
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MINI REVIEW ARTICLE
published: 19 November 2013

doi: 10.3389/fimmu.2013.00375

Sand-fly saliva-Leishmania-man: the trigger trio
Fabiano Oliveira1, Augusto M. de Carvalho2 and Camila I. de Oliveira2,3*
1 Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville,

MD, USA
2 Laboratório de Imunoparasitologia, Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
3 Instituto Nacional de Ciência e Tecnologia de Investigação em Imunologia (iii-INCT), Salvador, Brazil

Edited by:
Sukanya Narasimhan, Yale University
School of Medicine, USA

Reviewed by:
Emilio Luis Malchiodi, University of
Buenos Aires, Argentina
Yang O. Zhao, Howard Hughes
Medical Institute, USA; Yale
University, USA

*Correspondence:
Camila I. de Oliveira, Laboratório de
Imunoparasitologia, Centro de
Pesquisas Gonçalo Moniz, FIOCRUZ,
Rua Waldemar Falcão, 121 Candeal,
Salvador 40196-710, Brazil
e-mail: camila@bahia.fiocruz.br

Leishmaniases are worldwide diseases transmitted to the vertebrate host by the bite of an
infected sand-fly. Sand-fly biting and parasite inoculation are accompanied by the injection
of salivary molecules, whose immunomodulatory properties are actively being studied.
This mini review focuses on how the interactions between sand-fly saliva and the immune
system may shape the outcome of infection, given its immunomodulatory properties, in
experimental models and in the endemic area. Additionally, we approach the recent con-
tributions regarding the identification of individual salivary components and how these are
currently being considered as additional components of a vaccine against leishmaniasis.
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BACKGROUND
Leishmaniases are a widespread group of diseases caused by
Leishmania protozoa. Clinical manifestations range from skin
ulcers to fatal visceral disease (Table 1). Leishmania parasites
are injected into the vertebrate host upon sand-fly biting and
take up permanent residence within macrophages, where they
replicate and cause disease. At the moment of parasite inocula-
tion, the vertebrate host is simultaneously injected with sand-fly
saliva, which causes vasodilation, prevents blood clotting (1),
and host hemostasis. This facilitates blood feeding, ultimately
needed for egg maturation; however, salivary molecules also mod-
ulate the vertebrate host’s immune response. This mini review
describes the immunomodulatory properties of sand-fly saliva
and how they play on Leishmania infection, contributing to
the outcome of infection and, in parallel, suggesting interven-
tion strategies such as vaccination. Moreover, high-throughput
methodologies have enabled a precise description of salivary
gland transcriptomes or “sialomes.” We also describe some of
these molecules and their distribution within different sand-fly
species.

SALIVARY COMPONENTS MODULATE THE IMMUNE SYSTEM
In the late 1980s, early 90s, studies showed that co-inoculation
of Lutzomyia longipalpis sand-fly salivary gland sonicate (SGS),
employed as surrogate of sand-fly salivary components, enhanced
experimental infection by Leishmania sp. parasites (2, 3). SGS
from Phlebotomus duboscqi, a vector for Leishmania major, was
chemoattractive for mouse monocytes (4) whereas SGS from
Phlebotomus papatasi, another vector of L. major, inhibited
macrophage activation by IFN-γ (5) and downregulated Inducible
Nitric Oxide Synthase (iNOS) expression, thereby reducing NO
production in murine macrophages (6). These results imply that

Leishmania parasites exploit these effects to ascertain survival
within infected host cells.

Belkaid et al. (7) developed a “natural model” of infection
in which co-inoculation of mice with L. major parasites plus P.
papatasi SGS converted C57BL/6 mice – naturally resistant to L.
major infection – into a non-healing phenotype. This outcome
was associated with an increase in Th2-related cytokines such as
IL-4 and IL-5. CBA mice co-inoculated with L. major parasites and
P. papatasi SGS also upregulated expression of IL-4 and reduced
production of IFN-γ, IL-12, and iNOS (8), promoting parasite
proliferation. Following these observations, a series of studies fur-
ther explored mechanisms involving enhanced Leishmania infec-
tion in the presence of sand-fly SGS: upon co-inoculation of
L. amazonensis plus L. longipalpis SGS, larger lesions developed
and were associated with elevated IL-10 production by draining
lymph node cells stimulated in vitro with SGS (9). IL-10 sup-
presses effector functions of monocytes and macrophages and
NO and H2O2 production (10), molecules that promote Leishma-
nia killing. Moreover, L. longipalpis SGS recruited macrophages
in vitro, promoting parasite survival and proliferation (11), an
effect dependent on production of CCL2 (12). This observation
was later confirmed in vivo following exposure of mice to L. longi-
palpis bites (13) or stimulation of the peritoneal cavity with L.
major plus L. longipalpis SGS (14), which also resulted in IL-10
production.

In a mouse model of OVA-induced peritonitis, pre-treatment
with L. longipalpis SGS reduced neutrophil recruitment by inhibit-
ing production of TNF-α and IL-1b (15). P. papatasi or P. duboscqi
SGS also reduced MHC Class II expression by dendritic cells and
induced IL-10 and Prostaglandin E2 (PGE2) production (16).
Intraperitoneal injection of L. longipalpis SGS again increased the
production of PGE2 and Leukotriene B4 (LTB4) and, in parallel,
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Table 1 | Clinical forms, main reservoirs, and sand-fly vectors of various Leishmania species.

Leishmania species Usual clinical forms Main reservoirs Vector sand-fly species

Leishmania infantum chagasi VL Dogs Lutzomyia longipalpis, Lutzomyia evansi

Humans

Leishmania infantum VL, CL Dogs Papatasi pernicious, Papatasi ariasi, Papatasi tobbi, Papatasi neglectus

Leishmania donovani VL Humans Papatasi argentipes, Papatasi orientalis, Papatasi martini

Leishmania tropica CL Humans Papatasi sergenti

Leishmania major CL Rodents Papatasi papatasi, Papatasi duboscqi, Papatasi salehi, Papatasi bergeroti

Leishmania braziliensis CL, ML Dogs Lutzomyia intermedia, Lutzomyia whitmani, Lutzomyia migonei, Lutzomyia

wellcomei, Lutzomyia ovallesiHumans

Rodents

Leishmania amazonensis CL, DCL Rodents Lutzomyia flaviscutellata

Leishmania guyanensis CL, ML Marsupials Lutzomyia umbratilis, Lutzomyia anduzei, Lutzomyia whitmani

Rodents

Leishmania mexicana CL, DCL Rodents Lutzomyia olmeca olmeca, Lutzomyia shannoni, Lutzomyia diabolica

Marsupials

VL, visceral leishmaniasis; CL, cutaneous leishmaniasis; ML, mucosal leishmaniasis; DCL, diffuse cutaneous leishmaniasis.

triggered the formation of lipid bodies (17). Indeed, PGE2 has
been implicated in macrophage infection with Leishmania (18),
suggesting that lipid mediators may be another parasite strategy
to escape killing and establish infection. Of note, salivary mol-
ecules also modulate the function of neutrophils: L. longipalpis
SGS triggers neutrophil apoptosis shown by caspase activation
and expression of FasL (19) and were associated with increased
parasite survival, an effect counteracted by a caspase inhibitor.

Maxadilan, a potent vasodilator, was the first molecule identi-
fied in sand-fly saliva (20, 21). It inhibits proliferation of mouse
lymphocytes in vitro (22) and decreases TNF-α production both
in vivo (23) and in lipopolysaccharide-treated mouse macrophages
(24). Maxadilan alone exacerbated L. major infection to the same
degree as whole SGS (25) due to its capacity to upregulate the pro-
duction of IL-10 and TGF-β and, in parallel, suppress IL-12p40,
TNF-α, and NO production (26). Employing a model of Collagen-
Induced Arthritis (CIA), Carregaro et al. (27), showed that P.
papatasi SGS administered daily attenuated disease severity, an
effect associated with adenosine and 5′ AMP (28), both of which
are present at pharmacologic levels within sand-fly saliva. LJM11, a
protein present in L. longipalpis SGS, prevented neutrophil migra-
tion triggered by antigen challenge in OVA-immunized mice (29).
In parallel, TNF-α expression was reduced and IL-10 secretion
was increased. Collectively, these results highlight the possibility
of exploring salivary molecules in therapy against inflammatory
diseases. Indeed, both Maxadilan and P. papatasi SGS decreased
IFN-γ and IL-12p40 production by human Peripheral Blood
Mononuclear Cells (PBMCs) and increased IL-6 secretion in vitro
(30). Treatment of lipopolysaccharide-stimulated human mono-
cytes with L. longipalpis saliva confirmed its ability to decrease
TNF-α production whereas differentiation of monocyte-derived
dendritic cells in the presence of SGS inhibited expression of
co-stimulatory molecules (31).

SALIVARY MOLECULES AS VACCINE CANDIDATES?
Following the observation that mice pre-exposed to P. papatasi
SGS were protected against a challenge infection (7), a possibility
emerged that a raised immune response to saliva could counteract
its “exacerbative” properties and, hence, confer protection against
disease. Indeed, mice repeatedly exposed to uninfected sand flies
mounted an anti-saliva immune response that prevented lesion
development (32). Authors associated this outcome with the devel-
opment of a Delayed-Type Hypersensitivity (DTH) reaction and
with IFN-γ production, the latter acting as the hallmark cytokine
associated with protection against Leishmania. Soon after, PpSP15
was identified in P. papatasi saliva, and mice immunized with the
corresponding DNA plasmid were protected against a challenge
infection with L. major (33). Importantly, B cell-deficient mice
were also protected, suggesting that antibodies were not required
for protection.

Similarly, immunization with L. longipalpis LJM19 protected
against infection by Leishmania infantum chagasi, in a model
of Visceral Leishmaniasis (VL) (34). Again, protection correlated
with a high IFN-γ:TGF-β ratio and with elevated iNOS expression
in the liver of challenged hamsters. In dogs, the main reservoirs of
VL in Latin America, immunization with two other proteins found
in L. longipalpis saliva – namely LJM17 or LJM143 – followed by
exposure to sand-fly bites led to enhanced IL-12 and IFN-γ pro-
duction (35). Additionally, lymphocytes from immunized dogs
effectively killed parasites in vitro. In a recent study, mice immu-
nized with recombinant LJM11, present in L. longipalpis saliva, in
the absence of an adjuvant, were challenged by L. major-infected
sand-fly bites (36). Authors detected IFN-γ being produced in
response to LJM11 vaccination, which correlated with decreased
numbers of parasites. Collectively, these studies strengthen the
concept that anti-saliva immunity can be exploited in the context
of Leishmania vaccine development.
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In fact, the combination of a salivary molecule with a Leish-
mania antigen for vaccine development has been pursued in
different experimental models. Immunization of hamsters with
DNA plasmids encoding LJM19, present in L. longipalpis saliva,
plus KMP-11 [a Leishmania-derived candidate molecule for vac-
cine development (37)] reduced the parasite load after a chal-
lenge with L. infantum chagasi (38). This effect was similar to
that observed upon immunization with LJM19 or with KMP-11
alone. Immunization of hamsters with the same DNA plasmid
coding for LJM19 also prevented disease development following
challenge with Leishmania braziliensis plus Lutzomyia intermedia
(a vector for L. braziliensis) (see Table 1) SGS, expanding the
possibility of using single salivary molecules to induce immu-
nity to disease caused by different species of Leishmania (39).
Actually, immunization with L. longipalpis SGS resulted in an
expansion of CD4+ and CD8+ T cells that secrete IFN-γ and
lead to reduced L. braziliensis infection in mice (40). Collec-
tively, these studies point that immunization with certain sand-fly
salivary components induces the Th1-biased immune response
needed to control infection by Leishmania, currently reviewed
elsewhere (41).

One major criticism to the works cited above is that animals
were challenged with SGS and Leishmania by needle inoculation
and were not submitted to the stringent conditions of natural
transmission of Leishmania, that is, the sand-fly bite. Real-time
microscopy showed that sand-fly biting at a dermal site in the
mouse recruits a massive influx of neutrophils (42). Addition-
ally, L. major parasites remained viable following phagocytosis by
invading neutrophils, hinting at an immune evasion strategy to
ascertain infection. Therefore, there is a pressing need to test vac-
cine candidates in a “real life” scenario, i.e., challenge immunized
mice by bites of infected sand flies. This was the context in which
Gomes et al. evaluated whether vaccination with KSAC (43) or
L110f (44) – two candidates for a leishmaniasis vaccine – conferred
protection against L. major transmission by sand-fly bites (45).
Following sand-fly challenge, only KSAC plus GLA-SE (a synthetic
TLR-4 agonist employed as adjuvant)-immunized mice showed a
significant reduction of parasite number, whereas parasite levels
in L110f-immunized mice were not significantly different from
controls. Protection in KSAC-immunized mice correlated with
IFN-γ-secreting CD4+ T cells as seen in another study in which
mice were immunized with recombinant L. donovani superoxide
dismutase B1 plus GLA-SE (46). These results suggest that vac-
cine candidates that perform well against live Leishmania infection
may be further investigated in experiments involving challenge by
sand-fly biting.

Moreover, following exposure to infected sand flies, mice that
spontaneously healed a primary infection by L. major displayed
a significantly lower parasite load and higher percentage of IFN-
γ-secreting CD4+ T cells compared with mice immunized with
KSAC plus adjuvant (47). Indeed, healed mice are resistant to par-
asite transmission by sand flies (48), and this was associated with
rapid mobilization of CD4+ T cells specific to Leishmania to the
challenge site, hampering establishment of disease. Although these
observations highlight the need to pursue studies with infected
sand flies, it must be emphasized that this possibility is currently
restricted to few laboratories in the world.

THE DISTINGUISHED CASE OF L. INTERMEDIA, A VECTOR
FOR L. BRAZILIENSIS IN BRAZIL
Early studies showed that L. braziliensis infection was enhanced in
the presence of sand-fly saliva (49–52). From these observations,
the hypothesis that pre-exposure to sand-fly saliva would modify
the course of L. braziliensis infection was investigated. Surpris-
ingly, mice repeatedly inoculated with L. intermedia SGS were not
protected but rather showed enhanced disease (53). Moreover,
we observed that in an area endemic for L. braziliensis, Cuta-
neous Leishmaniasis (CL) patients displayed higher anti-saliva IgG
responses compared with those with a cellular immune response
to Leishmania. Human monocytes stimulated with L. intermedia
SGS and exposed to L. braziliensis also upregulated TNF-α, IL-6,
and IL-8 (54), indicating the ability of L. intermedia saliva to alter
the inflammatory milieu. Recently, however, we showed that mice
immunized with a DNA plasmid coding for Linb11 – a molecule
present in L. intermedia saliva – displayed reduced parasite load
following infection with L. braziliensis. If one envisages a combined
approach toward vaccine development encompassing parasite and
salivary molecules, a careful selection must be made on the latter,
as there are molecules that may protect against disease while others
may enhance disease (55).

IDENTIFYING THE COMPONENTS OF SAND-FLY SALIVA: THE
AGE OF “SIALOMES”
Salivary proteins have been identified in an increasing number of
vectors of leishmaniasis in the last two decades (Table 2). So far,
transcriptomics and proteomics allowed identification of around
40 salivary proteins such as apyrases, endonucleases, antigen 5-
related proteins, D7-like salivary proteins, and yellow proteins – all
of which are found in several other organisms (Table 2). Apyrases
hydrolyze ATP to ADP and AMP, inhibiting ADP- and collagen-
induced platelet aggregation (56–65). Endonucleases cleave DNA,
likely decreasing blood-pool viscosity and increasing feeding suc-
cess (66). In mosquito saliva, D7 salivary proteins are encoded
by a multigene family related to the arthropod odorant-binding
protein (OBP) superfamily and forms having either one or two
OBP domains are found (67). In mosquitoes, D7 proteins act
as anti-inflammatory mediators through binding of host bio-
genic amines, leukotrienes, and AnST-D7L1, present in Anopheles
stephensi, specifically binds thromboxane A2 (TXA2) (68). Last,
yellow proteins bind to biogenic amines such as serotonin, cate-
cholamine, and histamine, and this binding may dampen the pro-
inflammatory response, blocking development of an avert reaction
to the bite (69). On the other hand, families such as Lufaxin, an FXa
inhibitor (70), Ppsp32-like proteins, and SL1/PpSP15-like proteins
were found only in sand flies (71, 72). The functions of D7-like,
antigen 5-like, and SL1/PpSP15 families of proteins remain to be
determined.

Sialomes from L. intermedia, Lutzomyia ayacuchensis, and L.
longipalpis – all found in the New World – express a plethora of 2-
to 6-kDa small peptides classified as members of the RGD family of
proteins, which may function as inhibitors of platelet aggregation
(73, 74). Salivary peptides with an RGD motif are yet to be identi-
fied in sand flies from the Old World (73, 74). Linb11, found in L.
intermedia, seems specific to this species, and immunization with
this molecule protected mice from L. braziliensis (73). On the other
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Table 2 | Families of most abundant Phlebotomus and Lutzomyia sand fly proteins.

Species Vertebrates Insect-specific Sand-fly-specific

Apyrase Endonuclease Antigen 5 D7 Yellow SL1/PpSp15 30-kDa

Family

Lufaxin

Phlebotomus

P. papatasi (33) PpSP36 PpSP29 PpSP28, 30 PpSP46, 44, 42 PpSP15, 14, 12 PpSP32 PpSP34

P. papatasi (73)

(Tunis)

PPtSP36 PPtSP29 PPtSP28, 30 PPtSP42, 44 PPtSP12-15 PPtSP32 PPtSP34

P. duboscqi

(69) (Kenya)

PduK50 PduK68,

107

PduK34–35,

69, 78, 103

PduK04–06, 86 PduK01–03, 40–42,

49, 56–58, 109

PduK45–46,

83

PduK70

P. duboscqi

(69) (Mali)

PduM38–39 PduM48 PduM01, 29,

46, 47, 77

PduM10, 35 PduM02–03,

06–07, 12, 31–32,

49–50, 57–58, 60,

62, 99

PduM72,

33–34, 87

PduM04–05

P. sergenti (74) PsSP40–42 PsSP52 PsSP4, 5, 7 PsSP37, 38 PsSP9-11, 14–15,

54–55

PsSP44 PsSP49

P. arabicus (72) PabSP39–41 PabSP49 PabSP4 PabSP20, 54,

59, 84

PabSP26 PabSP2, 45, 93 PabSP29,

30, 31

PabSP32,

34

P. tobbi (74) PtSP4, 10 PtSP77,

78, 79

PtSP42, 44,

54, 56–58, 60

PtSP18–20, 22,

26

PtSP9, 17–18, 23,

31–32

PtSP27–29 PtSP66

P. perniciosus

(67)

PpeSP01-B PpeSP32 PpeSP07 PpeSP04, 04B,

10

PpeSP03, 03B PpeSP02, 09, 11 PpeSP05 PpeSP06

P. ariasi (72) ParSP01 ParSP10 ParSP05 ParSP07, 12,

16

ParSP04, 04B ParSP03, 08 ParSP02 ParSP09

P. argentipes

(67)

PagSP03 PagSP11 PagSP05 PagSP10, 25 PagSP04 PagSP 01, 02, 07,

12–13

PagSP09

Lutzomyia

L. longipalpis

(71)

LJL23 LJL138 LJL34 LJL13 LJM17, LJM11,

LJM111

LJM04 LJL143/

Lufaxin

L. intermedia

(70)

Linb-35 Linb-46 Linb-13 Linb-42 Linb-21 Linb-7, 8, 28, 59 Linb-17

L. ayacuchensis

(69)

LayS 16–21 LayS147 LayS73–

80

LayS95–103 LayS22–24, 117,

188

LayS36, 37, 58–72 LayS167,

168

Range of Mw

(kDa)

35–36 28.8–31.2 25.3–28.1 41.5–45.2 12.2–17.1 22.5–34.9 32.3–34.5

Highlights Converts ATP

in ADP/AMP

Binds to biogenic

amines/protective

in mice

Inhibition of

factor Xa

hand, Maxadilan, a powerful vasodilator found in L. longipalpis
(21), is apparently absent from L. intermedia and L. ayacuchensis,
highlighting differences among the salivary components of differ-
ent vectors. Additionally, sand flies from the Old World display
more abundant transcripts coding for SL1/PpSP15-like proteins,
D7-related proteins, and also for yellow proteins compared with
New World sand-fly species (71).

Apart from Maxadilan, all other salivary proteins have been
identified following a common approach consisting of dissection
of salivary glands, isolation of mRNA, cDNA library construction,
and sequencing of fewer than 2000 phages (33, 71, 73, 75–78).
Bioinformatics have played a major role in identifying salivary
transcripts by targeting proteins that bear a signal peptide (Sig-
nalP software) (79), thereby differentiating secretory proteins from

Frontiers in Immunology | Microbial Immunology November 2013 | Volume 4 | Article 375 | 4

http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oliveira et al. Host-parasite-sand-fly saliva interactions

structural and housekeeping transcripts. This set of techniques
advanced our understanding of the most abundant salivary pro-
teins in the absence of a sand-fly genome; however, this method-
ology has a bias for transcriptomic abundance and hardly detects
salivary proteins of large molecular weight. One example is the
Hyaluronidases – enzymes that degrade hyaluronic acid, reducing
skin viscosity and facilitating blood feeding – commonly found
in the venom of bees and wasps. Although hyaluronidase activity
has been detected in all sand flies studied so far (78), the current
approach mostly failed to detect genes coding for this protein.
Hyaluronidase-coding transcripts were found in only 2 of the
13 sand-fly transcriptomes available so far (Table 2). Moreover,
endonucleases were not found in P. duboscqi and P. papatasi tran-
scriptomics but their activity has been detected in salivary glands
of both species (Oliveira, unpublished). Advances involving next-
generation deep sequencing and sand-fly genome annotation will
surely expand the current knowledge of salivary proteins and will
allow for identification of a more complete catalog of sand-fly
salivary proteins.

WHAT ABOUT NATURAL EXPOSURE TO SAND FLIES IN
ENDEMIC AREAS?
Studies in areas endemic for VL in Brazil showed an associa-
tion between anti-L. longipalpis antibodies and the presence of
an anti-Leishmania cell-mediated immune response in humans
(80). Simultaneous development of a humoral response to saliva
and a cellular response to Leishmania (described by the presence
of a positive DTH) (81) suggested that induction of an immune
response against L. longipalpis SGS could facilitate development
of a protective response against leishmaniasis. This notion was
strengthened by the demonstration that volunteers experimentally
exposed to L. longipalpis bites displayed a strong cellular immune
response to L. longipalpis SGS characterized by IFN-γ produc-
tion and appearance of a DTH at the bite site (82). Moreover,
co-culture of infected macrophages plus autologous lymphocytes
in the presence of L. longipalpis SGS stimulated a recall response
that significantly reduced the parasite load in vitro. In a prospective
cohort study in a VL-endemic area in Brazil, the incidence of DTH
to Leishmania antigen was higher among residents with anti-SGS
IgG (83), leading to the hypothesis that immunity to L. longipalpis
sand-fly saliva is a surrogate marker of protection against L. infan-
tum chagasi infection. It is unclear whether this protective effect is
due to antibodies that neutralize the “exacerbative” properties of
sand-fly saliva or due to an anti-saliva cellular immune response
that acts rapidly after parasite inoculation, limiting Leishmania
survival in the human host.

There are, as expected, limitations to using SGS in epidemio-
logic studies, as sand flies need either to be reared in laboratory
colonies or to be actively collected in the field. To this end, the
“sialomes”discussed above allowed the identification, cloning, and
expression of recombinant salivary proteins from distinct sand-fly
species. Employing recombinant salivary proteins, Teixeira et al.
showed that foxes and dogs – reservoirs for VL – as well as individ-
uals from an endemic area in Brazil recognize LJM11 and LJM17,
present in L. longipalpis saliva (84). These results were validated in
a sample of 1077 individuals, and detection levels improved sig-
nificantly when the two proteins were used in combination (85).

A prospective study conducted in Tunisia with a cohort of 200
children showed that IgG antibodies (primarily IgG4) against P.
papatasi SGS were associated with an increased risk of CL caused
by L. major (86). In a subsequent study, recombinant PpSP32
was described as the immunodominant antigen in the humoral
response, acting as a marker of sand-fly exposure (87). In Turkey,
patients from a CL-endemic area where Leishmania tropica is
prevalent displayed significantly higher anti-Phlebotomus sergenti
IgG levels when compared with healthy individuals from the same
area (88). These data suggest that saliva can be used for monitoring
exposure of humans to sand flies. Indeed, Clements et al. found
a correlation between antibodies to Phlebotomus argentipes saliva
and vector density (89). Chickens are also useful at monitoring
exposure to sand flies, as they develop specific anti-SGS IgY and,
therefore, can be employed as sentinel animals (90).

In Mali, where P. duboscqi is prevalent, three profiles of cel-
lular immune response were observed: while 23 and 25% of
individuals developed a Th1 or Th2-polarized immune response,
respectively, 52% displayed a mixed Th1/Th2 response to salivary
molecules (91). Analysis of biopsy samples in a subset of anti-saliva
DTH-reactive individuals revealed the presence of lymphocytes,
macrophages, and IFN-γ production, which were associated with
the Th1 response. These results suggest that individuals present-
ing a Th1-polarized response would be protected against CL,
as seen in the experimental models of infection (92), whereas
individuals with Th2 immune response remain susceptible to dis-
ease. Prospective studies evaluating outcome of infection in these
polarized individuals are necessary to further address this hypoth-
esis. On the contrary, in Tunisia, individuals naturally exposed to
P. papatasi bites displayed antigen-specific IL-10 production by
CD8+ T cells in vitro, while activated CD4+ T lymphocytes cul-
tured in the absence of CD8+ T cells were able to produce IFN-γ
(93). The authors suggested that IL-10 production favors L. major
proliferation at the moment of transmission by infected sand flies.

PERSPECTIVES
Many factors represent challenges to the study of leishmaniasis,
from the shortage of funding to climate change and population
displacements. Nevertheless, the almost ubiquitous use of needle
infections – bypassing the natural transmission process through
an infected sand-fly bite – is a serious limitation. We face the risk of
studying a model of disease too disparate from leishmanial disease
occurring in the field, thus leading to unsuccessful vaccines and
treatments. There is the need to support the establishment of more
sand-fly colonies and standardization of techniques for sand-fly
infection among the leishmaniasis community. Moreover, more
prospective studies in humans from endemic areas are indispens-
able to better understand the basis of protective human immune
responses to Leishmania and sand-fly saliva.
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