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Human natural killer T (NKT) cells are characterized by their expression of an invariant T
cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement.These
NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class
I-like CD1d molecule and bridge the innate and acquired immune systems to mediate effi-
cient and augmented immune responses. A prime example of one such function is adjuvant
activity: NKT cells augment anti-tumor responses because they can rapidly produce large
amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on
CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-
pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated,
resulting in complete tumor eradication without tumor recurrence. Clinical trials have been
completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10
cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high
IFN-γ production had significantly prolonged median survival times of 29.3 months with
only the primary treatment. In the case of head and neck tumors, 10 patients who com-
pleted the trial all had stable disease or partial responses 5 weeks after the combination
therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential pow-
erful treatment options for the future. One is to establish artificial adjuvant vector cells
containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by
DC maturation and NK cell activation but also induces tumor-specific long-term memory
CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial sin-
gle injection. The other approach is to establish induced pluripotent stem (iPS) cells that
can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT
cells produce IFN-γ in vitro and in vivo upon stimulation with α-GalCer/DCs, and mediated
adjuvant effects, suppressing tumor growth in vivo.

Keywords: NKT cells, adjuvant effects, clinical trial, induced pluripotent stem cells, artificial adjuvant vector cells

DISCOVERY OF NKT CELLS EXPRESSING AN INVARIANT
Vα14Jα18 ANTIGEN RECEPTOR
Natural killer T (NKT) cells are characterized by the expression
of an invariant antigen receptor encoded by Vα14Jα18 in mice
and Vα24Jα18 in humans (1–3). The murine invariant Vα14Jα18
NKT cell antigen receptor was identified by cloning of cDNAs
encoding T cell antigen receptor (TCR) from 13 independently
established hybridomas with regulatory functions (4, 5). Sur-
prisingly at that time, Southern blot analysis of TCR usage by
these 13 hybridomas had the same DNA restriction fragment
length polymorphism (RFLP) patterns, even when three differ-
ent enzymes, EcoRI, BamHI, and HindIII were used. Because
of this unusual homogeneous DNA restriction pattern, the TCR
cDNAs were cloned and could be classified into four types at the
nucleotide level, all of which were composed of Vα14 and Jα18
with a 1-nt N region. The N region was different in each clone,
a C, A, T, or G nucleotide. However, any nucleotide addition in
the N region at this position becomes invariant at the amino

acid level, because this N region is the third base of a glycine
codon (5).

By RNase protection assays using antisense Vα14Jα18 of
C57BL/6 (B6) origin as a probe, we detected a single 630 bp band
in B6, a single 400 bp band in BALB/c, and 630/400 double bands
in DBA/2 mice. Quite remarkably, this band(s) represented 2–4%
in the total TCRα expression in these mice (6). The theoretical
expression frequency of any one particular TCRα is calculated to
be 1/106, because the total TCRα chain repertoire is around 108

and there are 100 Vα segments in the TCRα loci. Therefore, the
Vα14Jα18 expression frequency detected in unprimed mice was
more than 104 times higher than expected, suggesting that Vα14+

NKT cells are clonally expanded under physiological conditions,
likely do to their intrinsic autoreactivity. Another interesting find-
ing was that the invariant Vα14Jα18 receptor is used only by NKT
cells and not by conventional αβ T cells. This was shown conclu-
sively when the invariant Vα14Jα18 together with TCRVβ8.2 was
introduced into RAG-knockout (KO) mice; only NKT cells and
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not conventional αβ T cells or NK cells developed (7). These and
other studies confirmed that expression of Vα14Jα18 in mice and
Vα24Jα18 in human is a unique NKT cell signature.

DISCOVERY OF THE NKT CELL LIGAND
The ligand for NKT cells was identified as α-galactosylceramide
(α-GalCer), which is presented by the MHC class I-like CD1d
molecule. However, unlike MHC class I molecule with polymor-
phic in nature, CD1d is monomorphic among species, indicating
that α-GalCer can be used in any potential NKT cell therapy
for all humans. The glycolipid nature of the NKT cell ligand
was suggested by experiments using mice lacking the transporter
associated with antigen processing (TAP), which is essential for
translocation of cytoplasmic peptides generated by the ubiquitin-
proteasome proteolytic pathway into the endoplasmic reticulum
(ER) to make a stable complex with MHC class I molecules. The
MHC peptide complex is required to select CD8 T cells, there-
fore, in TAP-KO mice, CD8 T cells are not generated. However,
by RNase protection assays using the invariant Vα14Jα18 as a
probe, we could detect significant levels of protected bands in
TAP-KO mice but not in β2M-KO mice, suggesting that the ligand
is not a peptide, but likely to be a glycolipid in conjunction with
a β2M-associated MHC-like molecule (8). The MHC-like mol-
ecule turned out to be CD1d, which has two large hydrophobic
pockets, A′ and F′, that can bind the two long fatty acid chains
of the ceramide portion of α-GalCer (9). Therefore, we screened
various synthetic glycolipids and found the essential structure-
function relationships critical for the NKT cell recognition, such
as: (1) α-linkage between the sugar moiety and the ceramide por-
tion of α-GalCer but not β-GalCer, (2) a 2′-OH configuration on
the sugar moiety different from α-ManCer, and (3) a 3′-OH on
the sphingosine of α-GalCer (10).

Furthermore, by using alanine substitution to mutagenize
CD1d, we also identified important amino acids on CD1d, such
as Ser76, Arg79, Asp80, Glu83, and Gln153, for activation of NKT
cells in mice (11). In 2007, Borg et al. succeeded in crystallizing the
triple complex of α-GalCer/human Vα24Jα18/TCRVβ11/human
CD1d (12). Interestingly, the Vα24Jα18 chain docks in parallel
with the CD1d cleft without any direct contribution of the TCRβ

chain to ligand binding. This configuration is quite different from
the mode of ligand recognition by the TCRβ chain of conven-
tional αβ T cells, in which only the TCRβ but not the TCRα chain
recognizes the MHC bound peptide in a diagonal position.

Analysis of the structure also revealed that the first four
amino acids (Asp94, Arg95, Gly96, and Ser97) of Jα18, which
are conserved in mouse and human, are essential for bind-
ing with both CD1d and α-GalCer. The Jα18Asp94 binds with
CD1dArg79, Jα18Arg95 with CD1dArg79/Ser76/Asp80 and the 3′-
OH on the sphingosine, Jα18Gly96 with the 2′-OH on galactose,
and Jα18Ser97 with CD1dGln150. Interestingly, the CD1d amino
acid, Glu83, defined as important in functional assays with CD1d
mutants, is important for binding with the TCRβ chain to make
a stable complex with CD1d but has no direct contribution to
the ligand binding itself. Moreover, the CD1d amino acids (Ser76,
Arg79, and Asp80) important for binding with either α-GalCer
or Jα18 are also well conserved among species such as mouse,
rat, sheep, and human (10, 13–15). Thus, α-GalCer, identified as

an NKT cell ligand in mice can also be used to activate human
NKT cells.

NKT CELL-MEDIATED ADJUVANT EFFECTS ON INNATE AND
ADAPTIVE IMMUNITY AGAINST CANCER
In general, tumor cells do not contain any adjuvant materials, so
that it is difficult to induce proliferation of specific T cell clones
to mount anti-tumor responses in patients. On this particular
point, α-GalCer overcomes these problems by its intrinsic adju-
vant activity, inducing clonal expansion of tumor-specific T cell
cells as well as activating various innate cell types (16). In the initial
anti-tumor response after stimulation with α-GalCer/DCs, NKT
cells immediately produce large amounts of IFN-γ, which acts on
DCs, NK cells, and neutrophils in the innate immune system to
eliminate MHC negative tumor target cells and, at the same, also
on CD8 cytotoxic T cells and CD4 Th1 cells to kill MHC positive
tumor cells, resulting in tumor eradication (Figure 1) (1, 17, 18).
Therefore, NKT cell-targeted therapy is expected to overcome the
major problem of current anti-cancer immunotherapies – recur-
rent tumors – due to their targeting of only one type of effector
cell (10, 19, 20). For example, in the immunotherapy using tumor
peptide CTL or antibodies against PD-1 or CTLA4, the target is
the CD8 killer T cell, which kills MHC positive but not nega-
tive tumor cells, resulting in tumor recurrence (21). Similarly, in
the artificial cells recently developed by the forced expression of
Rae1/H60 (NKG2D-L), Mult-1 (NKG2D-L), or CD70 (TNF-L),
the target cells are NK cells, which will eliminate MHC negative,
but not MHC positive tumor cells (22).

Tumors in general contain both MHC positive and negative
cells. Therefore, for an optimal therapy, both MHC types of tumor
cells should be eliminated simultaneously by activating both innate
and adaptive immune responses (Figure 1A). Since only NKT cells,
but not other immune cells, activate NK and CD8 killer T cells at
the same time, thus eliminating both MHC positive and negative
tumor cells, the NKT cell-targeted therapy is a promising strategy
for cancer treatment (Figures 1B,C).

NKT CELL-MEDIATED ADJUVANT EFFECTS ON DC
MATURATION
Another important NKT cell function is their ability to interact
with immature DCs in the presence of α-GalCer to induce DC
maturation (17). Therefore, NKT cell-targeted therapy is also use-
ful for advanced cancer patients, who often suffer from severe
immunodeficiency. DCs in these advanced cancer patients are
usually immature because of the presence of immune suppres-
sive cytokines, such as IL-10 or TGFβ, produced by tumor cells
(Figure 1A) (23). The immature DCs are able to capture tumor
antigens, but unable to activate specific T cells. However, imma-
ture DCs presenting α-GalCer are activated by NKT cells through
CD40-CD40L interactions to produce IFN-γ, which induce full
DC maturation (24). This leads to a robust interleukin (IL)-12
response to further activate NKT cells, followed by activation of
CD8T cells and NK cells (17, 24).

The DC maturation by activated NKT cells is a prominent
strategy for the enhancement of protective innate and acquired
immune responses. To investigate the mechanisms of bystander
potential of α-GalCer-activated NKT cells, an experimental system
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FIGURE 1 | Natural killerT cell-mediated adjuvant effects on anti-tumor
protective responses and clinical trial outcomes. (A) Mechanisms of NKT
cell-targeted adjuvant cell therapy: upon NKT cell activation in patients by
α-GalCer/DCs, immature DC become mature, and both MHC positive and
negative tumor cells will be killed by CD8 killer T cells and NK cells,
respectively. (B) Clinical trials of NKT cell-targeted adjuvant cell therapy on
advanced non-small lung cancer: 60% of patients (**) showed significant
prolonged median survival time of 29.3 months compared with best

supportive care group with a MST of 4.6 months. The response to NKT cell
therapy correlated with clinical efficacy (median survival time) and IFN-γ
levels; patients with high (**H) levels responded significantly better than
those with low (*L) levels. (C) Clinical trials of NKT cell-targeted adjuvant cell
therapy for head and neck tumors: all 10 cases treated with the combination
therapy of α-GalCer/DCs and activated NKT cells showed significant clinical
efficacy (SD or PR). (D) Correlation between clinical efficacy (PR in red, SD in
black) of head and neck tumors and NKT cell numbers in the tumor in situ.

using immunization with OVA-loaded TAP-deficient spleen cells
loaded with OVA after permeabilization by osmotic shock
was developed. In this system, OVA was used as an artifi-
cial tumor antigen to induce OVA-specific CD8 T cells to kill
OVA-bearing tumor cells. Only after α-GalCer administration,
IFN-γ production by NK and CD8T cells was observed (see
Figure 2A). Under these conditions, the clonal expansion of OVA-
specific CD8 T cells and strong anti-tumor responses develop
in the mice, and the response requires co-administration of
α-GalCer (17).

CLINICAL TRIAL OF NKT CELL-TARGETED THERAPY FOR
ADVANCED LUNG CANCER AND HEAD AND NECK TUMORS
For effective NKT cell activation,α-GalCer/DC has distinct advan-
tages to induce significant expansion of NKT cells and to inhibit
in vivo tumor growth in a mouse model of metastatic lung cancer
and liver metastasis in melanoma (25, 26). In a preclinical study, we
used mouse melanoma cells, which were injected into the spleen
to induce liver metastasis. Treatment of tumor-bearing mice by
intravenous administration of α-GalCer/DCs (3× 106) resulted
in complete eradication of the liver metastasis within 7 days after
treatment (27).

Based on the dramatic effects of α-GalCer/DCs in the pre-
clinical studies, a clinical trial of NKT cell-targeted immunother-
apy was conducted at Chiba University hospital in patients with
advanced non-small cell lung cancer to evaluate the safety, fea-
sibility, immunological responses, and clinical outcomes (28).
Seventeen patients with advanced or recurrent non-small cell
lung cancer refractory to the standard treatments, including
surgery, chemotherapy, and radiation therapy, completed the pro-
tocol. The patient’s peripheral blood mononuclear cells (PBMCs)
obtained by apheresis were cultured with GMP grade GM-CSF
and IL-2 for 7 days and then pulsed with α-GalCer (29). The
α-GalCer-pulsed PBMCs were then intravenously administered
(1× 109 cells/m2/injection) back into autologous patients twice
with a 1-week interval followed by two courses with a 1-month
interval between the second and third administration.

In the 17 patients who completed the protocol of a phase
IIa clinical trial, the treatment was well-tolerated, and no severe
adverse events related to the cell therapy were observed (28, 30).
To monitor IFN-γ production by NKT cells from the patients,
an enzyme-linked immunospot (ELISPOT) assay was performed
(31). The results demonstrated that a significant increase in the
number of IFN-γ-producing PBMCs was detected in 10 out of
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FIGURE 2 | Future directions for NKT cell-mediated cancer therapy.
(A) Experimental model using OVA as an artificial tumor antigen to
demonstrate NKT cell-mediated adjuvant activity (OVA model): the NKT-KO
mice that had received iPS-derived NKT cells were immunized with
OVA-loaded TAP-deficient spleen cells permeabilized by osmotic shock. A
week later, the CD8 killer T cells in these immunized mice were analyzed for
IFN-γ production after restimulation with OVA antigen in vitro. A significant
increase in the number of antigen-specific IFN-γ producing CD8 killer T cells
was detected in mice transferred with iPS-derived NKT cells. (B) Inhibition of
the growth of OVA-expressing EL4 (EG7) tumor cells by NKT cell-mediated
adjuvant therapy using iPS-derived NKT cells in vivo in the OVA model. A
significant suppression of tumor growth in vivo was detected. (C) Generation
of allogeneic artificial adjuvant vector cells. Artificial adjuvant vector cells were

loaded with α-GalCer/CD1d and transfected with tumor mRNA. (D) Detection
of long-term memory antigen-specific CD8 killer T cells even 1 year after a
single injection of artificial adjuvant vector cells. Antigen-specific CD8 T cell
responses in mice immunized with artificial adjuvant vector cells were
analyzed using tetramer staining 1 year later. OVA was used in these
experiments. (E) Suppression of melanoma lung metastasis after treatment
with artificial adjuvant vector cells. Mice were intravenously injected with B16
melanoma cells to induce lung metastasis and, then 3 h later, intravenously
with artificial adjuvant vector cells without tumor mRNA. The formation of
metastatic nodules analyzed 2 weeks after melanoma cell injection was
significantly suppressed according to the mechanisms of the activation of
both NKT and NK cells but not that of CD8 killer T cells induced by artificial
adjuvant vector cells carrying only α-GalCer/CD1d without tumor mRNA.

17 patients, which was correlated with a significantly prolonged
median survival time (MST; 29.3 months) in comparison with
the group with no increase compared to the pretreatment sta-
tus in IFN-γ-producing cells (MST of 9.7 months) (Figure 1B)
(32). The α-GalCer-reactive IFN-γ spot forming cells appeared
to include both NKT cells and NK cells (31, 33), consistent with
the notion that α-GalCer-activated NKT cells subsequently stim-
ulate NK cells to produce IFN-γ (34, 35). We also investigated
NKT cell infiltration in the surgically resected tumor samples and
found a significant increase (25- to 60-fold) in the number of NKT
cells in the tumor in situ (36). Because of the clinical correlation
between increased IFN-γ production and prolonged overall sur-
vival, we conclude that IFN-γ may be a good biological marker for
predicting clinical efficacy of this treatment. Although this pre-
diction cannot be made prior to α-GalCer/DCs administration,

the monitoring of IFN-γ production would still be valuable for
patients receiving this immunotherapy. Although none of the cases
showed significant tumor regression, the overall MST of all 17
patients (18.6 months) was superior to that of patients with best
supportive care (4.6 months) or those treated with other types of
therapies (average 10 months) in Figure 1B (37–40).

In the case of the head and neck tumors, we used a com-
bination therapy with α-GalCer/DCs (108) and activated NKT
cells (5× 107) and completed 10 cases, including patients with
pharyngeal, laryngeal, esophageal, maxillary, and oral carcinomas,
who had advanced or recurrent disease after standard treatments
(41). All treated patients showed either a partial response or
achieved a stable disease state, indicating significant clinical effi-
cacy (Figure 1C), which was associated with significant NKT
cell infiltration into the tumor in situ (Figure 1D). To evaluate
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clinical efficacy,a computed tomography (CT) scan was performed
a few days before enrollment and also after the treatment. In
some cases with partial responses, we observed that the enhanced
area decreased in size, and necrosis appeared at the center of
the tumor.

These encouraging clinical studies on advance lung cancers
and head and neck tumors warrant further evaluation of NKT
cell-targeted immunotherapy for survival benefit. In general, the
immunotherapy may be more effective in patients with low tumor
burden. Currently, we have been conducting α-GalCer/DC ther-
apy for stage IIA to IIIA lung cancer patients with small tumor
foci, including remaining micro-metastasis after radical surgery
or after receiving the established first-line therapy in collaboration
with National Hospital Organization.

FUTURE DIRECTIONS FOR NKT CELL-MEDIATED CANCER
THERAPY USING iPS-DERIVED NKT CELLS
Although an NKT cell-targeted therapy has been shown to have
significant clinical efficacy, only one third of patients are eligi-
ble in the case of advanced non-small lung cancer patients; the
frequency of NKT cells in the other patients is too low. To over-
come this problem, we established in vitro methods for generation
of unlimited numbers of functional NKT cells, which then can be
transferred into the patients whose endogenous NKT cell numbers
are limited.

Induced pluripotent stem (iPS) cells were generated from
mature NKT cells using Oct3/4, Sox2, Klf4, and c-Myc genes and
then were developed into functional NKT cells in vitro in the pres-
ence of IL-7 and Flt3L according to the conventional protocol
(42–44). The NKT cells generated in vitro from iPS-NKT cells were
functional in the in vivo setting using the experimental model of
OVA as an artificial tumor antigen (44). When NKT-KO mice were
reconstituted with iPS-derived NKT cells followed by immuniza-
tion with OVA and α-GalCer, we detected a 70-fold increase in
the number of OVA-specific IFN-γ producing CD8+ T cells above
that seen in the control mice (Figure 2A). Under these conditions,
the growth of the OVA-expressing EL4 (EG7) tumor cells was sup-
pressed (Figure 2B). Thus, the iPS-derived NKT cells are able to
function in vivo.

Before any clinical application of iPS-derived NKT cells, two
immunological issues need to be addressed, one is whether
GvHD is induced by NKT cells and the other is whether semi-
allogeneic NKT cells will work in vivo, because of the clinical
use of iPS-derived NKT cells under semi-allogeneic conditions.
To address the first question, iPS-derived NKT cells on a B6
background and B6 or BALB/c CD4 T cells were injected into
BALB/c RAG-KO mice. The results were very clear: only B6 CD4T
cells, but not iPS-derived B6 NKT cells or BALB/c CD4 T cells,
induced GvHD characterized by weight loss, diarrhea, skin dis-
ease development, or death after cell transfer. Concerning the
second issue of the functional potential of semi-allogeneic NKT
cells in vivo (129xB6) F1 NKT cells derived from cloned ES cells
established by nuclear transfer of mature NKT cells into unfer-
tilized eggs were injected into B6 NKT-KO mice and analyzed
for their adjuvant activity in the OVA model. Significant pro-
liferation of OVA-specific CD8 killer T cells was detected, even
though these cells are eliminated in a few days. The ability to

generate NKT cells using a simple in vitro culture system offers
a powerful approach for the establishment of optimal NKT cell
therapy. Our clinical application of the iPS-derived NKT cell
therapy program has now been selected as a Center for Clin-
ical Application Research on Specific Disease/Organ (Type B)
in the Research Center Network for Realization of Regenerative
Medicine, Japan.

FUTURE DIRECTIONS FOR THE NEXT GENERATION OF NKT
CELL-TARGETED THERAPY
For the establishment of the next generation of NKT cell-targeted
therapy, we developed artificial adjuvant vector cells to induce
both innate and long-term memory CD8T cell responses against
cancer. In this system, allogeneic NIH3T3 fibroblasts were used
as a vector cell, into which tumor antigen mRNA and CD1d
with α-GalCer were introduced. In the model experiment, we
used OVA mRNA as an artificial tumor antigen together with α-
GalCer/CD1d to induce the NKT cell-mediated adjuvant effects
in vivo in situ (Figure 2C) (22). The allogeneic artificial vec-
tor cells were destroyed by the host immune system soon after
inoculation and all materials carried by the cells were taken up
by the host DCs, which immediately stimulated host NKT cells
followed by induction of DC maturation and also by activa-
tion of innate NK cells and adaptive OVA-specific CD8 killer T
cells. Surprisingly, long-term memory CD8 T cell responses were
induced in an antigen-specific manner and persisted even 1 year
after the initial single injection and suppressed OVA-expressing
tumor cell metastasis (Figures 2D,E) (45). To test if this method
could be generalized, we used TRP-2, tyrosinase related protein-
2, which is a weak tumor antigen expressed by both mouse
and human melanoma cells as the tumor antigen, and success-
fully suppressed tumor growth in vivo. Therefore, the artificial
vector cells should be useful in the future for vaccines against
various tumors.

SUMMARY
Natural killer T cells bridge innate and adaptive immunity, which
enhances protective immune responses and also establishes long-
term memory responses. Therefore, NKT cells have important
therapeutic potential. In support of this notion, clinical trials on
NKT cell-targeted therapy have demonstrated clinical safety and
significant clinical efficacy in terms of prolonged median overall
survival time in lung cancer patients and achieved stable disease
status or partial responses in head or neck cancer patients.

The powerful treatment options for the future are to estab-
lish iPS cells that can generate unlimited numbers of NKT cells
with adjuvant activity in vitro and suppress tumor growth in vivo.
The other option is to establish the artificial adjuvant vector cells
containing tumor mRNA and α-GalCer/CD1d, which have been
shown to induce tumor-specific long-term memory CD8T cell
responses and to inhibit tumor growth even 1 year after single
injection. Thus, these could be therapeutic candidates for the next
generation of NKT cell-targeted therapy.
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