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The development of effective vaccines against neglected diseases, especially those associ-
ated with poverty and social deprivation, is urgently needed. Modern vaccine technologies
and a better understanding of the immune response have provided scientists with the tools
for rational and safer design of subunit vaccines. Often, however, subunit vaccines do not
elicit strong immune responses, highlighting the need to incorporate better adjuvants; this
step therefore becomes a key factor for vaccine development. In this review we outline
some key features of modern vaccinology that are linked with the development of better
adjuvants. In line with the increased desire to obtain novel adjuvants for future vaccines,
the Finlay Adjuvant Platform offers a novel approach for the development of new and effec-
tive adjuvants. The Finlay Adjuvants (AFs), AFPL (proteoliposome), and AFCo (cochleate),
were initially designed for parenteral and mucosal applications, and constitute potent adju-
vants for the induction ofTh1 responses against several antigens.This review summarizes
the status of the Finlay technology in producing promising adjuvants for unsolved-vaccine
diseases including mucosal approaches and therapeutic vaccines. Ideas related to adju-
vant classification, adjuvant selection, and their possible influence on innate recognition
via multiple toll-like receptors are also discussed.
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INTRODUCTION
Since the systematization of vaccination principles by Louis Pas-
teur in 1886 and the introduction of the “triple I” (isolation,
inactivation, and injection) concept, most vaccinologists have
searched for specific antigens to be used as immunogens, with
special emphasis on epitope identification. This approach has also
aimed at reducing vaccine reactogenicity and hence increasing
efficacy. Since early times (1), adjuvants have been considered a
crucial vaccine component. Indeed, adjuvants play a key role in
most new vaccine formulations and are used to enhance the effi-
cacy of a particular preparation, even when different vaccines are
prepared with identical antigens (2). Currently, several pharma-
ceutical companies use the aluminum-based mineral salts (Alum)
as an adjuvant; which include three different aluminum salts: alu-
minum hydroxide, aluminum phosphate, and aluminum hydrox-
yphosphate (3). Alum is found in numerous vaccines, including
diphtheria-tetanus-pertussis, human papillomavirus, influenza,
and hepatitis vaccines (4), and most importantly, this adjuvant
has an excellent health and safety track record (5). Alum provokes
responses characterized by a predominance of immunoglobulin
G 1 (IgG1) in mice and IgE (in mice and humans). Notably,
however, Alum is known to be a poor adjuvant for the induc-
tion of cytotoxic T-cell immunity and T helper (Th) 1 immune

responses, which are essential to combat several life-threatening
infections. Thus, there is an urgent need to develop novel adju-
vants to address the development of vaccines against pathogens
that have so far been refractory to traditional vaccination strate-
gies and to overcome the limitations of the few available licensed
adjuvants (3, 6).

Recent advances in immunology and related disciplines such
as genomics and proteomics have contributed enormously to the
field of vaccinology and have permitted the rational design of adju-
vants and their molecular characterization. An important advance
has been the understanding as to how the innate immune sys-
tem is able to “sense” and recognize molecules associated with
specific families of microbes, termed microbe-associated mole-
cular patterns (MAMP). This recognition occurs via a series of
pattern-recognition receptors (PRRs), including toll-like recep-
tors (TLRs), lectin-type receptors, and soluble cytoplasmic recep-
tors (Nod-like receptors and retinoic acid inducible gene I-like
receptors). The aim of this review is to discuss new ideas about
vaccinology and adjuvant technology and to consider how it
may be possible to move forward with alternative new potent
adjuvants. The article also contains brief summaries of recent
experimental data obtained by the Finlay Adjuvant (AF) plat-
form, based on proteoliposomes (PL), PL-derived cochleates (Co),
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and non PL-derived Co for the development of prophylactic and
therapeutic vaccines.

KEY FEATURES IN MODERN VACCINOLOGY LINKED WITH
THE DEVELOPMENT OF ADJUVANTS
IMMUNOPOLARIZED ADJUVANTS: CORNERSTONES TO DESIGN
EFFECTIVE VACCINES
An accurate classification of existing adjuvants has been difficult
to achieve. This is due to their great diversity; in many cases the
mechanism of action is still unknown (7). The most appropri-
ate existing classifications include two main groups. The first is
defined as facilitators of signal 1, signal 2, and/or signal 3 (8); these
signals are able to induce an immune response (2, 9). In accor-
dance with these functional characteristics, adjuvants can facilitate
T-cell receptor (TCR) engagement, antigen capture by dendritic
cells (DC) at the inoculation site, and delivery to particular sites of
the regional lymph nodes (signal 1) co-stimulation, with the up-
regulation of soluble and membrane co-stimulatory signals (signal
2), and an inflammatory stimulus by activating Th cells (signal
3) via cytokines. The second group takes into account the role
of adjuvants as immunopotentiators (IP) and/or delivery system
(DS) (10). Nevertheless, we consider that the infected host requires
a particular kind of immune response to protect itself against each
infection. Consequently, we have included immunopolarization
(IPz) as a third category, which is totally independent of those
defined above (3, 11). With the vast information available today
on the role of MAMPs in the induction of immune responses and
knowing the IPz properties of an adjuvant, it should be possible to
tailor a vaccine to selectively induce the desired response against
specific infections. It is now clear that different subsets of helper T-
cells, such as Th1, Th2, Th3, Th9, Th17, and follicular Th (Tfh) and
T regulatory cells are part of the cell-mediated immune protection
against different pathogens. Several adjuvants have been shown to
be capable of stimulating more than one type of cell-mediated
immune response. This concept has led us to introduce the idea
that an IPz category is one that exhibits multiple stimulatory
properties (activation of multiple TLRs), in different directions
(activation of different T-cells subsets) of the immune response.
Notably, adjuvants may share more than one of these properties
(IP, DS, and IPz properties) (12). For example, the yellow fever
vaccine YF-17D, one of the most effective vaccines available, stim-
ulates innate and adaptive immunity through its ability to activate
DCs via TLR-2, TLR-7, TLR-8, and TLR-9 (13). The triggering
of multiple and simultaneous TLRs increases the production of
cytokines IL-12 and IL-23, leading to synergistic activation of
DCs, with enhanced and sustained Th1-polarizing capacity (14).
Consistent with the stimulation of multiple facets of the immune
response, it is well known that CpG dinucleotides redirect isotype
production toward Th1, via TLR-9 and MyD88 (15). Recently,
Mastelic et al. (16) have demonstrated that adjuvant/DSs like CpG
oligonucleotides markedly increase germinal center Tfh cell and
germinal center B cell responses in neonates. In other applications,
immunopolarized adjuvant combinations could prove an impor-
tant strategy in viral protection and cancer therapy, since TLR
agonists may prime tumor cells to become targets for cytotoxic
agents. In this context, use of a mouse model showed an increased
protective efficacy of vaccination with a human immunodeficiency

virus (HIV) envelope peptide following combination of three TLR
agonists, TLR-2/6, TLR-3, and TLR-9 (17). Furthermore, in can-
cer immunity, it was observed that autologous tumor cells mixed
with bacillus Calmette–Guerin (BCG) were of significant clinical
benefit for patients with Stage II colon cancer (18).

ADJUVANTS AND THE STIMULATION OF POLARIZED TH RESPONSES
Most immunologists, particularly vaccinologists, consider anti-
bodies the most important immune markers induced by vaccina-
tion (19). However, this categorization is not absolute, because
if we eliminate T-cells, we certainly neither produce antibod-
ies nor induce any long sustained protection. Often, however,
antibody-mediated protection against a pathogen has been con-
sidered sufficiently effective, commensurate for vaccines to be
licensed. Clearly, antibodies are more easily detected and quan-
tified than cellular responses, indeed they are used to define the
correlate of protection of several vaccines, based on antibody con-
centration, for example Haemophylus and pneumococcal vaccines
or functional, such as bactericidal or opsonophagocytic in Neisse-
ria vaccines. In the late 1980s, the concept that Th1 cells (cellular
immunity) conferred protection against intracellular pathogens
and Th2 cells (humoral immunity or antibody-mediated pro-
tection) conferred immunity against extracellular pathogens was
formulated (20). In view of recent knowledge, this view is limited,
especially as it has been demonstrated that antibodies participate
in all aspects of the immune response, from protecting the host
during the initiation of infection to later challenge. Additionally
the hallmark of the Th2 (humoral) response in mice and humans
is the production of specific IgE (21). Therefore, the induction of
IgE is not synonymous with humoral immune responses. Cellu-
lar immune responses were primarily considered as those inducing
only cytotoxic T-lymphocytes (CTLs) and later on as Th1 cells (21),
required to induce a good CTL with memory response. The Th1
immune response also induces an antibody (humoral) response.
The main functional antibodies are IgG2a or IgG2c, depending
on the mouse strain, or IgG1 and IgG3 in humans. Their bio-
logical function is determined by their capacity to fix complement
(IgG2a or IgG2c) and by Fc receptors (IgG1). In humans, IgG1, the
most presented and long-lasting isotype in blood (∼9 mg mL−1;
half-life of 21 days) is the dominant isotype in a Th1 cytokine
response. It has also been assumed that the Th2 or humoral
immune response induces neutralizing antibodies, while the Th1
response induces opsonophagocytic and bactericidal effector func-
tions. However, it is necessary to introduce a cautionary note since
all human IgG subclasses, including IgA, induce a similar level
of neutralization (22). In mice, the antibody isotypes that bind
best to Fcγ receptors (such as IgG2a/2c) are also produced, in
part, as a result of IFN-γ-mediated isotype switching of B cells
(23). However, investigations have demonstrated that the produc-
tion of antigen-specific IgE and specific IgG1 are not definitely
correlated (24). The cytokine IL-4 appears not to be essential for
IgG1 class switching, but plays a crucial role in IgE production
(25). Consequently IgG1 in mice is not a predictor marker of Th2
immune response. Currently, the use of adjuvants has received
much interest for allergen immunotherapy. The Th1-directing
adjuvant, monophosphoryl lipid A (MPL®), is now in clinical use
in allergy vaccines formulated with the depot adjuvant l-tyrosine
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(26). The clinical efficacy of an ultrashort course of ragweed pollen
allergen adsorbed to l-tyrosine plus MPL®(Ragweed MATA MPL)
in reducing allergy symptoms in patients with seasonal allergic
rhinitis has recently been shown (27). In the field of anti-viral
immunity, virus-like particles (VLPs) are considered a potent vac-
cine platform, proven to be immunogenic and clinically effective.
In order to enhance immune cell activation, the addition of TLR
ligands and/or depot-forming adjuvants seems to be useful for the
treatment of allergic rhinitis (28). In a prophylactic approach, the
grass pollen allergen Phl p 5 was administered by a skin patch with
or without the Th1-promoting CpG oligodeoxynucleotide 1826
as an adjuvant. The results indicated that the addition of CpG
balanced the response and prevented allergic sensitization, i.e.,
IgE induction, airway inflammation, and expression of T helper 2
cytokines (29).

SECRETORY IgA ANTIBODY: AN OLD FRIEND AND SENTINEL CAN BE
BOLSTERED WITH MUCOSAL ADJUVANTS
In the pathogenesis of infectious and contagious diseases, over
90% of pathogens enter or are established at mucosal surfaces. The
antibody isotype IgA is the main antibody that confers mucosal
protection. IgA is considered a non-inflammatory effector (30,
31). However, it is not clear whether this IgA effector function
is linked with a Th3 or a Th2 cellular pattern (32). Recent work
has demonstrated that IgG is capable of mediating active humoral
protection in several mucosal locations, but the kinetics of the
response is totally different to that of IgA (33, 34). This is prob-
ably due to the mechanism of mucosal transportation; which is
known to be passive for IgG (high blood concentration is required)
and active for IgA. In addition, covalently conjugated polysac-
charide vaccines, applied parenterally, contribute to the control
of the infection by indirect protection by reducing the carriage
rates (35) and herd immunity (36, 37), but salivary anticapsu-
lar IgA-levels seem to respond much better to natural boosting
(38). Nevertheless, the influence of carriage over immunization
is not clear. Another important set of observations is that not all
locally induced antibodies are of the IgA isotype, in particular
IgG has been found in several mucosal surfaces. For example, IgG
concentrations exceed IgA in male and female genital tracts (39).
This differential isotype distribution provides evidence for local
immune origin, as distinct from the systemic compartment. One
possible non-invasive method to detect mucosal, secretory IgA is
through the analysis of saliva following salivary gland stimulation
and IgA measurement. However, gut-associated and nasopharynx-
associated lymphoid tissues do not contribute equally to the pool
of memory/effector B cells that differentiate into mucosal plasma
cells elsewhere in the body (40). Despite such problems, saliva
remains an interesting biological fluid with great scientific and
clinical potential (41). It has been recently stated that vaccine
development initiatives should now focus on the development of
mucosal vaccines, highlighting the need for the production of safe
and potent adjuvants for mucosal delivery (42). At present, only
a few attenuated oral whole-cell vaccines and nasal vaccines have
been approved. Some of these have limited use (43). The ratio-
nal design of mucosal adjuvants demands a better understating
of the mucosal immune system and mechanisms governing its
activation (44, 45). Consequently, several vaccine companies have

been addressing these goals, but so far with limited or no success.
Overall, more work is required to understand the mechanism of
production of IgA and its role in mucosal protection. Searching
for mucosal adjuvants could be an essential step in advancing the
field of vaccinology.

NEW STUDIES OF ADJUVANT-ANTIGEN VACCINE FORMULATIONS
SHOULD ACCELERATE THE DEVELOPMENT OF VACCINES
In vaccine development, the choice of antigen is essential. How-
ever, vaccine formulations coupled to the correct adjuvants might
be decisive in developing an effective vaccine formulation against
life-threatening and neglected infectious diseases. Many recent
vaccine projects have faced the problem of antigenic variation. The
diversity of antigens has been difficult to classify. Some microor-
ganisms, for example Streptococcus pneumoniae and N. meningi-
tidis, exhibit little antigenic variability within a host, but show
extensive population-wide variation that can change in a given
demographical niche and time (46). Antigenic variation over time
can be rapid, as with the influenza virus, where a new vaccine is
required every year, and HIV and Hepatitis C virus, where spon-
taneous mutations during viral replication make it impossible to
select a single protective antigen for use in a vaccine For vaccinolo-
gists, searching for stable or cross-reactive antigens, the biophysical
characterization of antigens, assessing how antigens and adjuvants
interact, and formulating stability should be the basis of a system-
atic approach to the development of effective, safe, and inexpensive
vaccines. Currently, the most used adjuvant in licensed products is
Alum, which acts as a DS. The critical aspect in this type of formu-
lation is antigen adsorption. Alternatively, adjuvants can be a com-
plex of multiple substances: MF59, an oil-in-water emulsion com-
posed of small droplets of squalene surrounded by a monolayer
of non-ionic detergents is an example. However, the stimulatory
capacities of these adjuvants are only present when they are fully
formulated (47). GlaxoSmithKline (GSK, Belgium) has developed
several adjuvants systems (AS) that combine classical adjuvants
with immunomodulators specifically adapted to the antigen and
the target population (48). AS04 (a combination adjuvant com-
posed of MPL A (a TLR-4 ligand) adsorbed to Alum) is licensed
for use, in GSK’s Cervarix vaccine against human papilloma virus
and the vaccine against hepatitis B virus (49). This formulation
includes IP and DS properties. Currently, evidences in the work
with AFCo1 and AFPL1 without Alum, with incorporated or co-
administered antigens, have demonstrated that IP and IPz proper-
ties are contained in the same structure as endogenous adjuvants
essential for their immunogenicity. Nevertheless, industry-quality
adjuvant production and relevant antigen-adjuvant formulations
should be considered as key factors by vaccine manufacturers and
vaccine development programs. The following section looks at the
Finlay adjuvants in more detail.

FINLAY ADJUVANT PLATFORM: A DIFFERENT APPROACH
FROM EXISTING ADJUVANT TYPES
The Finlay Adjuvant (AF) platform consists of a series of pro-
prietary adjuvants (50–55). They combine three constituents: (i)
nanovesicles (PL) extracted from bacterial outer membranes that
contain protective antigens (56–58), in addition to adjuvant com-
ponents; (ii), PL-derived Co (microparticles), which conserve
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FIGURE 1 | Finlay adjuvant platform. PL, proteoliposome, nanovesicles
extracted from bacterial outer membrane (OMV); AFPLx, adjuvant Finlay
PLx extracted from different bacteria; AFCo (Cochleate)x obtained from
PLx; STVS, single-time vaccination strategy; AFCo3, Co obtained from
non-derived-PL structure.

the protective and adjuvant PL components; and (iii), non-PL
derived Co (microparticles), with MAMPs as the main component
(Figure 1).

ADJUVANT FINLAY PROTEOLIPOSOME IN ALUM, INCREASES ITS
STABILITY, REDUCES ITS PYROGENICITY, AND INDUCES Th1
POLARIZATION
The adjuvant AFPL1 is a complex nano-structure consisting of
vesicles extracted from the outer membrane of N. meningitidis
serogroup B (B:4:P1,19,15:L3,7,9 strain). The vaccine properties
of these outer membrane vesicles (OMVs) adsorbed onto alum gel
was described and patented as part of the VA-MENGOC-BC® vac-
cine (58, 59). The first demonstration that AFPL1 induces a prefer-
ential Th1 polarization in humans was described by Lapinet et al.
(60) and Pérez et al. (61). The presence of IFNγ and IL-2 mRNAs
was observed in peripheral blood mononuclear cells obtained from
immunized subjects after in vitro challenge with AFPL1. AFPL1
also stimulated production of pro-inflammatory cytokines (TNF-
α, IL-1β, and IL-8) and chemokines (MIP1-α and MIP1-β) by
neutrophils. It was later demonstrated that AFPL1 stimulates spe-
cific CD4+ and CD8+ T cells and also elicits innate immunity
activation inducing chemokines, pro-inflammatory cytokines, and
co-stimulatory molecules. These products confirmed the adjuvant
properties of the first AF described by Pérez et al. (62) and Pérez
Martín et al. (51). AFPL1 can be adsorbed onto Alum; the degree
of adjuvant adsorption is an important property that is related to
the additional IP, DS, and IPz capacities of this preparation.

AFPL1 contains native lipopolysaccharide (LPS), PorB, traces
of bacterial DNA, three synergistic MAMPs that interact with
TLR-4, TLR-2, and TLR-9, respectively, as immunopotentiator
molecules (Figure 2), which can be considered as their own
endogenous adjuvants that are essential for vaccine immunogenic-
ity. The nano-particle structure of the adjuvant, with negative and
positive lipids and several glycoproteins, can package heterolo-
gous proteins and can be readily used as a vaccine-DS capable
of enhancing the immunogenicity of exogenous protein antigens.
In addition, studies in our laboratory have shown that the IPz
effect is not limited to LPS (63). This combination vaccine may

FIGURE 2 | Three main microbial-associated molecular patterns
present in AFPL1 and AFCo1. Lipopolysaccharide (LPS) Porin B (PorB), and
traces of bacterial DNA detected by SDS-PAGE stained with Coomassie
blue for PorB and silver staining for LPS and agarose gel for DNA.

explain the preferential Th1 immune response, cross-priming,
and in vivo CTL response characterized by the production of
IL-12 and IFNγ and delayed-type hypersensitivity. It might also
explain the Th1 subclasses (IgG2a in BALB/c and IgG1 and IgG3
in human) and lack of IgE or IL-4/IL-5 production in mice and
humans. Previous studies have shown that the OMV stimulate pro-
inflammatory responses and induce immunoprotection against
colonization or pathogenic challenge (64–66). For example, the
Novartis MenB vaccine (4CMenB, Bexsero®), which received EU
approval, includes three major antigens, identified by reverse vac-
cinology, and 25 µg of detoxified OMV from strain NZ 98/254
(67, 68). Two other vaccines contain similar PL: the meningo-
coccal vaccine, which includes a PL component, and received EU
approval (68), and the malaria vaccine RTS,S/ASO1, developed by
GSK, which includes PL as the liposome component of the AS01
adjuvant (69).

Stability is one of the requirements for any pharmaceutical for-
mulation as well as low or absence of pyrogenicity. Therefore,
adjuvants that contain native LPS should be monitored carefully.
The adjuvant AFPL1 has LPS inserted in the structure and is never
free. In addition, the consistency of GMP PL production at the
Finlay Institute and the number of doses (more than 55× 106)
administered in adults and infants, as part of the National Immu-
nization Program, guarantee that AFPL1 is considered a safe
adjuvant per se. Further DS properties are introduced by the incor-
poration of AFPL1 onto alum gel. Importantly, this facilitates the
commercialization process, since it increases safety and particle
stability. In addition, it changes the suggested Th2 pattern of Alum
to a Th1 pattern, increasing its stability for years, and reducing its
pyrogenicity.

THE FINLAY ADJUVANT COCHLEATE 1 DOES NOT REQUIRE ALUMINUM
HYDROXIDE TO WORK FOLLOWING PARENTERAL AND MUCOSAL
ADMINISTRATION
AFCo1 is a PL-derived Co microparticle produced using different
techniques (simple dialysis, rotary dialysis, or flow filtration) (70).
Recently, in order to produce this adjuvant our laboratory has
developed a closed cycle technology that is currently under expan-
sion. Closed cycle technology permits the production of a sterile
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product. PL is dissolved in a buffer containing Tris 30 mmol/L
and 1% (w/v) sodium deoxycholate, pH 7.4 to a final protein con-
centration of 1 mg/mL. Then, formation buffer (Tris 30 mmol/L,
CaCl2 10 mmol/L, and NaCl 100 mmol/L, pH 7.4) is added. Excess
detergent and calcium is removed by centrifugation at 3000× g,
10 min with Tris buffer (30 mmol/L, pH 7.2) and stored at 4°C. The
Co formation is marked by the appearance of a white suspension.
The efficiency of the process is estimated by protein quantities
in the precipitate and the supernatant. The AFCo1 microparti-
cles maintain the same IP, DS, and IPz properties of the AFPL1
precursor, and are stable. Alum is not required (Figures 2 and 3).

AFCo1 is an effective mucosal adjuvant in mice, when adminis-
tered via different mucosal routes (nasal, oral, rectal, and vaginal)
and combined with different antigens (ovalbumin, Ova; glycopro-
tein gD2 from Herpes Simplex Virus, HSV; bovine serum albumin,
BSA; proteins, and peptides) (71, 72). AFCo1 administered by
the nasal route induces systemic and mucosal (at local and dis-
tal sites) immune responses and total protection against HSV
challenge (73).

AFCo1 is a microparticle with an approximate diameter of
11 µm. Although we predicted it would not work via the parenteral
route, two intramuscular doses of AFCo1 plus Ova induced a simi-
lar systemic immune response of IgG, and subclass response (IgG1
and IgG2a), equivalent to three nasal doses in mice (Figure 4). This
result suggests that the DS capacity of AFCo1-containing lipids
and Ca2+ (known membrane perturbation and disruption agents)
could take place through natural membrane fusion mechanisms,
permitting interaction with several antigen-presenting cells with-
out the requirement of internalization (74). Thus AFCo1 works
via mucosal as well as parenteral routes. Currently, AFCo1 is in an
advanced stage of clinical development with clinical trials on the
horizon.

FINLAY ADJUVANT PROTEOLIPOSOMES ADSORBED ONTO ALUM GEL
OVERCOME THE Th2 PATTERN INDUCED BY ALLERGENS
Allergens are inducers of a Th2 pattern, the hallmark of which is
IgE production. Dermatophagoides siboney is a house dust mite,
which in Cuba, is the main causative agent of allergy reactions.
The Th2 response induced by Der s 1 and Der s 2 (the main
D. siboney allergens) in Alum in unprimed mice was overcome
by the formulation of AFPL1 adsorbed onto Alum. This induced
IgG2a, IFNγ, and caused the reduction of specific and total IgE
(50, 75). Specific IgE was measured by passive cutaneous anaphy-
laxis in male rats challenged with sera from immunized mice with
3 allergen concentrations (0.5; 1.25, or 2.5 µg/dose) and AFPL1
(12 µg/dose) in Alum. A reduction of the intensity of inflamma-
tion was 132, 42, and 37 times respectively (Figure 5A). When
sera from immunized mice were diluted and retested, the positive
dilutions observed were in the undiluted, 1:4, and 1:8 samples,
respectively (Figure 5B). The efficiency of this formulation was
also tested by the subcutaneous route in allergen unprimed and
sensitized mice. This formulation has been concluded as satisfac-
tory in preclinical toxicity and stability tests. A Phase I clinical trial
using only three doses was approved by CECMED, the Cuban regu-
latory agency, and is in progress (DA-EC2012014). Overall, AFPL1
changes the Th2 behavior of D. siboney allergen in unprimed and
sensitized mice and is a promising human vaccine.

FIGURE 3 | Electron photograph of AFCo1 obtained by close cycle
technology.

SINGLE-TIME VACCINATION STRATEGY TO INCREASE COVERAGE
USING FINLAY ADJUVANTS
Few vaccines are administered as a single dose. Also, it has been dif-
ficult to obtain a good immune response using non-living antigen
vaccines as a single dose. With such vaccines, multiple doses are
generally needed to provide sufficient stimulation of the immune
system, and to achieve durable responses over time. Thus, a com-
plete immunization schedule is mandatory for protection. The
successful delivery of active vaccines depends amongst other fac-
tors on effective vaccine storage and distribution, including cold
chain management. The cold chain aspect alone can account for
80% of the financial cost of a given vaccination program (76). The
cost of the vaccination program is high in low-resource regions
with poor vaccine affordability. Therefore, the development of
new immunization strategies and procuring a single-dose vaccine
are of pivotal importance.

Many studies combine nasal and/or oral routes with intra-
muscular immunizations, using the mucosal route as a prim-
ing dose and the parenteral route for the booster dose (tradi-
tional prime boosts spaced doses) or vice versa (77, 78). We
have developed a novel immunization approach called single-
time vaccination strategy (SinTimVaS) (79). In this approach a
combination of two priming doses (one mucosal and one par-
enteral) is given simultaneously by different routes without the
requirement for a subsequent boost. The use of potent adju-
vants is a key factor in this novel strategy. González et al.
(79) demonstrated that simultaneous vaccination such as intra-
muscular administration of AFPL1 and nasal administration
of AFCo1 induced systemic and mucosal responses against N.
meningitidis serogroup B. We have recently shown that SinTim-
VaS applications of tetanus toxoid or BSA combined with AF
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FIGURE 4 | Antibody response induced by AFCo1 plus Ovalbumin
(Ova) by nasal (i.n) and intramuscular (i.m) routes. (A) IgG;
(B) IgG1; and (C), IgG2a. BALB/c mice were distributed in two
immunized groups and a control group. The first group was immunized
with three i.n doses (0, 7, 14 days) of AFCo1+Ova (25 µg/20 µg in
25 µL, 12.5 µL through each nostril). The second was treated with two
i.m doses (0, 14 days) of AFCo1+Ova (12.5 µg/10 µg in 50 µL per

animal). The control received Ova i.n or i.m at 20 or 10 µg, respectively.
Serum samples were taken 15 days after the last dose and antibody
determination was carried out by ELISA. The figure shows the average
and standard deviation of the mathematical relationship of values (OD)
of two determinations in three independent experiments. The different
p denote significant differences according to a Tukey multiple
comparison test (p < 0.05).

FIGURE 5 | Passive cutaneous anaphylaxis. Male rats were inoculated
subcutaneously with 100 µL of sera from mice immunized intramuscularly
with two doses 15 days apart of Dermatophagoides siboney (Ds) allergen
adsorbed onto aluminum hydroxide (Alum) at 1 or 5 µg per dose, or
adjuvanted with AFPL1 (PL at 12 µg) in Alum at Ds concentrations of

0.5–2.5 µg per dose. Controls included AFPL1 or Alum alone. Sera were
prepared at 0, 15, and 35 days. After 48 h, Evans Blue plus 1 mg of Ds was
inoculated intravenously. Then the rats were sacrificed and the skin was used
to evaluate the density and diameter of the stain. (A) Shows the evaluation of
undiluted sera and (B) the quantity of the specific IgE dilution in the sera.
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induced antigen-specific mucosal and systemic responses. Simi-
lar results were obtained using Ova as a weaker model antigen.
This induced a similar systemic anti-Ova IgG response to two
parenteral doses of AFPL1 plus Ova and three nasal doses of
AFCo1 plus Ova (Figure 6A). Only AFCo1 plus Ova and SinTim-
VaS induced anti-Ova IgA (Figure 6B) and a memory response
(Figure 6C). We also found that our immunization strategy not
only works with AF, but also when cholera toxin is used as a
mucosal adjuvant (Figure 6D). The strength of this strategy is
that it can achieve high vaccine coverage, reducing the logis-
tics and the number of follow-up and catch-up campaigns. It
also induces similar systemic and mucosal immune responses.
However, further studies using animal models as well as humans
are needed to explain the immune mechanisms involved in this
strategy.

FINLAY ADJUVANTS CHANGE THE T-INDEPENDENCE PATTERN OF
NON-COVALENTLY CONJUGATED POLYSACCHARIDES
Encapsulated bacteria have an outer covering composed of capsu-
lar polysaccharides (Ps). The Ps are T-independent type 2 antigens
(TI-2), based on their ability to stimulate antibody production in
the absence of T-cell help (80). Thus, vaccination with TI-2 anti-
gens elicits primarily IgM with limited class switching, affinity
maturation, and immunological memory (81). Vaccines com-
posed of Ps are immunogenic, provide protection in healthy adults
and reduce the risk of invasive disease (82), but have low immuno-
genicity in children younger than 2 years of age (83). Also, these
vaccines have demonstrated lack of booster responses to plain
Ps challenge and an absence of affinity maturation of Ps specific
antibodies (84). When Ps is covalently conjugated to a carrier pro-
tein, conferring the immunological attributes of the carrier on

FIGURE 6 | Specific anti-Ova immune response induced by single-time
vaccination strategy (SinTimVaS). BALB/c mice were immunized with:
three i.n. doses (0, 7, 14 days) of AFCo1+Ova (50 µg/25 µg in 25 µL per
animal, 12.5 µL through each nostril); two i.m. doses (0, 14 days) of
AFPL1+Ova (12.5 µg/10 µg in 50 µL per animal); both treatments at the
same time in SinTimVaS and Ova as the control. Other groups were
followed until specific IgG decreased and a booster Ova dose at day 125
was administered. Other groups using cholera toxin (CT) as the adjuvant
instead of AFCo1/AFPL1 were also evaluated. These were administered via
the nasal route CT+Ova (5 µg/50 µg in 25 µL per animal, 12.5 µL through

each nostril) and simultaneously one intramuscular dose of CT+Ova
(5 µg/20 µg in 50 µL) was administered. For anti-Ova IgG or IgA, serum
samples at 21 days after the last dose were used. The determination was
carried out by ELISA. Data were expressed as averages and standard
deviation of OD of two determinations in three independent experiments.
Specific Ova IgG (A); (B,D) specific Ova IgA; and (C) specific Ova IgG after
a booster Ova dose. Significant differences between the means of different
groups were determined by a Tukey multiple comparison test using Graph
Pad Prism 4 software (Calif.). A p-value of <0.05 was considered
statistically significant.
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the attached Ps, it elicits T-cell help for B cells, inducing large-
scale IgM to IgG switching of B cells to long-lived plasma cells
or memory B cell development (85). Vaccination with conjugate
vaccines increase the amount of specific IgG antibodies produced
and increases the IgG:IgM ratio on repeated vaccination. The IPz
effect of Finlay adjuvants has been tested against multiple protein
antigens such as: merozoite surface proteins from Plasmodium fal-
ciparum (86), synthetic peptides and recombinant proteins from
Streptococcus pyogenes (87). However, the incorporation of these
adjuvants that possess the ability to trigger multiple TLR agonists,
into plain Ps formulations could effectively avert the TI-2 of Ps.
We have demonstrated that nasal immunization of AFCo1 plus Ps
from N. meningitidis serogroup C induces PsC-specific mucosal
and systemic immune responses (88).

Furthermore, studies with the Cuban bivalent vaccine (VA-
MENGOC-BC®), which contains non-covalently conjugated PsC,
showed that teenagers vaccinated in their infant life induced a
significantly specific serogroup C response after a third dose of
VA-MENGOC-BC® or to natural Neisseria challenge (89). We
have also shown that subcutaneous immunization of AFPL1 plus
Ps from N. meningitidis serogroup A (PsA) induced increased anti-
body affinity and a Th1 cytokine pattern after plain PsA booster
(Figures 7A,B). In addition, Romeu et al. (90) demonstrated that
a combined formulation of PLs from meningococcal serogroups
A and W can stimulate cellular immunity and long-term memory
cells against PsA, increasing affinity maturation after a plain Ps
booster (90). The presence of several synergistic TLR agonists in
the structure of these adjuvants influences anti-Ps antibody pro-
duction, T-cell help, activation, and the proliferation of memory
cells, opening new perspectives in the application of plain Ps anti-
gens without the requirement of covalent conjugation. Therefore,
the combination of Ps (conjugated or not) and Finlay adjuvants
has the advantage of changing the TI-2 pattern of capsular Ps,
which could have important implications for vaccinology. The
mechanism of Ps presentation to T-cells described recently for Ps

covalently conjugated vaccines (91) could possibly be extended to
Ps-non-covalently conjugated formulations.

THE APPLICATION OF AFCo3 AS AN IMMUNOPOTENTIATOR IN
AQUACULTURE
Aquaculture is one of the fastest growing economic activities in
food production (92). One of the main challenges is to obtain a
high-volume production of fish with the highest possible qual-
ity (93). Teleost fish, which mainly secrete IgM, display a strong
innate immune response (94), but their adaptive immune response
is relatively weak. In aquaculture, adjuvants and IPs in aquacul-
ture have been used to improve the innate defense of fish and to
promote healthy growth (95). The use of IPs constitutes a viable
strategy to reduce losses from health problems in the aquaculture
sector (96). Since the discovery of TLRs in fish, they have become
of special interest in understanding host-pathogen interactions.
LPS is known as one of the most potent IP in mammals. How-
ever, in fish, LPS is considered to have a low pro-inflammatory
potential, probably due to the fact that the TLR-4 genes found
in similar aquatic organisms such as zebrafish do not recognize
the mammalian agonist (97). However, cells and immune system
components, both systemic and at the surface (intestinal and gill),
are activated and mobilized in response to LPS (98). For example,
immunization of the common carp (Cyprinus carpio) with LPS
from Aeromonas hydrophila yielded an improved immunity and
better survival (99). Grass carp (Ctenopharyngodon idella) injected
intraperitoneally with LPS, outer membrane proteins or formalin
killed cells from A. hydrophila induced a relative percent survival
of 83.3, 72.2, and 55.6%, respectively. This suggests that LPS and
outer membrane proteins could be important in the development
of vaccines against A. hydrophila in grass carp and other fish (100).
Studies conducted by Nayak et al. (101) using the Indian major
carp showed that LPS from three different gram-negative bacteria
have IP potency (101). We have been working on the develop-
ment of a novel microparticle adjuvant series called AFCo3a,which

FIGURE 7 |Th1 cytokine profile and antibody affinity maturation
after a plain PsA booster. Groups of mice received 5 µg PsA adsorbed
onto Alum or together with 5 µg of AFPL1 or conjugate vaccine
MenAfriVac® via the subcutaneous route. Immunizations were
performed twice, 21 days apart. A subcutaneous booster of plain PsA
was performed 105 days after the last dose. Spleens from individual mice
after the booster immunization were pooled within each group.
(A) Cytokine levels, measured by ELISA are expressed as pg/mL±SEM.

(B) affinity index (AI) was determined by avidity ELISA with 250 mM
sodium thiocyanate. The AI, percentage of antibodies that remain bound
to the antigen after treatment with the chaotropic agent, was calculated
using the following formula: AI= titer (NaSCN+)/titer (NaSCN−). Results
are expressed as the geometric mean of the affinity index (%). Data
were analyzed by one-way ANOVA followed by a Tukey’s multiple
comparison test. A p-value of <0.05 was considered statistically
significant and is represented by different letters.
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FIGURE 8 | Percentage of survival of Clarias gariepinus
immunopotentiated with AFCo3a. Oral treatments of AFCo3a mixed with
the first daily food for five consecutive days. Survival was determined every
day for 15 days. Statistical differences were determined by a
Kruskal–Wallis/Mann–Whitney U -test. A p-value of <0.05 was considered
statistically significant and is represented by different letters.

contains LPS isolated from meningococcal bacteria (54). We are
currently testing this preparation using the African catfish, Clarias
gariepinus. Oral treatment of AFCo3a mixed with the first daily
food administered for five consecutive days induced an improved
survival rate compared with a control group (Figure 8). We also
detected a significant (p < 0.05) increase in the production of IgM
in fish treated orally with formalin-inactivated A. hydrophila, adju-
vanted with AFCo3a. Our data suggests that oral application of
potent IP-like Finlay adjuvants in aquaculture can be an effective
and economical way to treat fish under intensive culture con-
ditions. This is pertinent especially in view of the fact that the
main losses in this industry are caused by excessive handling and
high-density fish production.

SUMMARY AND FINAL REMARKS
With the increasing desire to obtain novel effective adjuvants
to future vaccines this field is experiencing a renaissance. This
paper illustrates the current state of affairs regarding the influ-
ence of existing adjuvants and terminologies that can properly
guide adjuvant-vaccine research and formulation. It also sum-
marizes how adjuvants are key factors for the development of
future vaccines and the lessons learned from the Finlay Adjuvant
platform. The key advantage of AFPL1 is its safety in humans,
as a component of the prophylactic meningococcal vaccine. The
recent development of the AFPL1 adjuvant as an allergen thera-
peutic vaccine has demonstrated effectiveness in reducing specific
IgE and inducing preferential Th1 immune responses. Also, a new
technology to produce PL or non-PL derived Co in a close cycle
was developed, ensuring the production of sterile and scale-up
products applicable not only to humans, but also in the veterinary
field. The mucosal effectiveness of Co, their use in SinTimVaS
permits increasing vaccination coverage and reducing campaign
costs. The IPz properties of Co and PL to activate the innate
immune response of fish and invertebrates could be a new field
of application. The potential of the Finlay Adjuvants Platform to

shape desired immune responses by stimulating multiple TLRs
potentiating antigen-induced responses and providing not only
prophylactic, but also therapeutic protection against infectious
and non-infectious diseases was highlighted.

A better understanding of the mechanism of activation of the
mucosal immune system, homing to effector sites and the role of
mucosal IgA in mucosal protection is essential to provide mucosal
protection against pathogens. More work should be addressed to
find simple and affordable methods for the evaluation of cellular
responses in the vaccination field, in so doing, cellular and mucosal
vaccine protection correlates can be established. The applicability
of AFPL1 as a nano-particle adjuvant to other vaccines and the
clinical introduction of AFCo1, preferably with mucosal vaccine
candidates or in SinTimVaS should be an essential step to consider.
In addition, information gained in studies developed with non-
conjugated-polysaccharides, provides opportunity to take rational
approaches in the design of formulations capable of overcoming
the T-independence of polysaccharides.
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