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Tumors abuse myeloid plasticity to re-direct dendritic cell (DC) differentiation from T cell
stimulatory subsets to immune-suppressive subsets that can interfere with anti-tumor
immunity. Lined by a dense network of easily accessible DC the skin is a preferred site
for the delivery of DC-targeted vaccines. Various groups have recently been focusing on
functional aspects of DC subsets in the skin and how these may be affected by tumor
derived suppressive factors. I:6, Prostaglandin-E2, and I-10 were identified as factors in
cultures of primary human tumors responsible for the inhibited development and activation
of skin DC as well as monocyte-derived DC. I1-:10 was found to be uniquely able to convert
fully developed DC to immature macrophage-like cells with functional M2 characteristics
in a physiologically highly relevant skin explant model in which the phenotypic and func-
tional traits of “crawl-out” DC were studied. Mostly from mouse studies, the JAK2/STAT3
signaling pathway has emerged as a “master switch” of tumorinduced immune suppres-
sion. Our lab has additionally identified p38-MAPK as an important signaling element in
human DC suppression, and recently validated it as such in ex vivo cultures of single-cell
suspensions from melanoma metastases. Through the identification of molecular mech-
anisms and signaling events that drive myeloid immune suppression in human tumors,

more effective DC-targeted cancer vaccines may be designed.
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DENDRITIC CELL SUBSETS AND THEIR PLASTICITY IN
HUMAN SKIN: IMPACT ON CANCER VACCINATION

Skin is the largest human organ and its direct contact with
the outside environment requires tightly regulated surveillance
mechanisms to keep potentially harmful intruders at bay. For
this purpose, human skin is densely populated with patrolling
myeloid cells, such as Langerhans cells (LC) in the epidermal
outer layer and various dermal dendritic cell (DDC) subsets and
macrophages in the dermal layer (1, 2). It has been elegantly
shown that different profiles of pattern recognition receptors
present on the various myeloid subsets lining the skin makes
them exquisitely specific in the recognition, uptake and either
direct elimination of pathogenic microbes, or in presentation
of pathogen-associated antigens for subsequent activation of the
adaptive immune system (3-5). Interaction of a pathogen with
pathogen-recognition receptors on dendritic cell (DC) induces
activation of down-stream signaling pathways that result in their
enhanced ability to process and present pathogenic antigens and
in their migration to the draining lymph nodes, accompanied
by phenotypic and morphological maturation, and priming of
antigen-specific T or B lymphocytes (6). Whereas initially studies
concerning DC subsets in human skin mostly involved the most
predominant subsets, i.e., CDlaMLangerin® LC, CDla®™ DDC,
and CD141TCD1a~DDC (7-9), the characterization of new surface

markers and deeper phenotypic and functional analyses now show
that further distinctions can be made (10-13).

From our own work and that of others, it has become clear that
beside epidermal LC and dermal macrophages at least five migra-
tory DDC subsets can be distinguished (13, 14),i.e.,CDla*CD14~
DDC,CDlatCD14T DDC,CDla~CD14" DDC,and two double-
negative subsets. An important issue that as yet remains unresolved
is whether all these DC populations represent genuine subsets, or
whether they are part of the same DC subset in various states of
activation or differentiation. A growing number of studies now
point to the existence of an inter-related population of cutaneous
DC and macrophages in flux, trans-differentiating into each other
as directed by environmental cues (8, 15, 16). This has direct con-
sequences for the type of immune responses that will ensue, as
different migratory DC sub-populations have now been directly
linked to the induction of different types of immunity (13, 14) and
have different capacities to cross-present antigens for the activa-
tion of cytotoxic CD8 T cells, a process crucial for the induction of
anti-tumor immunity. Roughly, CD1a* mature LC and DDC sub-
sets have been linked to type-1 T cell mediated immunity, whereas
CD14" immature DDC subsets have been linked to the induction
of humoral immunity and expansion of regulatory T cells (Treg)
(11, 12); see Figure 1 for a schematic overview. Recent evidence
suggests that tumors like melanoma abuse the balance between
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FIGURE 1 | Overview of the reportedT cell differentiation induction
abilities of mature Langerhans cells (LC) and CD1a* dermal dendritic
cells (DDC) vs. immature CD14* DDC. Abbreviations: DDC, dermal
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these subsets to effectively escape immune recognition (13, 17).
In order for DC-targeted vaccines delivered through the skin to
be effective, tumor-induced immune suppression should be over-
come and T cell-stimulatory DC subsets selectively targeted. Here,
we discuss mechanisms of tumor-imposed DC suppression in the
skin microenvironment and how these may be counter-acted in
aid of DC-based immunotherapy.

LC AND CD1a* DDC: T CELL ACTIVATION

Klechevsky et al. first described a functional dichotomy between
human LC and CD14" DDC with the former preferentially acti-
vating CD8™ T cells and the latter B cells (9). In recent publications
primary human LC have been shown to be superior inducers of
Th22 cells (including conventional variant af-T cells restricted
through CD1a) (18, 19). IL-22 has an important barrier function
in homeostasis and safeguards the integrity of epithelial layers,
but is also involved in pathological skin conditions like psoriasis.
Furio et al. reported a superior ability of migratory LC over DDC
to induce either Th1 or Th2 responses (20). Of note, DDC in this
report consisted of CD1a~CD14~ double-negative DDC with a
potentially lower capacity for T cell activation than CD1a™ DDC.
Mathers and co-workers showed that while LC were superior Th17
inducers, human CD14~ DDC had the ability to skew Th cells to
either a Thl, Th2, or Th17 profile, depending on their environ-
mental conditioning, number, and activation state (21). To further
delineate T cell-stimulatory properties of freshly isolated human
LC vs. CD1lat DDC, we undertook a genome-wide transcrip-
tional profiling analysis which revealed CD1a™ DDC to express

a far wider range of adhesion and co-stimulatory molecules,
chemokines, and cytokines (and at higher levels), pointing to a
putatively superior migratory and T cell stimulatory ability over
LCin steady state conditions (22). Using a human cell line model of
LC and CD1a™ DDC differentiation, we confirmed these data and
showed DDC to be superior activators of cytotoxic CD8™ T cells.
Importantly, this was validated in the same study by a comparative
assessment of the ex vivo ability of human skin-emigrated LC vs.
DDC subsets to prime HLA-A2-matched CD8™ T cells against an
epitope derived from the MART-1 melanoma antigen (23). While
LC and CD1a™ DDC were equally effective in priming allogeneic
Th cells, DDC primed significantly higher rates of MART-1 rec-
ognizing CD8" T cells at a higher functional avidity. Of note,
Banchereau et al. have recently linked the superior effector CD8*
T cell priming capacity of LC and CD1a* DDC to their release of
IL-15 into the immunological synapse (12).

CD14+ DDC: T CELL TOLERIZATION

CD14% migratory DDC are discernable from dermis-resident
CD14" dermal macrophages through their surface expression of
CD1band CDI1c (24).Ina comparative analysis with CD14~ DDC,
CD14% DDC were shown to be poor inducers of allogeneic T cells
and to require high DC:T cell ratios for Th1l induction (25). This
relative inability of CD14™ DDC to induce Th1 cells was related
to their release of IL-10 and TGFB1. We and others have found
CD14% DC to carry low levels of co-stimulatory molecules, to dis-
play a poor T cell priming capacity, and to be characterized by the
expression of CD141/BDCA3 (Thrombomodulin), a marker that
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has been linked to a human DC subset with cross-priming ability
(11,13,26). These CD14TBDCA3* migratory DDC in a report by
Chu et al. were shown to constitutively release IL-10 and to induce
T cell hyporesponsiveness and Tregs (11). Moreover, they were able
to cross-present self-antigens and inhibit skin inflammation in an
in vivo transplantation model. These data point to an important
role for this subset in T cell homeostasis. Banchereau et al. have
pin-pointed the inability of CD14™ DDC to prime effector CD8"
T cells to their release of IL-10 and TGEf (12) and the expression
of Ig-like transcript 4 (ILT4) and ILT2 (27).

TUMORS ABUSE DC PLASTICITY TO UNDERMINE
IMMUNITY: A CENTRAL ROLE FOR CD14*+ DC

A large number of studies attest to the remarkable plasticity
of the myeloid lineage; tumors abuse this phenotypic plasticity
to re-direct myeloid differentiation toward the development of
immune-suppressive subsets that effectively interfere with anti-
tumor immunity (28). Consequently, tumors are often charac-
terized by an infiltrate of immature macrophage-like cells and a
lack of infiltrating DCs, which is generally a poor prognostic sign
(28). We and others have shown that DC differentiation from
monocytes can be blocked by tumor-derived soluble factors (most
notably IL-10, IL-6, or PGE2) resulting in the development of
CD14" macrophage-like cells with poor T cell stimulatory abili-
ties (so-called M2-type macrophages) and with T cell suppressive
activity (Figure 2) (29-32). Beside monocytes, fully differenti-
ated DC can be recruited to the tumor microenvironment, where
they may lose their characteristic CD1a expression through the
suppressive action of IL-10, as shown for melanoma metastases

(33). A growing number of studies indicates the unique abil-
ity of tumor-associated IL-10 to convert even fully differentiated
DC to CD14™ suppressive macrophage-like cells (8, 15, 16, 34,
35). IL-10 is generally expressed at high levels in the microen-
vironment of metastatic melanoma and can either be directly
derived from tumor cells or from infiltrating immune cells. Among
a panel of tumor-associated suppressive factors, we found IL-
10 uniquely able to convert DCs to immature macrophage-like
cells in two human model systems: (1) a physiologically highly
relevant skin explant model in which we studied the pheno-
typic and functional traits of “crawl-out” myeloid cells (13) and
(2) an in vitro model of tumor-conditioned DC maturation in
which we functionally assessed CD14~ and CD14™ DC that had
developed from monocyte-derived DC (MoDC) during IL-10-
exposed maturation (17). In all above mentioned cases the tumor-
induced M2-like cells shared some striking traits: an immature
CD14+tBDCA3TDC-SIGNTCDI16" phenotype and macrophage-
like morphology (Figure 2), a disturbed balance in the release
of immunosuppressive IL-10 (high) vs. immunostimulatory IL-
12p70 (low), high expression levels of the T cell-inhibitory mole-
cule B7-H1/PDL-1, and lower priming efficiency of allogeneic Th
cells and of CD8™ (killer) T cells, the latter specifically recogniz-
ing the melanoma antigen MART-1, but binding epitope/MHC
complexes with low avidity (13, 17, 32, 35).

In studies assessing CD1a and CD14 expression on DC from
human skin explants, we showed the intracutaneous cytokine bal-
ance to be important for the subset composition of migrated
DC (8, 13). Indeed, we have found compelling evidence that LC
and CD1a™ DDC can actually trans-differentiate during and after

monocyte immature dendritic cell

“M2” macrophage-like DC

CD14*BDCA3MCD16*
CD163*DC-SIGN*

FIGURE 2 | Interference by tumor-associated soluble factors with normal
dendritic cell (DC) development through indicated underlying signaling

pathways, leads to (trans-)differentiation of CD14* M2-macrophage-like
cells with immune-suppressive and tumor growth- and
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invasion-promoting properties. Photographic inserts illustrate the DC and
adherent macrophage-like morphology of human skin-emigrated CD83* and
CD14* DC, respectively (magnification 400x). Abbreviations: IL, interleukin;
PGE2, prostaglandin-E2.
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migration from human skin explants to a CD14" macrophage-
like state in an IL-10-dependent fashion. Dermal conditioning
by IL-10 or by topical application of irritants resulted in a shift
among migrated DC from a mature CD837CD1a™ state to an
immature CD83~ CD14™ macrophage-like state, passing through
a CDlatCD14% intermediate stage (8, 15). Based on the fact
that these CD14 ™" cells also expressed CD1c they were classified
as DC rather than macrophages. Moreover, topical application
of irritants to epidermal sheets showed that trans-differentiation
from LC to macrophage-like DC depended on the presence of
dermal fibroblasts and could be blocked by IL-10 neutralizing
antibodies (15). A similar observation has been described in
mice, where the presence of a subcutaneous tumor resulted in
a DC-to-macrophage shift, with macrophage-like cells producing
immune-suppressive factors such as IL-10, iNOS, and Arginase
(16). Importantly, this trans-differentiation among DC that had
migrated from human skin was preventable by co-injection of
the DC-activating cytokines GM-CSF and/or IL-4 prior to skin
explant culture (8).

Consistent with their expression of the M2-macrophage marker
CD163, IL-10-converted CD14% cells induced IL-10 and FoxP3
mRNA expression in allogeneic Th cells as well as a Th2-
like cytokine profile and Treg expansion (13). Consistent with
these tolerogenic qualities, IL-10-induced CD14" macrophage-
like MoDCs expressed high levels of immune suppression-related
transcripts such as Indoleamine 2,3-dioxygenase (IDO), IL-4Ra,
IL-6R, TGFB1, HIF1a, and VEGFA (17). Activation of a HIFla
transcriptional signature has been reported in tumor-associated
macrophages, even under normoxic conditions (36). This is in line
with the transcriptional and cytokine release profiles we observed
for CD14T IL-10-conditioned DC, which revealed coordinated
expression of HIFla, TGFB, VEGFA, MMP3, MMP9Y, IL-8, and
TNFa, all of which can contribute to such tumor-promoting
processes as endothelial cell migration and proliferation and
tumor growth and invasion (28). In conclusion, tumor-related
suppressive factors can divert DC during differentiation and even
during and after maturation toward a macrophage-like state with
immune-suppressive and pro-angiogenic and pro-tumor invasive
properties (Figure 2).

Interestingly, in DC migrating from human skin, BDCA3 and
DC-SIGN expression levels showed a very significant inverse cor-
relation with CD83 maturation marker expression, indicating
the utility of these markers for the identification of immature
DC. Indeed, they marked CD14* skin-emigrated DC as the least
mature population with poor co-stimulatory properties (13). In
keeping with these observations, DC that had migrated from skin
explants taken from breast cancer mastectomy specimens, pre-
dominantly consisted of the CD14T DC subset with a macrophage-
like morphology (13). Normalized distribution (i.e., more mature
and less immature DC subsets) was observed for explants taken
from patients that had received neoadjuvant chemotherapy: a
clear indication that prevailing migration of the immature CD14™
subset was tumor-related.

From our observations we conclude that combined expression
of CD14, BDCA3, DC-SIGN, CD16, and CD163 provides a phe-
notypic profile useful for the identification of M2-macrophage-
like subsets with immune-suppressive and tumor-promoting

characteristics that arise during tumor-conditioned differentiation
or maturation of human DCs. We and others have found evidence
of phenotypically similar subsets in breast, colon, head and neck,
renal cell, and melanoma tumors (17, 37-39). Indeed, in single-
cell suspensions derived from a panel of six metastatic melanoma
tumors, we observed by multicolor flow cytometry analysis, that
CD14% cells, co-expressing both DC-SIGN and BDCA3 and
detectable in a range of 1-38%, significantly outnumbered CD1a™
DC, which were virtually absent (ranging from 0.05 to 0.1%) (17).
BDCA3 expression has recently been reported on skin-derived
CD14™ DC that induced inflammation-attenuating Tregs (11).
Combined with its association with cross-presenting DC sub-
sets (10), this is highly suggestive of cross-tolerizing ability for
BDCA3"DC. As yet, the functional significance of BDCA3/CD141
in either cross-presentation or immune suppression remains
largely unclear, but some clues are emerging. Its Lectin-like domain
can down-regulate NF-kB and mitogen-activated protein kinase
(MAPK) pathways and might thus interfere with DC maturation
and drive IL-10 release and Th2 skewing (40, 41). In keeping with
this notion, BDCA3™ blood DC promote Th2 skewing (42) and
in vitro generated or skin-derived CD14TBDCA3" DC release ele-
vated levels of IL-10 (11, 34). In addition, DC-SIGN can negatively
impact DC activation resulting in prolonged and increased IL-10
transcription (43). Both DC-SIGN and BDCA3 may thus con-
tribute to the immune-suppressive activity of tumor-modulated
CD147 cells.

Recently, the role of non-coding RNAs or microRNAs (miR-
NAs) in myeloid cell plasticity and functionality has also been
studied. In mice, tumor-associated miRNAs were found to modu-
late the survival and longevity of DC (44), miR-223 was described
to negatively regulate and miR-150 to positively regulate the cross-
presenting abilities of LC (45, 46), the TGF- associated miR-27a
was reported to inhibit DC-mediated differentiation of Thl and
Th17 cells (47) and in an allergy setting miR-23b was shown
to induce tolerogenic DC through inhibition of the Notch1/NEF-
kB pathway (48). In man, this field of research remains largely
unexplored, though miR-155 was shown to regulate the M1/M2-
macrophage balance by targeting the IL13-Receptor al, thereby
reducing M2 polarization (49).

SIGNAL TRANSDUCTION PATHWAYS ACTING AS MASTER
SWITCHES OF TUMOR-INDUCED DC SUPPRESSION:
TARGETS FOR THERAPEUTIC INTERVENTION

Tumor-derived suppressive factors bind various receptors on
myeloid cells but down-stream signals may converge in shared
pathways. Mostly from mouse studies, the JAK2/STAT3 signal-
ing pathway has emerged as a “master switch” of tumor-induced
immune suppression (50). We have additionally identified p38-
MAPK as an important signaling pathway in human DC sup-
pression, and validated it as such in in vitro DC cultures and
in ex vivo cultures of single-cell suspensions from melanoma
metastases (32). From a panel of tumor-associated suppressive
factors (including PGE2), we found only IL-6 and IL-10 to induce
STAT3 phosphorylation during human MoDC development. As
we had previously identified prostaglandins as the main culprit
of suppressed DC differentiation by supernatants from single-
cell suspensions of metastatic melanoma tumors (29) it was not
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surprising that STAT3 inhibition alone could not prevent this
suppression; for this, combined JAK2/STAT3 and p38-MAPK
inhibition was required. Importantly, combined interference in
the STAT3 and p38 pathways completely prevented inhibition
of DC differentiation by all tested tumor supernatants (n =18,
derived from both primary tumors and tumor cell lines, together
encompassing eight different histological origins) and led to supe-
rior DC functionality, evidenced by increased allogeneic T cell
reactivity with elevated IL-12p70/IL-10 ratios and Thl skewing
(32). Most importantly, combined STAT3 and p38 inhibition
supported a shift from CD14™ monocyte-like cells to CDla™
DC in metastatic melanoma single-cell suspensions, indicating a
potential for improved DC differentiation in the tumor microen-
vironment (32). Of note, siRNA-mediated knockdown of STAT3
only, did effectively prevent the generation of CD14™ cells during
IL-10-modulated MoDC maturation induction (17).

Altogether, these data point to different tumor-associated fac-
tors (i.e., IL-10, IL-6, PGE2) exerting their suppressive effects
at various stages of myeloid DC development through converg-
ing and communicating signaling elements encompassing the
JAK2/STAT3 and p38-MAPK pathways (Figure 2). To specifically
address melanoma-induced myeloid suppression it is important
to further dissect the JAK2/STAT3 and p38-MAPK pathways and
possible cross-talk between them in melanoma-associated myeloid
subsets in order to identify specifically acting and clinically rel-
evant therapeutic targets. The advent of small-molecule kinase
inhibitors and RNAi-based therapeutics now enables targeting
not only of tumors, but also of their stroma, and should facil-
itate re-programing of tumor-associated myeloid cells, as well as
tumor-modulated DC subsets in the skin, in support of anti-tumor
immunity.

THERAPEUTIC ACTIVATION AND TARGETING OF DC IN THE
SKIN AND ITS LYMPH CATCHMENT AREA

Beyond the local suppressive environment at the site of the tumor,
the immune-suppressive effects of the tumor stretch to draining
lymph nodes where anti-tumor T cell responses should be primed.
Sentinel lymph nodes (SLN) are the first-line tumor-draining
lymph nodes and as such bear the brunt of melanoma-induced
immune suppression (51). We have identified and characterized
four conventional DC subsets in melanoma SLN, two of which
were positively identified as skin-derived CD1a*LC and DDC,
and the remaining two (CDla~CD14~ and CDla~CDI14%) as
LN-resident subsets with varying levels of BDCA3 and DC-SIGN
expression (52). Deeper invasion of the primary melanoma in SLN
tumor negative patients was related to a reduced activation state
of skin-derived DC subsets in the SLN (53, 54). Also, lower fre-
quencies of the skin-derived subsets were found in tumor positive
SLN as well as a reduced activation state of LN-resident DC sub-
sets (our own unpublished data). These findings indicate a local
suppressive effect of the primary tumor on the activation state of
skin-derived DC which then migrate to the SLN and lymph node
metastasis-related suppression of SLN-resident DC subsets, and
are in keeping with tumor-induced conditioning of the microen-
vironment (skin or SLN, respectively). Moreover, they suggest
that primary melanoma-mediated suppression of activation and
migration of skin DC enables local metastasis.

In two Phase II clinical trials we have demonstrated that
localized intradermal administration of DC-stimulatory agents
such as GM-CSF and CpG oligodeoxynucleotides (ODN), i.e.,
TLRY ligands, led to increased activation of DC subsets in SLN
of melanoma patients and tipped the local cytokine balance in
favor of cytotoxic T cell mediated anti-tumor immunity (55-58).
Although in man CpG ODN don’t directly bind to conventional
DC, we nevertheless observed maturation induction of conven-
tional DC subsets, most likely through CpG-induced cytokine
release by plasmacytoid DC (57). In our human skin explant
model we have similarly tested the effects of intradermal deliv-
ery of a panel of TLR-ligands on migratory DC and found a
unique ability of the TLR2 and 3 agonists peptidoglycan (PGN)
and polyriboinosinic-polyribocytidylic acid (Poly I:C) to enhance
the T cell-priming ability of skin-emigrated DC, which, in the case
of PGN, was accompanied by Th1 polarization (59). Surprisingly
only small effects of the tested TLR-ligands on phenotypic DC
activation were observed. This may have been due to induced IL-
10 release, which might have been counter-acted by simultaneous
signaling modulation (60, 61). Indeed, evidence for the therapeu-
tic efficacy of combined STAT3 inhibition and CpG ODN was
previously provided by Kortylewski and colleagues, showing supe-
rior immune stimulatory effects of CpG by eliminating collateral
STAT3-mediated suppressive effects (62, 63).

In conclusion, JAK2/STAT?3 and/or p38-MAPK signaling inter-
ference, combined with local immune potentiation, may counter-
balance tumor-imposed suppression of skin DC subsets, minimiz-
ing the induction and trans-differentiation of migratory CD14*
M2-like DC with T cell suppressive characteristics, and thus set
the stage for effective tumor vaccination through DC-targeted
approaches.
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