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Dendritic cells (DC) play a central role in the regulation of the immune responses by provid-
ing the information needed to decide between tolerance, ignorance, or active responses.
For this reason different therapies aim at manipulating DC to obtain the desired response,
such as enhanced cell-mediated toxicity against tumor and infected cells or the induction
of tolerance in autoimmunity and transplantation. In the last decade studies performed in
these settings have started to identify (some) molecules/factors involved in the acquisition
of a tolerogenic DC phenotype as well as the underlying mechanisms of their regulatory
function on different immune cell populations.
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INTRODUCTION
The immune system evolved with the difficult task of preserv-
ing the integrity of the “self,” while protecting it from “non-self”
and/or dangerous invaders, thus finding the right balance between
aggression and tolerance. A central role in orchestrating the differ-
ent immune cell subpopulations is played by dendritic cells (DC),
the major professional antigen presenting cells (APC). Over the
last two decades, many different DC subsets have been identified
and classified into myeloid DC, which comprise all monocyte-
derived cells and blood-resident CD1c+ DC and into plasmacytoid
DC (PDC).

A particularly difficult task for the immune system is to fight
tumors, since they derive from the “self,” but based on their high
proliferative potential they are dangerous for the survival of the
host. Moreover, due to the high mutation rates of tumor cells
the selection pressure posed by an immune response can result
in tumor immunoediting with the outgrowth of immune escape
variants or the induction of a suppressive microenvironment. In
line with the central role of DC in balancing response versus toler-
ance, many of the immune escape mechanisms displayed by cancer
cells affect DC. These include alterations in the frequency and/or
function of circulating and tumor-infiltrating DC in patients
with tumors of different histologies. In particular, DC in can-
cer patients can be affected in their differentiation capacity, with
either enhanced apoptosis or skewed phenotype toward imma-
ture cells with suppressive properties collectively named myeloid
derived suppressor cells [MDSC; (1, 2)], in their ability to process
and/or present tumor-associated antigens (TAA) and in their abil-
ity to interact with effector cells, e.g., to activate and/or correctly
polarize them.

Studies performed with DC differentiated in vitro in the pres-
ence of tumor cells or of their conditioned medium as well

as with purified tumor-infiltrating DC identified the underly-
ing mechanisms responsible for such alterations leading to a
pro-tumorigenic phenotype. This review summarizes the known
processes employed by tumor cells to subvert professional APC
(summarized in Table 1) and how the increasing knowledge can
not only help in fighting cancer, but also in inducing tolerance to
transplanted organs and suppression of autoimmune diseases.

MYELOID DC AND CANCER
Tumor cells can influence the phenotype and function of myeloid
cells at different time points of their life and with distinct mech-
anisms. These include the metabolic shift of tumor cells toward
the anaerobic glycolytic pathway for glucose degradation resulting
in increased concentrations of extracellular lactate and an acid-
ification of the microenvironment, the so-called Warburg effect
(3). Monocytes cultured in vitro in the presence of lactate and low
pH have shown an impaired differentiation toward DC favoring
either an expansion of MDSC (4) or of macrophages that promote
a Th17 polarization (5). Despite prolonged incubation in the pres-
ence of lactate impairs DC responsiveness to lipopolysaccharide
[LPS; (6)], a transient exposition promotes DC maturation and
enhances their ability to induce a type 1 immune response (7). In
addition to pH alterations, the tumor microenvironment is char-
acterized by hypoxia that skews DC toward a type 2 polarization
(8), reduces their ability to uptake antigens (Ag), and alters their
migratory properties (9).

In addition, expression of hyaluronan (HA), a component of
the extracellular matrix of the tumor stroma,correlates with tumor
invasiveness and poor survival of patients with ovarian, breast,
and colorectal cancer (10–13), while high HA levels correlate with
more differentiated tumor phenotype and an enhanced survival
in patients with oral squamous carcinoma (14). The effects of HA
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Table 1 | Effects of tumor-derived molecules on APC functions.

APC properties Factor Effectsa Reference

Differentiation Ganglioside Reduced CD1a. Reduced DC from CD34 progenitor (77, 78)

HA Suppressive Mf promoted over DC (18)

HLA-G Promoted expansion of MDSC in vivo (27)

Lactate/pH Impaired differentiation (no CD1a), promoted MDSC expansion (4, 6)

Mucins More immature phenotype (59, 60)

PGE2 Promoted MDSC differentiation (69)

VEGF Promoted MDSC differentiation (40–42)

Wnt5a Impaired differentiation of monocytes toward mDC (53, 55)

Migration Ganglioside Lower CCR7 and impaired migration toward CCL19 (LC) and CCL3 (74, 78)

Hypoxia Enhanced migration toward SDF-1α and CCL4; reduced CCR7 levels (8, 9)

PGE2 Enhanced expression and functionality of CCR7 (mDC). Reduced CCR7/CXCR4

ratio for tissue retention (PDC)

(62, 100)

TGF-β Reduced migration in vivo to LN and in vitro to CCL19; enhanced expression of

inflammatory CCR

(44, 45)

Ag uptake and processing Ganglioside Reduced expression of various APM components; reduced endocytosis (78, 79)

HLA-G Reduced MHC class II antigen processing (22)

Hypoxia Reduced endocytosis (8, 9)

TGF-β Reduced endocytosis and phagocytosis (44)

Wnt5a Lower fluid phase and CD206-mediated Ag internalization (55)

Surface molecules Ganglioside Lower CD40, CD54, CD80, CD86, CD83 (LC, mDC) (74, 77, 82)

Glycodelin Reduced CD83 and CD86 (33)

HLA-G Reduced HLA-DR, CD80 and CD86 (22, 24–26)

Hypoxia Reduced CD40 and HLA-DR (8)

IL-10 Reduced CD86 (177)

Mucin Reduced CD40, CD83 and CD86 (58–60)

PGE2 Enhanced OX40L and CD70 induction (mDC). Reduced CD40 (PDC) (63, 64, 100)

TGF-β Reduced CD80 and CD40 (44)

Wnt5a Reduced CD80 and CD86 (PDC) (56)

Secreted molecules Ganglioside Reduced IL-6, IL-12 and TNF-α, increased PGE2 secretion (59, 82)

Glycodelin Enhanced IL-6 by monocytes and Mf. Reduced IL-12 and higher IL-10 in mDC (33, 34)

HA Enhanced IL-10 by suppressive Mf. Reduced IL-12/IL-10 ratio in mDC (18, 19)

HLA-G Reduced IL-12, enhanced IL-6 (24, 26)

Hypoxia Reduced IL-12 and TNF-α and enhanced IL-10 (8)

IL-10 Reduced IL-12 and/or IFN-α production (PDC) (101, 102)

Lactate/pH Reduced IL-12, IL-6 and TNF-α; enhanced IL23 (5, 6)

Mucin Reduced IL-12, increased IL-10 (58–60)

PGE2 Reduced IL-12/IL23 ratio, reduced CXCL10, CCL5 and CCL19; enhanced IDO

(mDC). Reduced IFN-α and TNF-α (PDC)

(66, 70, 71, 100, 102)

sCD83 Enhanced TGF-β and consequently IDO (PDC, mDC) (51)

TGF-β Reduced IFN-α and TNF-α (PDC) (100, 103)

Wnt5a Inhibited IFN-α secretion (PDC); enhanced TGF-β and IL-10; reduced IL6 and IL-12 (54–56)

Survival Ganglioside Enhanced apoptosis (LC, mDC) (74, 75)

Glycodelin Contradictory results (34)

HA Enhanced apoptosis via NO induction (20)

IL-10 Enhanced apoptosis (PDC) (101)

Mucins Enhanced apoptosis early during differentiation (57)

Interaction with NK cells HLA-G Reduced activation (CD69, IFN-γ secretion, cytotoxicity) (26)

PGE2 Reduced recruitment and induction of IFN-γ (71)

(Continued)
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Table 1 | Continued

APC properties Factor Effectsa Reference

Interaction with nk-T cells TGF-β Reduced CD1d and lipid presentation (46)

Interaction with T cells Ganglioside Reduced allo-MLR (LC). Reduced proliferation to TT and allo-MLR (mDC) (74, 78, 81, 82)

Glycodelin Reduced induction of proliferation. Reduced IFN-γ secretion (28, 34)

HA Enhanced T cell apoptosis via ROS production (19)

HLA-G Reduced allo-MLR, more IL-10 secreting CD8+ T, anergic CD4+ T (22, 25)

Hypoxia Enhanced IL-4 over IFN-γ secretion, type 2 skew (8)

IL-10 Enhanced proliferation of CD4+ T and skew toward Th2 (PDC). Reduced

allo-MLR and anergy induction

(102, 177)

Lactate/pH Reduced Ag specific CD8+ T proliferation; enhanced IL-17 over IFN-γ secretion (5, 6)

Mucin Reduced allo-MLR, reduced IFN-γ secretion by CD8+ T (60)

PGE2 Enhanced IL-17 and reduced IFN-γ, inhibition via IDO and soluble CD25 (mDC).

Enhanced proliferation of CD4+ T and skew toward Th2 (PDC)

(65, 66, 70, 102)

sCD83 Induction/expansion of CD4+ CD25+ Foxp3+ Treg (51)

TGF-β Reduced proliferation in allo-MLR and to peptide, reduced IFN-γ secretion (44)

Wnt5a Reduced IFN-γ secretion, higher IL-10 secretion. Reduced proliferation (54, 55)

aWhen nothing given between brackets, mDC are considered.

PDC, plasmacytoid DC; LC, Langerhans cells; Mf, macrophages; mDC, myeloid DC; LN, lymph node; MLR, mixed leukocyte reaction.

on DC are controversial and possibly related to its size: whereas
low molecular weight HA can induce DC maturation in vitro (15,
16) and improve their functionality in vivo as cancer vaccine (17),
intermediate sized HA impairs monocyte differentiation resulting
in immunosuppressive APC characterized by a macrophage-like
phenotype (CD14+, CD1alow), a reduced upregulation of costim-
ulatory molecules and inflammatory cytokines after stimulation
with toll-like receptor (TLR) ligands and an enhanced secre-
tion of interleukin (IL)-10 (18, 19). Moreover, HA-conditioned
DC can secrete nitric oxide (NO) and reactive oxygen species
(ROS) that can induce apoptosis in DC and in co-cultured T cells,
respectively (19, 20).

An other escape strategy exploited by tumor cells is the hijack-
ing of endogenous mechanisms of tolerance induction used by
immuno-privileged organs. This is mediated by the non-classical
HLA-G antigen, which exhibit a tightly controlled physiologic
expression restricted to cornea, thymic epithelial cells, repro-
ductive organs, embryonal tissues, and the extravillous cytotro-
phoblasts at the maternal-fetal interface. Furthermore, HLA-G
is often expressed in solid and hematologic tumors either as a
transmembrane and/or a secreted/shed protein, thereby protect-
ing tumor cells from the cytolytic activity of natural killer (NK)
and T cells (21). In addition, HLA-G can also impair myeloid DC
by binding to the inhibitory receptors ILT2 and ILT4 in humans
and PIR-B in mice (22–24). Receptor triggering by HLA-G inhibits
the nuclear translocation of the transcription factor NF-κB (25),
which is consequently accompanied by reduced expression of cos-
timulatory molecules and proinflammatory cytokines as well as
impaired presentation of MHC class II-restricted epitopes (22).
As a consequence, HLA-G treated DC lack the ability to induce
NK cells activation (26) and promote anergy of effector cells
and differentiation of regulatory T cell [Treg; (22)]. Furthermore,
tumor-expressed HLA-G induced suppressive MDSC and tumor
growth in vivo (27).

Glycodelin (previously called placental protein 14 or PP14, α2-
globulin, progesterone-associated endometrial protein or zona-
binding inhibitory factor) has been originally identified as the
molecule responsible for the immunosuppressive activity in the
decidua during early gestation (28), but is also expressed in tumors
of the reproductive tract, e.g., ovarian carcinoma, where its gly-
cosylated form glycodelin A (GdA) correlated with unfavorable
prognosis (29). Furthermore, glycodelin correlate with a worse
patients’ prognosis in familiar, non-BRCA1/2 breast carcinoma
(30) and in lung cancer (31). In vitro characterization of gly-
codelin function demonstrated suppressive effects on all immune
cell populations (32), including DC. Treatment of DC with GdA
results in lower expression levels of costimulatory molecules, a
low IL-12/IL-10 ratio (33), and a reduced ability to induce a type 1
polarization of effector cells (34). Depending on the culture condi-
tions, GdA has also been reported to induce or suppress apoptosis
in monocytes [see discussion in Ref. (34)].

Other “physiologic” tolerogenic factors borrowed by tumor
cells include indoleamine 2,3-dioxygenase [IDO; (35)], adenosine
production via CD73 expression (36), and secretion of IL-10 (37,
38), transforming growth factor-β [TGF-β; (39)] or soluble CD83
(sCD83).

Transforming growth factor-β plays not only a role in MDSC
development, like vascular endothelial growth factor [VEGF; (40–
42)], IL-6 and/or macrophage colony stimulating factor [M-CSF;
(43)], but also impairs the DC migratory capacity by altering the
expression pattern of chemokine receptors (44, 45) and induc-
ing downregulation of CD1d thus impairing DC interactions with
NK-T cells (46).

sCD83 was found in total blood cell cultures after stimulation
and might represent a feed back mechanism to shut down an
immune response (47). Indeed, enhanced serum levels of sCD83
detected in hematologic malignancies and solid tumors, like lung
carcinoma correlate with shorter tumor-free survival (48–50).
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In vitro treatment of DC with recombinant sCD83 results in
enhanced IDO production and induction of TGF-β producing
Foxp3+ Treg (51).

An additional strategy of immune escape mechanisms
exploited by tumor cells consists in the upregulation of mole-
cules with negative effects on DC. These include alterations in
the Wnt/β-catenin pathway inducing activation of MerTK recep-
tor (c-mer proto-oncogene tyrosine kinase) in infiltrating cells
like macrophages and DC that help tumor growth in vivo (52).
In vitro studies have found that tumor-derived Wnt5a can impair
the differentiation of monocytes toward DC (53) and inhibit the
maturation response to TLR ligand by myeloid DC (54, 55) as well
as by PDC (56).

Mucins are expressed by many epithelial tumors and their pres-
ence during differentiation of monocytes toward DC results in
less differentiated cells with increased apoptosis (57), impaired
response to TLR ligand stimulation, cytokine production skewed
toward the immunosuppressive IL-10, impaired ability to induce
proliferation of T cells, and enhanced induction of suppressive T
cells (58–60). Those effects seem to be mediated by binding to the
mannose receptor, siglec-3 and -9 (57–59).

A hallmark of many tumors is the secretion of high levels of
prostaglandin E2 (PGE2) due to upregulation of cyclooxygenase
(COX)1/2. The consequences of PGE2 on DC functionality are
complex. While it represent a component of the “gold standard”
cocktail for vaccine DC maturation (61) due to its role in pro-
moting CCR7-mediated migration (62), and it also induces the
expression of costimulatory molecules like OX40-L and CD70
promoting T cell functions (63, 64), it can inhibit the synthesis
of IL-12p70 (65), while favoring the secretion of IL-23 that pro-
mote Th17 immune responses (66) and tumor development (67,
68). Moreover, PGE2 enhances MDSC differentiation (69), induces
expression of IDO and soluble CD25 that inhibit T cell stimula-
tion (70) and impairs the cross talk with NK cells (71). A possible
explanation for the contrasting effects can be due to the specific
receptor triggered by PGE2 (72) and/or the relative ratio between
PGE2-treated DC and effector cells (73).

Altered and/or secreted gangliosides have also been demon-
strated to affect DC differentiation and survival (74–78). More-
over, gangliosides impair the ability of monocytes to induce T cell
proliferation due to a downregulated expression of components of
the antigen processing machinery [APM; (79, 80)], a suppressed
costimulation and a reduced cytokine production (81, 82). In vivo,
a correlation between elevated levels of the ganglioside GM3 and
a higher frequency of immature DC was found in non-small-cell
lung cancer (83).

Furthermore, “tumor-deviated” DC/MDSC exhibit an altered
phosphorylation pattern of STAT3 (84, 85) that has also
been linked to the inhibition of IL-12p40 transcription (86)
and/or of p38 (87) that is involved in the induction of Th17
responses (88).

In addition to boost the immune suppression, tumor-
conditioned DC can also provide direct help to tumor cells
by secreting mitogens for the tumor cells (89), by favoring
the epithelial mesenchymal transition (90), by promoting their
invasiveness and ability to metastasize (8, 90) and by inducing
angiogenesis (91, 92).

PDC AND CANCER
Plasmacytoid DC have been found in the infiltrate of various
human solid tumors like melanoma, breast, ovarian, and head and
neck carcinoma, where they frequently correlated with a worse
patients’ prognosis (93–96). Functionally, PDC can be recruited
by the tumor through its secretion of CXCL12 (also called SDF-
1α) and CCL20 (97–99). Then, factors locally released by tumor
cells, like TGF-β, tumor necrosis factor (TNF)-α, IL-10, and PEG2

(95, 100–104) as well as triggering of the PDC-specific recep-
tor ILT7 (105, 106) induce the immunosuppressive properties of
PDC. Indeed, tumor-conditioned PDC display a semi-mature phe-
notype with expression of costimulatory molecules but impaired
secretion of IFN-α (93, 101, 103). In addition, tumor-associated,
tolerogenic PDC showed an upregulation of the transcription fac-
tor Foxo3 (107) and an impaired migration to lymphoid organs
due to reduced CCR7 expression (100).

Characterization of the immunosuppressive activity of PDC
in vitro have highlighted their ability to induce unresponsiveness
of effector cells, to promote the development of suppressive CD8+

T cells, to differentiate naïve CD4+ T cells toward Foxp3+ or IL-10
producing Treg as well as to expand pre-existing Treg (108–113).
From the molecular point of view, important roles have been iden-
tified for ICOS ligand (ICOS-L), IDO, notch ligand delta-like 4
(Dll4), and granzyme B. ICOS-L is upregulated shortly after mat-
uration induced by CD40-L or TLR9 triggering (108), is involved
in inducing IL-10 production in CD45RO+ T cells (114) and in
sustaining the survival and proliferation of Foxp3+ Treg (115). A
role in vivo for this pathway is supported by the co-localization
between ICOS+ Treg and ICOS-L+ PDC within breast and ovar-
ian carcinoma (115, 116). Murine and human PDC can produce
IDO in vitro upon triggering of TLR9, CTLA-4, GITR, or CD200
(117–119). PDC expressing IDO have been identified in melanoma
draining lymph nodes in murine models and human patients and
have been correlated with the activation of naïve and mature Treg
(120–122). In murine models, the constitutively expressed Dll4
allow PDC to induce Th1 cells to produce IL-10 even under type 1
polarizing conditions, thus favoring the shut down of an immune
response (123). Granzyme B, whose secretion by PDC is boosted
by tumor-derived IL-3 and IL-10, is involved in the downregula-
tion of the CD3ζ chain of T effector cells, thereby resulting in their
anergy or deletion by apoptosis induction (124, 125).

In addition to their immunosuppressive role, PDC play a pro-
tumorigenic role by promoting angiogenesis via secretion of TNF-
α and IL-8 (126) and favoring metastasis dissemination into the
bone (127).

IMPROVED PROTOCOLS FOR DC-BASED VACCINATION
AGAINST CANCER
Two major strategies of DC-based tumor immunotherapy have
been implemented. The first is based on the ex vivo production
and manipulation of DC that are then injected into the patients
while the second targets the DC directly in vivo (Figure 1).

The classical strategy for the first approach consists in the differ-
entiation of CD14+ circulating monocytes or CD34+-mobilized
precursor cells into immature DC by culturing them in the pres-
ence of granulocyte-monocyte colony stimulating factor (GM-
CSF) and IL-4 for 7 days, after which they are loaded with TAA
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FIGURE 1 | Current DC-based strategies of tumor immunotherapy. In
the ex vivo strategy, monocytes-derived immature DC or terminally
differentiated blood DC are loaded with tumor antigens and/or induced to
mature before in vivo injections. Whereas systemically injected DC will
migrate to the draining lymph node to prime effector T cells, intratumorally

injected DC have to interact with effector cells within the suppressed
microenvironment. Direct in situ targeting strategies aim at recovering the
functionality of infiltrating DC, either promoting their correct differentiation
or providing stimuli to foster their functionality. Ag, antigen; ATRA, all-trans
retinoic acid.

and induced to mature before in vivo injection. Studies performed
using cells from patients with different solid as well as hematologic
cancer histotypes have demonstrated that precursor cells are either
not irreversibly impaired and can be matured with this protocol or
that is possible to rescue their differentiation into functional DC
upon inhibition of STAT3, p38, and/or IL-6 (128, 129). Despite the
good results obtained in vitro with patient-derived DC, and the
induction of immune response in treated patients demonstrated
by expanded Ag-specific T cells and delayed type hypersensitivity
(DTH) reactions, the first clinical trials with vaccine DC resulted
in poor clinical outcome. Based on the increased knowledge of the

DC biology and of tumor escape mechanisms the protocol for the
ex vivo production of vaccine DC has to be optimized (Box 1).

The initial poor results of DC-based immunotherapy could be
due to the immature or only partially mature phenotype of the
DC, and in particular to their reduced levels of IL-12 secretion.
Thus, many alternative maturation protocols have been developed,
which induce DC with an enhanced IL-12 secretion and function-
ality in vitro, with some of them that have also reached clinical
application. The “alpha type-1 polarized DC” obtained upon mat-
uration in the presence of IL-1β, IFN-α, IFN-γ, poly IC, and
TNF-α (130) have been tested in patients with recurrent glioma
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Box 1 Optimization of DC-based tumor immunotherapy.

Different anatomical and tumor derived factors pose problems to the success of DC-based therapy. Following is a list of key points that
have to be optimized.

(A) Ex vivo DC preparation
• DC subset: terminally differentiated blood DC (PDC, CD1c+ DC, mixed) or monocyte derived DC (GM-CSF + IL-4, GM-CSF + IFN-α,

GM-CSF + IL-15; standard 7 days or shortened 2–3 days protocol).
• Antigen loading: protein, DNA, or mRNA; one or multiple Ag, defined or total tumor repertoire.
• Maturation:TLR-ligand(s) (poly IC, MPLA, R848) and/or immune-derived (CD40-L, IFN-γ). Is PGE2 to be added for the migratory ability?
• Targeted effector cells: CD8+ T cell only; also CD4+ T helper and/or innate effector cells (NK, iNKT, γδ T cells)

(B) Vaccination protocol:
• Injection route: intratumor versus systemic (intradermal, intramuscular, subcutaneous, intranodal)
• Number of injection and distance in between
• Optimal DC dose
• Combination with other treatment modalities (remove suppressive populations, reduce local immunosuppression, enhance tumor

permeability. . .)

(131, 132), melanoma, and colorectal cancer (NCT00390338
and NCT00558051 at http://www.clinicaltrials.gov, respectively),
whereas DC stimulated with LPS and IFN-γ have been used for
the treatment of patients with breast cancer (133, 134). DC stim-
ulated with the streptococcus-derived immunotherapeutic agent
OK432 have been used against hepatocellular carcinoma (135) and
colorectal cancer (136).

In parallel to the manipulation of the maturation protocol,
the type of DC was also optimized. Alternative differentiation
protocols for monocytes have been tested to obtain more phys-
iologic DC types. GM-CSF has been combined with IFN-α to
induce inflammatory DC, which have already been tested in
patients with medullary thyroid carcinoma (137), or with IL-15 to
induce Langerhans-like DC that despite the enhanced functional-
ity in vitro did not provide higher responses in melanoma patients
when compared to standard DC (138). Furthermore, terminally
differentiated DC have been used both as single or mixed popula-
tions. Regarding the myeloid subset, in a preclinical trial sufficient
amount of CD1c+ blood DC have been purified from healthy as
well as melanoma and Bowel cancer disease patients under GMP
(good manufacturing practice) conditions and could be induced
to secrete proinflammatory cytokines, thus opening the way for
a possible clinical application (139). Two different approaches
using PDC have been developed. A leukemic cell line with PDC
characteristic has been isolated and, after having demonstrated
functional activity in humanized murine models (140) and with
melanoma PBL in vitro (141) will be evaluated in a clinical trial
in HLA-matched melanoma patients (NCT01863108). In con-
trast, de Vries and co-workers have employed autologous, patient-
derived PDC in a phase I clinical trial against melanoma (142).
A GMP platform has been established to purify all subtypes of
circulating APC resulting in a population able to induce Ag-
specific CTL both from healthy donors and myeloma patients
(143). The injection of a highly purified DC population does not
seem to be required since the sipuleucel-T (also called APC8015 or
Provenge®) vaccination approved by the Food and Drug Admin-
istration (FDA) for treatment of prostate cancer patients is based
on a highly mixed population, in which the DC targeted with TAA
only represent a small component (144, 145).

Other optimizations have been also evaluated in order to mod-
ulate the suppressive environment that impair the in vivo ability
of the vaccine DC to prime immune responses. This is mediated
by rendering DC insensitive to the tumor-induced suppressive
microenvironment by blocking inhibitory signaling pathways, like
TGF-β (146, 147), IL-6 (148), and STAT3 (129, 149, 150). On the
other side, the costimulatory function of DC have been further
improved by providing the T lymphocytes with all required pos-
itive signals and/or the absence of negative feedback regulators
in order to acquire full functionality and resistance to suppressor
cells. DC unable to produce IL-10 (151, 152), insensitive to CTLA-
4 triggering (153), providing enhanced levels of CD70 (154–157),
CD80 (154), or GITR-L costimulation (153, 158) have proved
to induce T cells with enhanced resistance to Treg suppression,
delayed induction of tolerance as well as reversion of the toler-
ized status. Some of those “costimulatory enhanced” DC have also
started the path of clinical trials like the TriMix DC (express-
ing CD40L, CD70, and a constitutively active TLR4 receptor) in
melanoma patients (159, 160).

To provide a more general pro-stimulatory phenotype, multi-
ple signaling pathways have also been enhanced by either inducing
expression of the transcription factor T-bet (161, 162) or by silenc-
ing A20, an inhibitor of signaling pathway downstream of TLR and
TNF receptors (163) resulting in DC with improved functionality.
Similarly, with the increased knowledge of the important role of
micro RNA (miR) in the fine tuning of gene transcription and
their role in the immune response and in DC functions (164),
DC-specific miR have been targeted. For example, inhibition of
miR-22 and miR-503, two miRNA upregulated in DC upon cocul-
ture with tumor cells, resulted in improved therapeutic activity
due to enhanced DC survival (165).

The major aim of the second line of therapy is to revert the toler-
ized phenotype of tumor-infiltrating and/or recirculating DC in
order to allow proper activation of effector cells. The most clin-
ically advanced strategies are those focusing on PDC and using
ligands of the TLR-7 and -9 to recover their IFN-α secreting capa-
bilities. After the successful use of imiquimod and CpG-containing
oligonucleotides in murine models, many clinical trials have also
been performed (166), leading to the approval of imiquimod for
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cancer immunotherapy by the European Medicines Agency and
the FDA. A problem with such a strategy is the fact that in some,
but not all tumors a downregulation of the two TLR in tumor-
infiltrating PDC have been reported (93). At the basis of the
positive outcome upon PDC in situ triggering there can be not
only the activation of other immune cells and the inhibition of
Treg (167), but also a direct tumoricidal activity upon upregula-
tion of TRAIL and granzyme B (168, 169). Is to be underlined
that the upregulation of granzyme B by PDC can also have detri-
mental effect by killing T cells (124, 125, 169). An other reported
effect of CpG injection is the differentiation of MDSC toward
functional monocytes with consequent reduction in the amount
of suppressive cells (170, 171).

On the side of targeting myeloid DC in vivo, similar approaches
to the ex vivo manipulation have been tested. Chemical inhibitors
of negative signaling pathways like STAT3 (150), or positive mod-
ulators like miR-155 (172), have been injected in vivo with the aim
to be uptaken by DC and to revert their tolerogenic phenotype
and promote immune-mediated tumor rejection. Provision of
missing IL-12 through different technical approaches have demon-
strated that in addition to the stimulation of NK and T cells, also
myeloid cells are positively affected with the activation of cytotoxic
macrophages and reversion of MDSC with loss of their suppres-
sive properties (173, 174). Many different strategies are also aiming
at the removal of MDSC acting on their differentiation and/or
suppressive functions (175). For example all-trans retinoic acid
(ATRA), a compound reducing MDSC number and function has
been combined to DC vaccination in a phase I trial in small cell
lung cancer patients (176).

EXPLOITATION OF TOLEROGENIC DC IN TRANSPLANTATION
AND AUTOIMMUNITY
In the setting of autoimmunity and transplantation the aim of
immunotherapy is to reduce inflammation and to induce a local
and/or antigen-specific immunosuppression/tolerance in order
to avoid organ rejection and reduce the disease score without
increasing the risk of opportunistic infections. Like for tumor
immunotherapy, DC have been manipulated ex vivo or directly
targeted in situ.

Tolerogenic DC have been differentiated in vitro from human
monocytes and murine bone marrow cells upon culture in the
presence of different combination of IL-10 (177), TGF-β (178), vit-
amin D3 (179), dexamethasone (180), protein kinase C inhibitor
(181), and rapamycin (182). These cells are characterized by a
semi-mature phenotype, the ability to expand Treg and to preserve
such properties even in an inflamed microenvironment, as mim-
icked by stimulation with TLR ligands (183, 184). Murine models
of organ transplantation as well as different autoimmune diseases
have demonstrated the therapeutic applicability of such tolero-
genic DC (185–188) and opened the way to preclinical evaluation
in multiple sclerosis (189) as well as in a phase I trial in rheuma-
toid arthritis [RA; (190)]. Similarly, the good results obtained
with non-obese diabetic (NOD) mice injected with DC silenced in
the major costimulatory molecules [i.e., CD40, CD80 and CD86;
(191)] have opened the way for a phase I safety study in patients
with type 1 diabetes (192). In the setting of organ transplanta-
tion, “classical” murine bone marrow-derived DC from the organ

donor have been either triggered with tetramer of sHLA-G1 (25)
or silenced in NF-κB (193) in order to induce a transplant-specific
tolerance that allow (longer) acceptance of the graft.

Direct in situ targeting of DC has also been implemented in
order to promote local and/or antigen specific tolerance. Clinical
trials have been performed with apilimod (or STA5326), a specific
inhibitor of IL-12 and IL-23, which are the central mediators of
the Th1 and Th17 responses involved in autoimmunity. Whereas
in psoriasis a reduction in inflammatory cytokine and DC infil-
tration of the skin lesions was observed upon apilimod (194), no
robust clinical improvement was found in RA (195) and contrast-
ing results were reported in Crohn’s disease (196, 197). Although
still in the preclinical phase systemic or topic injection of sCD83
was able to prolong survival of grafted organs (51, 198) as well
as to reduce experimental autoimmune encephalomyelitis (EAE)
in both prophylactic and therapeutic setting (199). Additional
strategies inducing antigen specific tolerance consist in coupling
the desired antigen to antibodies or ligands for specific recep-
tors expressed by DC. Examples are DEC-205 (200, 201), the
human DC immunoreceptor (DCIR) (202, 203), and the murine
acid binding Ig-like lectin H [siglec-H; (204)] that induce specific
tolerance to the antigen they have been targeted with.

CONCLUSION
Despite the ever growing knowledge on the immunologic func-
tion of DC and how tumor cells try to subvert them, a long way
has still to be performed before defining the best protocol of vac-
cination regarding not only the maturation/resistance of the DC
but also the road of injection, the number of injections, the type
of antigen(s) and the loading strategy (see Box 1). Of particu-
lar interest is the recent report that in therapeutic setting a single
immunization performs better alone that with a following boost,
a setting that is on the contrary highly favorable in prophylactic
immunization (205).
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