects. LTNPs and
HIV controllers are very rare in the general population since most
people develop AIDS upon HIV-1 infection. Therefore, in such a
small sample it is very unlikely to have a LTNP/controller and, by
extension, to identify a SNP in SAMHD1 that could be associated
to this phenotype. In summary, the connection between SAMHD1
variants and HIV-1 progression should be further tested in clinical
studies. We believe it could provide insight into novel therapeutic
strategies against HIV.

CONCLUSION/FINAL REMARKS
The existence of rare individuals who resist infection, delay the
disease outcome or control viral replication without the need of
anti-retroviral therapy demonstrates that prevention of infection
and long-lasting disease remission are attainable objectives. A
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large group of factors contributes to the balance between viral
replication and host antiviral response, including cell-specific RF
and “defects” in naturally occurring helper factors.

Despite latest advances in the HIV-1 field, our knowledge on
how LTNPs and ECs control HIV-1 infection is still limited. The
few genes whose alterations have been found to be correlated
with different rates of disease progression cannot fully account
for the differences observed among the patients. Thus, the host
RF and genetics responsible for AIDS delay in non-progressors
remain to be identified. Here, we reviewed a series of polymor-
phisms and expression alterations in HIV-helper factors that are
related to control of HIV-1 infection, with special focus on those
RFs that counteract HIV-1 entrance into and exit from the host
cell. Genome-wide genetic association studies confirmed some of
the genetic-variants such as CCR5∆32 and HLA-B5707 (36) but
were not able to pinpoint a single gene common to all LTNPs and
responsible for slow disease progression. The choice of very restric-
tive statistical thresholds or gene chip arrays that do not cover all
gene variants or non-coding DNA sequences may exclude relevant
host factors from the analysis. However, AIDS is a complex disease
and the different rates of disease progression observed may be also
due to a combination of multiple factors.

So far, among all identified genetic factors playing a major role
in the HIV decrease, the CCR5∆32 polymorphism remains the
main genetic factor conferring human resistance to HIV-1. Display
of chemokine receptors at the cell-surface and their conserved
structure make them amenable targets for drug development. This
is the case for maraviroc and novel gene therapy approaches that
are currently used for the treatment of AIDS or are currently being
tested in ongoing clinical trials. This example of success in transla-
tional research highlights the relevance of a better understanding
of how LTNPs control disease progression for the development of
new therapeutic tools to cure AIDS. We expect that, in the near
future, other drugs or gene-based therapy approaches targeting
other host proteins (helper or RFs) will enter clinical trials and
translate to the clinic.
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