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Proteoglycans (PGs) are major compo-
nents of all mammalian tissues, being
present ubiquitously on cell surfaces and
within extracellular matrices (ECM). They
play vital roles in mammalian physiol-
ogy and have been implicated in many
disease processes. PGs comprise a sin-
gle core protein with one or more gly-
cosaminoglycan (GAG) chains attached
where these un-branched polysaccharides
are composed of repeating disaccharide
units that show considerable diversity in
their disaccharide composition, glycosidic
linkages, and levels/positions of sulfation
(1,2). GAGs, therefore, contain huge num-
bers of structural permutations (even in the
same chain), representing a vast possible
array of diverse structures that can deter-
mine the fate of local environments (3):
i.e., through their modulation of protein-
binding and activity. Thus, PGs constitute
a tissue and region-specific microenviron-
ment of sugar molecules, both within the
ECM and at the cell-matrix interface, which
acts as a local regulator of tissue function
and homeostasis. As described below, it is
our opinion that this proteoglycan “gly-
comatrix” plays a key role in the regula-
tion of the immune system by acting as
a molecular postcode that controls local
immune function (4). Here we will illus-
trate this with examples of the effects of
PGs/GAGs on the immune system in the
eye, heart, kidney, and lung. In particu-
lar, we will focus on recent evidence that
GAGs can positively and negatively regu-
late the alternative pathway of complement
and suggest how the dysregulation of this
aspect of innate immunity may contribute
to disease processes in a tissue-specific
manner.

PROTEOGLYCANS PROVIDE A DIVERSE
MOLECULAR POSTCODE FOR PROTEIN
REGULATION
Despite the diversity possible in GAG
sequences, considerable specificity in chain
composition is seen between and within
different tissues (5, 6). For example, in the
human eye it has been shown that spe-
cific GAG structures and PG core proteins
are located in defined layers of the retina,
resulting in remarkable compartmentaliza-
tion even within the same organ (6, 7);
this has the potential to regulate the bind-
ing/function of proteins, such as those that
control angiogenesis and innate immunity.
Importantly, the glycomatrix can provide a
postcode that can be distinguished by dif-
ferent proteins [via their abilities to recog-
nize distinct GAG structures (4)], whereby
even members of the same protein fam-
ily [e.g., the interleukin cytokines (8)], can
bind differentially, i.e., at “defined” sites.
At present, because of the current lim-
itations in GAG sequencing, there is rela-
tively little detailed information available
on the precise structures of glycomatrix
postcodes found in different tissues or their
protein-binding specificities. What is clear,
however, is that GAGs/PGs play an impor-
tant role in the recruitment and regula-
tion of a wide range of proteins, including
modulators of the innate/cellular immune
system, as well as those that are involved
in tissue remodeling during inflamma-
tory/disease processes. For instance, GAGs
have been found to be key elements in
regulating pulmonary inflammation dur-
ing lung infection through their binding of
cytokines, chemokines, and growth factors,
which promotes leukocyte adhesion and
accumulation (9). The binding of cytokines

and chemokines to PGs conceals prote-
olytic cleavage sites: for example, heparan
sulfate (HS) limits the proteolytic digestion
of interferon-gamma, which increases its
activity sixfold (10). Furthermore, GAGs
specifically bind matrix metalloproteinases
(MMPs) as well as their endogenous
inhibitors, the tissue inhibitors of metallo-
proteinases (TIMPs). This means that PGs
are able to sequester MMPs and TIMPs
in specific regions of the lung leading to
direct regulation of enzyme activity; e.g.,
following acute lung injury or infection
(9). Other examples include chondroitin
4-sulfate playing a direct role in the presen-
tation of pro-MMP2 to MT3-MMP (where
chondroitin 6-sulfate or HS do not do this),
thus leading to its activation (11), while on
the other hand HS can recruit and inhibit
ADAMI2 (12).

MODULATION OF THE COMPLEMENT
SYSTEM BY PROTEOGLYCANS

The PG glycomatrix can influence the
innate immune system via recruitment of
regulatory factors from the blood; e.g.,
the positive and negative regulators of
the complement system, proderdin, and
complement factor H (CFH). Properdin
stabilizes the alternative pathway C3 con-
vertase, promoting amplification of the
complement cascade, leading to C3b depo-
sition that labels targets for destruction by
phagocytosis and allows formation of the
membrane attack complex, which can lyse
cells; this also leads to the production of
pro-inflammatory mediators that attract
leukocytes and cause mast cell degranu-
lation. Conversely CFH, once recruited to
a surface, can accelerate the decay of the
C3 convertase and act as a co-factor for
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the proteolytic deactivation of C3b, thus
dampening-down a complement response.
This fine balance between positive and neg-
ative regulation can be greatly influenced
by the composition of a tissue’s glycoma-
trix (13). While both properdin and CFH
bind HS on renal tubular epithelial cells,
they recognize distinct, non-overlapping,
sequences within HS GAG chains; i.e., they
do not compete for binding sites. It was
reported that CFH only recognizes highly
sulfated HS, while properdin is able to
bind more lowly sulfated HS structures
(e.g., those lacking N-sulfation) (14). Thus,
this differential recognition of the glyco-
matrix likely allows both positive and neg-
ative regulators of the complement alterna-
tive pathway to be present together on the
surface of these kidney cells, thus ensur-
ing innate immune homeostasis (13). If
this balance breaks down (e.g., due to
impairment of protein/GAG interactions)
it could lead to kidney damage and may
explain the worsening of outcome in pro-
teinuric patients, i.e., due to inappropriate
complement activation.

The CFH protein is comprised of
20 complement control protein (CCP)
domains where CCPs6—8 and CCPs19-20
mediate GAG-binding [see Ref. (15-17)].
Interestingly, our recent work has provided
strong evidence that the HSPGs in the
glomerular basement membrane (GBM)
of the human kidney recruit CFH solely via
its CCP19-20 surface recognition domain;
this region of CFH recognizes highly sul-
fated HS structures (17). On the other
hand, CCP6s-8 are largely responsible for
CFH-binding to sites in the human eye,
i.e., the retinal pigment epithelium (RPE)
and the underlining Bruch’s membrane,
a multi-layered ECM. We believe that
this is because the GAG-binding speci-
ficities of the CCP6-8 and CCP19-20
regions are distinct (15, 17) and can there-
fore provide tissue specificity through
recognition of different GAG structures
(postcodes) in different tissue locations
(see Table 1); i.e., they can distinguish
different glycomatrices.

Bruch’s membrane separates the RPE
and photoreceptor cells in the neurosen-
sory retina from the choroid, a vascular
bed posterior to these structures. CFH,
being the only secreted regulator of the
alternative pathway, is solely responsi-
ble for protecting ECM such as Bruch’s

Table 1 | Comparison of the binding properties of the two GAG-binding regions of CFH.

CCP6-8 CCP19-20
402Y 402H
GAG CHAIN RECOGNITION?
Hyaluronan X X X
Dermatan sulfate v v X
Chondroitin 4-sulfate X X X
Chondroitin 6-sulfate X X X
Heparan sulfate v v v
Heparin v v v
HEPARIN SULFATION SPECIFICITY”
2-O desulfated N3 W A
6-O desulfated J J N
N-O desulfated I W4 44l
TISSUE SPECIFICITY®
Bruch's membrane +++ + +
(Broad specificity) (Requires 2- and 6-O sulfation) (Unknown)
RPE +++ +++ +++
(Broad specificity) (Requires 2- and 6-O sulfation) (Unknown)
Kidney GBM — — +++

“Based on direct binding experiments where V' means binding and X no binding.

°Binding to selectively desulfated preparations of heparin where i means small reduction in binding, J, l, mod-

erate reduction in binding, |, | large reduction in binding, and |, |, |, { means no detectable binding.

°Based on the binding of fluorescently labeled protein (CCP6-8 and CCP19-20) probes to human tissue where

— means no binding, + weak binding, +- moderate binding, and +-- strong binding.

membrane from complement-mediated
damage (i.e., preventing complement
amplification in healthy host tissues). We
have found previously that CFH-binding
sites in Bruch’s membrane are comprised
mainly of HS, but with dermatan sulfate
also playing a minor role (16). Moreover,
we discovered that the Y402H polymor-
phism in the CFH gene [that changes a
tyrosine to histidine in CCP7 (18)] impairs
the ability of CFH to bind to GAG post-
codes in Bruch’s membrane (16). This is
likely to be important since this common
polymorphism is strongly associated with
the development of Age-related Macular
Degeneration (AMD) (19-21), which is
the most common form of blindness in
the western world; individuals homozy-
gous for the 402H form of CFH have
a ~5-fold increased risk of developing
AMD (20). Our studies have demonstrated
that the disease-associated 402H variant
has a rather restricted specificity, requir-
ing highly sulfated structures, as opposed
to the 402Y form which is able to bind
a broader range of GAG sequences (15,
22). In the glycomatrix of the Bruch’s
membrane the binding sites for the 402H

variant of CFH are rare relative to those
for 402Y (16). On this basis we hypoth-
esize that insufficient binding of 402H
within the Bruch’s membrane will lead
to complement over-activation and local
chronic inflammation, and thereby dam-
age the RPE, contributing to the formation
of the particulate deposits, called drusen,
that are the hallmarks of AMD (16, 23, 24).

As noted above, the two GAG-binding
regions in CFH have different specificities
where these are likely to differentially reg-
ulate the interactions of this protein with
sites in the eye and kidney (17). This may
explain why mutations/polymorphisms
within CCPs19-20 are associated with the
kidney disease, atypical Hemolytic-Uremic
Syndrome (aHUS), where uncontrolled
complement activation is believed to lead
to inflammation and the formation of
blood clots, whereas, the Y402H polymor-
phism is linked to AMD. Patients suf-
fering from aHUS do not present with
any ocular phenotype and similarly AMD
patients rarely have associated kidney
problems. This provides a striking exam-
ple of the tissue-specific nature of the gly-
comatrix microenvironment (e.g., of the
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Bruch’s membrane and GBM) and how
this might differentially influence disease
processes.

AGE-RELATED EFFECTS ON THE
GLYCOMATRIX POSTCODE?

Alterations in the biosynthesis and
turnover of PGs are known to occur with
age (2), therefore concomitant effects on
protein recruitment and tissue function
would not be surprising. For example,
there is an age-related change in the fine
structure of HS that affects the migration
of endothelial progenitor cells (25). Here
the loss of a specific tri-sulfated disaccha-
ride from their surface HS correlates with
a reduction in their migratory response
to vascular endothelial growth factor; this
impairs the engraftment capacity of these
cells, contributing to endothelial dysfunc-
tion and age-related vascular pathology.
Similarly, human aorta HS is subject to
age-related increases in the level of 6-O sul-
fation (26); this, in turn, leads to increased
binding of platelet-derived growth factor
resulting in its extracellular accumulation,
which is hypothesized to facilitate aber-
rant smooth muscle cell migration and
growth, i.e., in individuals prone to devel-
oping atherosclerotic disease. Another
example is the recent finding that chon-
droitin sulfate and keratan sulfate chains
of aggrecan, a major PG component of
articular cartilage, decrease in both num-
ber and length with age, affecting amongst
other things the mechanical properties
of this tissue (27). Given the importance
of GAGs in the regulation of comple-
ment (as described above), it is plausible
that age-related changes in the glycoma-
trix of the eye could contribute to AMD
pathogenesis, such that this might explain
the age-related nature of this disease
(15,24).

PROTEOGLYCANS AS TARGETS FOR
THERAPEUTICS?

Given the major role played by PGs and
their GAG chains in immune homeosta-
sis, it seems plausible that they might make
good therapeutic targets for immuno-
logical diseases. However, based on the
above information, it will perhaps be pru-
dent to attempt to modulate GAG-protein
interactions in a tissue-dependent con-
text. In this regard, it has recently been
demonstrated that specific heparinoids,

such as N- and O-sulfated K5 polysac-
charides, can inhibit the binding of prop-
erdin to HS on renal tubular epithelial cells
without affecting CFH, thereby controlling
complement activation (13); this has the
potential to prevent complement-derived
tubular injury in proteinuric kidney dis-
eases. Approaches of this type may be able
to selectively inhibit the binding of pro-
inflammatory proteins to particular GAG
structures in a tissue/organ-specific man-
ner and thus correct immune dysregulation
in a wide range of pathological conditions.

CONCLUDING REMARKS

In our opinion, the glycomatrix created
by PGs remains an under-appreciated con-
tributor to immune regulation. However,
an increasing body of evidence is pro-
viding insights into just how important
these complicated glycoproteins are in pro-
viding the fine control to immunologi-
cal processes in tissue microenvironments,
particularly within the ECM. More work
is now needed to fully elucidate the bio-
chemical basis of protein/GAG interac-
tions and determine their roles in patho-
logical processes. Further advances in our
knowledge of the proteoglycan glycoma-
trix should facilitate the development of
novel, tissue-specific, therapeutics, e.g., for
diseases of the immune system.
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