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Graft-versus-host disease (GVHD) is still the major complication of allogeneic hematopoietic
stem cell transplantation. Despite extensive studies in understanding the pathophysiology
of GVHD, its pathogenesis remains unclear. Recently, important functions of microRNAs
have been demonstrated in various autoimmune diseases and cancers such as psoria-
sis and lymphoma. This review highlights the need to investigate the role of microRNAs
in GVHD and hypothesizes that microRNAs may be one of the missing links in our
understanding of GVHD, with the potential for novel therapeutics.
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INTRODUCTION
Patients with hematopoietic malignancies such as acute myeloid
leukemia, non-Hodgkins lymphoma, and Hodgkins lymphoma
may be treated by allogeneic hematopoietic stem cell transplanta-
tion (allo-HSCT). However, there are severe complications asso-
ciated with allo-HSCT such as disease relapse, graft-versus-host
disease (GVHD), graft rejection, and infection mainly as a conse-
quence of long term immuno-suppression (1). The extent of these
complications can vary depending on the type of disease, stage of
diagnosis, age of the transplant patient and whether the donor is
Human Leukocyte Antigen (HLA) matched or mismatched to the
patient.

Over the last 20 years, the field of allo-HSCT has advanced in
numerous aspects. Various sources of hematopoietic stem cells
(HSCs) have been utilized for allo-HSCT including; bone mar-
row, peripheral blood, and umbilical cord blood (UBC) (2–4).
Likewise, there have been improvements in the HLA typing of
patients and donors as well as earlier diagnosis of the underly-
ing hematological disorders. Similarly, conditioning regimens have
also changed from myeloablative to non-myeloablative incorpo-
rating less toxic regimens in many transplant centers across the
globe, allowing more transplants in the older age group (45–65)
and high risk categories. Patient care and drug regimens have
improved with the introduction of new drugs such as calcineurin
inhibitors for GVHD prophylaxis and imatinib mesylate for the
treatment of chronic myelogenous leukemia. However, steroids
still remain the first line therapy for GVHD treatment and steroid
refractoriness can give rise to life threatening exacerbated GVHD
and mortality (5).

Irrespective of all the improvements in the field of allo-HSCT,
GVHD is still the most critical complication and the major cause
of transplant related death. Manipulation of donor cells by sub-
set depletion of specific T cell subsets have been used to facilitate
engraftment and reduce GVHD (6, 7). The recognition of the
host minor and major histocompatibility (MHC) antigens by the
donor alloreactive T cells via host dendritic cells (DCs) results
in the initiation of GVHD (8). In addition, there is some evi-
dence that monocytes as precursors of conventional DCs may
be more involved in GVHD initiation and propagation than
donor DCs while plasmacytoid precursor DCs aid in regulating
engraftment (9, 10).

The overall incidence of GVHD is approximately 50% in allo-
HSCT patients (11). In addition, GVHD develops in two forms;
acute and chronic. Acute GVHD (aGVHD) has been classically
described as onset within the first 100 days of transplantation
(12) [incidence of grade II–IV being 39% in sibling donors and
59% in Matched Unrelated Donor (MUD)] (13) where damage
is observed in the skin, liver and gastrointestinal tract. Chronic
GVHD (cGVHD) classically occurs after 100 days post-transplant
(12) in 40% of HLA identical sibling transplants, 50% of HLA
non-identical sibling transplants, and 70% of MUD transplants
(14). Acute and cGVHD vary in pathophysiology, etiology, and
response to treatment regimens (1). aGVHD is commonly char-
acterized by a T helper 1 (Th1)-type cellular response (15), while
cGVHD resembles autoimmune disorders (16). However, aGVHD
and cGVHD have been observed to overlap, making a specific
diagnosis between them difficult. This simultaneous presentation
of acute and cGVHD after day 100 has been termed as “overlap

www.frontiersin.org December 2013 | Volume 4 | Article 420 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00420/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00420/abstract
http://www.frontiersin.org/people/u/41809
http://www.frontiersin.org/people/AnneDickinson/32736
mailto:anne.dickinson@newcastle.ac.uk
mailto:anne.dickinson@newcastle.ac.uk
http://www.frontiersin.org
http://www.frontiersin.org/Alloimmunity_and_Transplantation/archive
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syndrome” (17). The incidence of overlap syndrome appears
to be increasingly common due to improved treatment meth-
ods (calcineurin inhibitors and reduced intensity conditioning
regimens) (1).

In brief, aGVHD comprises of three main stages which are
not completely separated from one another and can occur con-
currently (8, 18). Initially, the patient’s tissues are damaged as a
consequence of chemotherapy and conditioning regimens which
results in the release of cytokines such as Interleukin (IL)-1, IL-
6, Tumor Necrosis Factor (TNF), and bacterial products from
the gut (lipopolysaccharides). Secondly, more host/donor anti-
gen presenting cells (APCs) and donor T cells are recruited
via these chemokines and activated. The final stage involves
the “cytokine storm” whereby the host organs are attacked via
cytotoxic T cells and the further release of cytokines such as
Interferon Gamma (IFN-γ), TNF, IL-1, IL-2, IL-6, IL-21, IL-
22, and IL-23 (18–21). Several important cell types [donor T
cells, macrophages, DCs, natural killer cells, regulatory T cells
(Tregs), and B cells], chemokine receptors (CCR1, CCR2, CCR3,
and CCR5), and cytokines (IFN-γ, IL-6, IL-8, IL-10, IL-18) have
been identified as involved in the pathophysiology of GVHD
(Table 1).

The review by Paczesny lists the array of potential biomarkers
that have been identified for the detection of GVHD in allo-HSCT
patients (23). However, despite the tremendous advances in our
knowledge of GVHD there are no precise clinical disease markers
available in the clinic that can aid in early detection of GVHD
and monitor its severity. At present, there is extensive knowledge
on the cellular mechanism of GVHD but less is known about the
molecular biology of the disease. The molecular studies carried
out so far have focused on identifying Single Nucleotide Polymor-
phisms (SNPs) (24) and specific genes involved in the development
of GVHD (25). However, there have been fewer studies focusing
on the molecular regulation of GVHD (Figure 1). In a recent
review, Paczesny et al. (26) has also highlighted the potential role of
microRNAs (miRNAs/miRs) as one of the biomarkers of GVHD.
Thus, the aim of this review is to describe the existing knowl-
edge of miRNAs with regards to GVHD by addressing the various
miRNA studies carried out in the cells involved at various stages of
GVHD and also the recent GVHD specific miRNA investigations.
It also aims to highlight the importance of miRNA investigations
in the field of biomarker discovery and provide an insight into
miRNA therapeutic applications, via their extensive regulatory
roles.

MicroRNAs
MicroRNAs are 19–22 nucleotide RNAs that are produced in
eukaryotic cells (27). These short, single stranded RNAs have cru-
cial regulatory roles by targeting messenger RNAs (mRNAs). As
a result of the association between miRNA function and numer-
ous diseases there has been an upsurge of databases that assist
in miRNA target prediction, analysis of expression data, pathway
involvement and interpretation of their roles in diseases. Examples
of the miRNA databases include; DIANA LAB (28), microRNA.org
(29), and TargetScan (30). Similarly, databases such as MAGIA
(31) allow users to identify miRNA gene targets via their specific
algorithms by submitting mRNA and miRNA expression results.

Table 1 | Potential biomarkers of GVHD [adopted from Ref. (22, 23)].

BIOMARKERS OF aGVHD

Interleukin-2 receptor α chain, CD25 (IL-2Rα)

Interleukin-6 (IL-6)

Interleukin-8 (IL-8)

Interleukin-10 (IL-10)

Interleukin-12 (IL-12)

Interleukin-18 (IL-18)

Chemokine (C–C motif) ligand 8 (CCL8)

Chemokine (C–X–C motif) ligand 10 (CXCL10)

Tumor necrosis factor α (TNFα)

Tumor necrosis factor receptor-1 (TNFR-1)

Hepatocyte growth factor (HGF)

Cytokeratin-18 fragments (KRT18)

Elafin (PI3)

Regenerating islet-derived 3 α (REG3α)

BIOMARKER OF cGVHD

B cell-activating factor (BAFF)

FIGURE 1 |The driving gears of GVHD. MiRNAs regulate gene
expressions, chemokine and cytokine secretions while their expression is
simultaneously affected by SNPs in mRNA (gene) targets. Thus,
understanding the involvement of miRNAs in regulating gene expression,
which ultimately affect the function of cells, will aid in our better
understanding of the regulatory mechanisms involved in GVHD
pathogenesis.

MAGIA also enables users to perform metaanalysis on submission
of expression results in unmatched samples (31).

BIOGENESIS OF microRNAs
Primary miRNAs (pri-miRNAs) are transcribed from miRNA
genes either as a cluster or as single molecules. Initially the pri-
miRNA is cleaved by Drosha RNase-III, which is part of the micro-
processor protein complex and resides in the nucleus (32). This cut
results in a 5′ phosphate and a 3′ overhang with approximately 60–
70 nucleotide stem loop structure referred to as precursor miRNA
(pre-miRNA) (32–34). At this point, the pre-miRNA is translo-
cated from the nucleus into the cytoplasm through Exportin-5
(35, 36) (Figure 2).

Dicer, the second enzyme involved in the maturation of the
miRNA, is secreted in the cytoplasm (32) and has an affinity for
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Atarod and Dickinson MicroRNAs the potential biomarkers

FIGURE 2 | Regulation of miRNAs. Expression of miRNAs can be
altered at various stages of its biogenesis by genomic (SNPs and
mutations) and epigenetic alterations. Changes in the expression and

function of Drosha and Dicer, which are part of the miRNA processing
machinery, can also lead to the deregulation of mature miRNAs [adapted
from Ref. (37)].

the 5′ phosphate and the 3′ overhang of the pre-miRNA (27). The
terminal base pairs of the pre-miRNA are cleaved by Dicer through
a double-stranded cut at approximately two helical turns from the
base of the pre-miRNA. At present it is hypothesized that Drosha
cleaves at a specific sequence of the RNA, while Dicer randomly
cuts any double-stranded RNA (38–41).

The miRNA duplex (miRNA-5p: miRNA-3p) comprises both
strands of miRNA, of which commonly only the guide strand
(miRNA-5p) is incorporated into the ribonucleoprotein complex.
This contains a member of the Argonaute protein family and
is termed the RNA Induced Silencing Complex (RISC) or the
miRNA Induced Silencing Complex (miRISC) (42). Argonaute
proteins act as the catalytic unit of the RISC complexes and are
located in certain areas of the cytoplasm referred to as P-bodies
(43). The P-body is the region where the majority of the mRNA
degradation and miRNA activity occurs in the cytoplasm (43, 44).
It was previously postulated that miRNA-3p was degraded, but

more recent studies have revealed that both the guide (miRNA-
5p) and passenger strand (miRNA-3p) are active and their roles
depend on the specific condition in which they are expressed and
processed (45, 46).

In addition, it has been recently shown that miRNAs can be
processed by other non-canonical (non-classical) pathways (47)
which either involve Dicer or act independently (48). To date, two
other Dicer-dependent pathways have been described. The first
pathway employs a spliceosome and then a debranching enzyme
to generate the short-hairpin structure for processing by Dicer
(47), while the second pathway uses unknown nucleases to gen-
erate the hair-pin structure which is later processed by Dicer.
MiRNAs derived via the first pathway are termed as mitrons (49)
while those originating from the second pathway are referred to
as endogenous short-hairpin-derived miRNAs (50). In the Dicer-
independent pathway, the pre-miRNA is cleaved by Argonaute 2
(Ago2) which results in the generation of mature miRNA.
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MicroRNAs down regulate gene expression via the RISC by
either mRNA cleavage or translational repression (27). The mech-
anism of regulation is dependent on the target mRNA. Messen-
ger RNA cleavage is achieved when the incorporated miRNA
within the RISC has extensive complementarity with the target
mRNA and in cases of lesser complementarity (restricted to seed
sequence), translational repression is employed. The seed sequence
is the region of the miRNA which is approximately 6–8 nucleotides
and is the site for mRNA target recognition (30). Upon cleavage the
miRNA remains incorporated in the RISC to perform additional
cleavages. The majority of miRNAs are tightly associated with
RISC complexes and only 3% are present independently. It is due
to this fact that miRNAs are stable and not degraded by nucleases
in cells and thus, have an extremely long half-life (51–53).

REGULATION OF microRNA AND ITS PROCESSING
MACHINERY
There are various factors that are involved in the biogenesis of
miRNAs, including; RNase-III family proteins, double-stranded
binding proteins and the export receptor. The RNAse-III family
comprises of Drosha and Dicer which are both endonucleolytic
enzymes (54). The double-stranded binding protein comprises
the DiGeorge Syndrome Critical Region 8 (DGCR8), which is a
well conserved motif with numerous functions. DGCR8 is partly
involved in the processing of miRNA by Drosha and Dicer (54).
The human export receptor (Expotin-5) consists of a nuclear
transport domain (55) and mediates nuclear export of the double-
stranded pre-miRNA into the cytoplasm. As evident from miRNA
biogenesis, the miRNA processing machinery is important in
the maturation of functional miRNAs. Thus, disruption of this
machinery can result in deregulated miRNA expression. Studies
have shown that the expression of skin-specific miRNAs such as
miR-21, miR-203, and miR-125b are important in skin morpho-
genesis and deregulation can result in diseases such as psoriasis
as reviewed by Banerjee et al. (56). Another recent investiga-
tion has also shown that low Dicer l levels in endometrial cancer
cells can result in an over-expression of interferon beta (IFN -β).
This is due to the accumulation of pre-miRNAs in the cytoplasm,
which induce the transcription of interferon response genes such
as Signal Transducers and Activators of Transcription family of
transcription factors (STAT1) and Interferon-Induced Protein 44
(IFI44) (57).

In addition to defects in the miRNA processing machinery,
mutations in the primary transcript such as those demonstrated in
miR-15a and miR-16-1 in chronic lymphocytic leukemia (58) can
also impact on miRNA expression levels. Since miRNA–mRNA
interaction is based on the complementarity of the seed sequence
with the mRNA, it has been shown that SNPs in the miRNA
genes play a role in the processing and function of the miRNA
(59). Moreover, the presence of SNPs in the miRNA target can
also affect the function of miRNA (59). Chromosomal abnormal-
ities, epigenetic factors and transcriptional factors can also lead to
miRNA deregulation (60) (Figure 2). Thus, individual alteration
in the processing of miRNAs and their seed sequence can dereg-
ulate miRNA expression and in turn, disrupt the homeostasis of
cells, and cause variation in gene and protein expression patterns
between diseased and normal tissues. Consequently, investigation

of the components of the miRNA processing machinery as well as
mature miRNA expression levels with regard to GVHD may help
to explain the differential gene expression patterns observed in
GVHD patients compared to patients without GVHD or healthy
controls.

MicroRNAs AS BIOMARKERS OF DISEASES
Recent biomarker literature has focused on the numerous char-
acteristics of miRNAs as potential and specific biomarkers of
various diseases, including rheumatoid arthritis (61) and cancer
(62). Studies have shown that around 50% of all genes are regu-
lated by miRNAs, thereby further emphasizing the importance of
understanding their involvement in disease (63). Hence, miRNAs
are classed as one of the major and most abundant group of trans-
lational regulators (64). According to miRbase version 18, there
are 1921 miRNAs in humans (65). Since most of the miRNAs in
cells and tissues have been identified, it is now possible to perform
expression studies in GVHD samples in order to develop a miRNA
signature for the disease.

As mentioned earlier, miRNAs are not only abundant, but
are also highly stable due to their resistance to nucleases (66).
This fact enables expression studies using formalin fixed-paraffin-
embedded (FFPE) samples (67) and salivary samples possible (68).
Since, most research institutions possess archives of patient sam-
ples; a substantial number of relevant patient materials (serum,
plasma, FFPE, urine) are available for biomarker discovery inves-
tigations. Also, studies have shown that there is a correlation
between serum and biopsy miRNA profiles in a number of cancer
studies as reviewed by Alevizos and Illei (61). Mitchell et al. (69)
have demonstrated that circulating miRNAs in plasma and serum
are stable and that their measurements correlate with each other.
This finding strengthens the hypothesis that tumor-derived miR-
NAs are translocated into the blood and hence, measurement of
plasma or serum derived miRNAs may serve as cancer biomarkers
(69). The availability of potential circulatory diagnostic miRNAs
(61) could reduce the need for invasive methods such as skin biop-
sies for the diagnosis of GVHD in allo-HSCT patients and aid in
disease monitoring. Moreover, miRNAs are expressed under cer-
tain conditions which can be representative of the physiological
and pathological state of the disease such as rheumatic diseases
(61). MicroRNAs have been shown to exhibit functionally unique
cell or organ expression patterns (27). For instance,miR-1 is a heart
specific miRNA (70) while miR-122 is mainly expressed in the
liver (71). Since, miRNA expression patterns are disease specific,
distinguishing between normal, inflamed and damaged organs is
possible (72). MicroRNA patterns already established in systemic
lupus erythematosus and other systemic autoimmune diseases can
be useful in understanding the pathogenesis of cGVHD (73).

Although a single prognostic marker may be clinically useful,
a series of validated markers which can provide, in additional to
clinical factors, information regarding survival, disease progres-
sion, and patient’s response to treatment would be advantageous.
Thus, identification of a signature miRNA profile for GVHD could
serve both as a prognostic biomarker of the disease as well as aid in
further understanding the complexity of the disease biology. Spe-
cific biomarkers can also aid in the development of new therapies
and more effective drugs for treatment of GVHD.
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MicroRNAs IN SKIN
Since skin is one of the first target organs of GVHD, the role
of skin-specific miRNAs in GVHD skin biopsies is an interesting
area of investigation. A number of highly expressed miRNAs in
the epidermis and hair follicle have already been discovered to be
essential for the normal development of the skin (for example:
miR-199 family, miR-205, miR-27b, miR-203, miR-125b, miR-16,
miR-126, miR-143, miR-21) (56, 74). Skin-specific miRNAs such
as miR-203 are related to skin morphogenesis (75, 76). Indeed,
expression studies have shown the effect of miRNAs in malig-
nant skin conditions such as melanoma, Kaposi’s sarcoma (77),
and autoimmune diseases such as psoriasis (78). For instance
in psoriasis, miR-146a, miR-203, and miR-21 are up-regulated
while miR-125b is down-regulated (79). Up-regulation of TNF-
α is observed when miR-125b is expressed at low levels (76)
and similarly, expression of miR-21 is shown to be elevated by
pro-inflammatory cytokines such as IL-6 (80). MiR-21 has also
been shown to function as an oncogene in various cancer tissues
(81, 82). Although miR-21 has been shown to be associated with
Tregs (see below) there is a lack of evidence to suggest that the
impact of miR-21 in skin tissue is primarily via Tregs and no other
cell type.

MicroRNAs IN IMMUNE CELLS
Thymus-derived natural Treg cells and the peripherally stimu-
lated Tregs are well characterized T lymphocytes and their func-
tion in GVHD has been highlighted through various studies.
Natural Tregs and peripherally induced Tregs are distinguished
via the expression of the fork head-winged helix transcription
factor (FOXP3) and the α-chain of the IL-2 receptor (CD25)
(83). A study performed ex vivo in humans by Rouas et al.
(83) has identified five main miRNAs (miR-21, miR-31, miR-
125a, miR-181c, and miR-374) specific to non-activated natural
Tregs (83). Natural Tregs affect both the innate and adaptive
immune system (84). Moreover, the same group demonstrated
the direct negative regulation of miR-31 through targeting of
FOXP3 mRNA and positive indirect regulation of FOXP3 by
miR-21 (83).

Furthermore, Allantaz et al. (85) have shown the existence
of cell-specific miRNAs in the whole blood of normal individ-
uals. Initially, they investigated miRNA expression in nine dif-
ferent types of immune cells comprising of, B cells, neutrophils,
eosinophils, NK cells, CD4 T cells, CD8 T cells, myeloid DCs,
plasmacytoid DCs, and monocytes (85). Four miRNAs were char-
acterized as cell specific (miR-378, miR-31, miR-143, and miR-
935) while nine miRNAs were common in two to three other cell
types (miR-362-5p, miR-532-5p, miR-500∗, miR-663, miR-125a-
5p, miR-150, miR-223, and miR-652) (85) (Table 2). The group
also investigated mRNA expression of the miRNA targets in the
same samples to validate whether the cell-specific miRNAs regu-
lated their predicted mRNA targets, as identified via miRNA target
prediction databases. MiRs-143, -125, -500, -150, -652, and -223
were all found to regulate their mRNA target transcripts (85).
These investigations reiterate the critical regulatory roles of miR-
NAs in immune cells and provide a valuable starting point for
miRNA studies in GVHD.

Table 2 | List of cell-specific miRNAs in whole blood of normal

individuals [adopted from Ref. (85)].

miRNAs Cell type

miR-378 Monocytes

miR-31 T cells

miR-935 Eosinophils

miR-143 Neutrophils

miR-362-5p Monocytes, pDCs

miR-532-5p

miR-500*

miR-663 B cells, NK cells

miR-125a-5p T cells, neutrophils

miR-150 B cells, T cells, NK cells

miR-223 Monocytes, eosinophils, neutrophils

miR-652

pDCs, plasmacytoid dendritic cells; NK cells, natural killer cells.

MicroRNAs IN GVHD
Recently, a panel comprising of four miRNAs (miR-423, miR-199-
3p, miR-93*, and miR-377) has been shown to be over-expressed
16 days pre-clinical diagnosis, in the plasma of aGVHD patients
when compared to the non-GVHD patient cohort (86). All the
up-regulated miRNAs have critical functions in the regulation of
inflammation, cell proliferation, apoptosis and autophagy. Xiao
et al. (86) hypothesize that plasma identified miRNAs may have
significant functions in “donor T cells attacking process” and play
a potential role in injury-mediated responses in aGVHD target
organs. In addition, miR-100 (87), miR-34a (88), and miR-155
(89) have also been implicated as playing a potentially signifi-
cant role in GVHD. MiR-100 was shown to be up-regulated in
the gut of mice without GVHD, thereby preventing neovascular-
ization in the tissue (87) and demonstrating a possible protective
role of miR-100 in GVHD (87). Likewise, miR-34a expression was
studied in the gut of pre- and post-transplanted Fanconi Anemia
patients with aGVHD (88). MiR-34a was shown to be up-regulated
in the gut of the transplanted Fanconi Anemia patients with grades
II-IV aGVHD in comparison to patients with grades 0-I aGVHD
and pre-transplant biopsies (88). DNA repair mechanisms are dis-
rupted in Fanconi Anemia patients and this result in the activation
of p53 pathways, ultimately leading to apoptosis (90). Thus, the
investigators assessed the number of apoptotic cells in relation to
the levels of miR-34a and TP53 (88). They found that miR-34a
levels in the gut correlated with the number of apoptotic cells and
not TP53 levels (88). Therefore, they hypothesized that it was the
elevation of miR-34a in the epithelial gut cells which was respon-
sible for the damage observed in the gut tissues rather than TP53
expression (88). Similarly, regulatory function of miR-155, which
is required for the normal function of B and T lymphocytes in
humans, has been demonstrated in an aGVHD study (89). This
investigation showed an up-regulation of miR-155 in the gut of
aGVHD patients, while expression was absent in the gut of normal
volunteers (89). A clinical trial to further establish the significance
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FIGURE 3 | Graft-versus-host disease signaling pathway and miRNA
interactions obtained using IPA. Classical GVHD signaling pathway was
selected from the IPA knowledge base and eight miRNAs were identified to
interact with the various components of the pathway. Chemokines and
genes are represented as nodes of various shapes and the biological
relationship and interactions between them are represented as a line. Direct
experimentally proven interactions are represented with a solid line, while

indirect interactions are shown as a dashed line. All the interactions are
supported by at least one reference from either the literature or from the
information available in the Ingenuity Pathways Knowledge Base. The
direction of the interaction is indicated with the arrow head. miR-146a-5p
and miR-155-5p are mature miRNAs while miR-515, miR-346, miR-143,
miR-373, miR-31, and miR-29 could be primary, precursor or even mature
forms of miRNAs.
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of miR-155 in aGVHD is ongoing at present (ClinicalTrials.gov
identifier: NCT01521039). Thus,miRNAs evidently not only play a
role in the manifestation of GVHD but could potentially be used as
biomarkers of the disease because of their highly specialized roles.
Moreover, Schulte et al. (91) have demonstrated that miRNAs have
specialized functions and a hierarchy in regulating inflammation.
In their investigation, miR-155 is significantly involved in the regu-
lation of inflammation only when the regulatory limit of miR-146a
has been exceeded (91). Their study highlights the combinatorial
function of miRNAs in regulating inflammation and also shows
that investigating several miRNAs important in a disease-type can
provide a more informative outlook on the pathophysiology of the
disease.

In addition, using Ingenuity Pathway Analysis (IPA) we gener-
ated the GVHD signaling pathway and identified potential miRNA
interactions (92). We used the canonical GVHD signaling pathway
present in the Ingenuity Knowledge Base of IPA and added further
GVHD related chemokine receptors and cytokines. Eight miRNAs
(miR-146a, miR-155, miR-515, miR-346, miR-143, miR-373, miR-
31, and miR-29) were identified to impact different molecules in
this GVHD signaling pathway (Figure 3). All the miRNAs iden-
tified have significant roles in numerous diseases and a summary
is shown in Table 3. Due to the exponential growth of literature
on miRNAs it is out of the limits of this review to completely list
all the diseases for which miRNAs have been implicated. As men-
tioned earlier, miR-146a and miR-155 have immuno-regulatory
roles in inflammation and numerous diseases, thus it is expected
that their levels may be deregulated in GVHD. Interestingly, miR-
515 is part of a cluster of miRNAs transcribed from a gene locus
on chromosome 19 (65) (miR-515-2, miR-512-1, miR-1323, miR-
498, miR-520e, miR-519e, miR-520f, miR-519d, and miR-1283-1).
Similarly, the miR-29 family comprises of four members (miR-29a,
miR-29b-1, miR-29b-2, and miR-29c).

MicroRNAs IN UMBILICAL CORD BLOOD
Weitzel et al. (103) have demonstrated miR-184 as a regulator of
nuclear factor of activated T cells-1 (NFAT1) protein expression in
UCB CD4+ T cells. Expression of miR-184 inhibits NFAT1, which
results in a reduced inflammatory response. The lower expression
of NFAT1 in UCB CD4+ T cells in comparison to adult blood is
one of the main differences between UCB-derived CD4+ T cells
and those derived from adult blood. This study has shown that
over-expression of miR-184 in UCB CD4+ T cells may be a reason
for the decreased incidence of GVHD in UCB grafts compared
to adult hematopoietic stem cell transplants (103). In addition,
Charrier et al. (104) have also demonstrated that UCBs express
significantly higher levels of miR-146a and miR-155 compared
to adult blood. Previous studies have shown that miR-146a (78,
79) and miR-155 (89, 105) are associated with immune regula-
tion. Thus, they hypothesize that the lower incidence of GVHD
which occurs when UCB is used instead of adult blood is due to
the up-regulated expression of immune-regulatory miRNAs (miR-
146a and miR-155), resulting in the down regulation of proteins
(toll-like receptor 9, myeloid differentiation primary response 88,
IL-1 receptor-associated kinase 1, interferon regulatory factor 7)
in the toll-like receptor 9 signaling pathway (104). This post-
transcriptional regulation leads to a decrease in the interferon-α

Table 3 | miRNAs identified via Ingenuity Pathway Knowledge base to

be implicated in the GVHD signaling pathway.

miRNA Disease

miR-146a ↑ Psoriasis (78, 79), ↓ myelodysplastic syndrome (5q deletion)

(93) ↓ systemic lupus erythematosus (94)

miR-155 ↑ aGVHD (89), ↓ systemic sclerosis (95), ↓ oral tumors (96)

miR-515 ↑ Oral tumors (96)

miR-346 ↓ Lupus nephritis (97), regulates TNF-α protein in rheumatoid

arthritis (98)

miR-143 ↓Myelodysplastic syndrome (5q deletion) (99)

miR-373 ↓ Childhood B cell precursor acute lymphoblastic leukemia

(100)

miR-31 ↑ Colorectal cancer (101)

miR-29 ↓ Hepatocellular carcinoma (102)

mediated response, which dampens down the inflammatory reac-
tion in UCBs as opposed to adult blood (104). In addition, it has
also been shown that miR-155 is over expressed in UCB-derived
CD14+ cells and not in the adult peripheral blood CD14+ cells
when stimulated with either IFN-γ or lipopolysaccharide (106).
This may be reflective of the biological response in GVHD or infec-
tion. However, in the same study miR-146a was under expressed
in UCB-derived CD14+ cells after stimulation with IFN-γ. The
controversy regarding miR-146a expression may be reflective of
study populations investigated. Indeed, Charrier et al. (104) have
looked at whole UCB and adult blood rather than an isolated
CD14+ subset as used by Takahashi et al. (106). Merkerova et al.
(107) compared UCB and bone marrow miRNA signatures in cell
lineages CD34+ cells, T cells, monocytes, and granulocytes and
found specific miRNA expression patterns indicating differences
in regulation of the cells within bone marrow and UCB.

MicroRNAs IN GRAFT REJECTION
Investigations in renal allograft rejection have shown the exis-
tence of 17 specific miRNAs involved in the acute rejection
process (let-7c, miR-10a, miR-10b, miR-125a, miR-200a, miR-30a-
3p, miR-30b, miR-30c, miR-30e-3p, miR-32, miR-142-5p, miR-
142-3p, miR-223, miR-155, miR-146b, miR-146a, and miR-342)
(108). This study also highlights the application of miRNAs as
biomarkers for disease and in particular for transplantation. The
significance of miRNAs in graft failure has also been determined
in liver, lung, and bowel solid organ transplants as reviewed by
Sarma et al. (109). Furthermore in hematopoietic stem cell trans-
plantation some residual host T cells or natural killer cells can
reject incoming grafts (110) and high levels of CD34+ cells can
improve engraftment (111). A study in the role of miRNAs in
these situations would aid in the understanding of hematopoiesis,
engraftment and rejection settings.

MicroRNAs IN THERAPEUTICS
Recently, the potential of miRNAs in the development of new
therapies has been investigated. There are two models via which
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FIGURE 4 |Therapeutic applications of miRNAs. MiRNA antagonists,
which are modified oligonucleotides with complementary sequences to the
endogenous miRNAs, can be used to degrade over-expressed miRNAs. Loss

of function of the endogenous miRNA prevents it being processed by RISC.
MiRNA mimics are also oligonucleotides, but they replace the lost function
due to the disease state of the cell [adopted from Ref. (117)].

miRNAs may be used for the treatment of diseases (Figure 4).
Firstly, miRNA antagonists can be used to dampen up-regulated
endogenous miRNA expression in diseased tissues. For instance,
miR-122, which is a liver specific miRNA, has a crucial func-
tion in the replication of hepatitis C virus (HCV) and is up-
regulated in HCV-positive patients (60, 112, 113). Miravirsen
(anti-miR-122) which consists of modified locked nucleic acids
(LNA) is now in a phase II clinical trial (ClinicalTrials.gov Iden-
tifier: NCT01727934). Miravirsen efficacy, activity, and safety
has been shown in a multi center Phase I (ClinicalTrials.gov
Identifiers: NCT00688012, NCT00979927) and Phase IIa (Clin-
icalTrials.gov Identifier: NCT01200420) clinical trial. Miravirsen
sequesters miR-122 and inhibits it from binding to the HCV
genome thereby preventing its RNA multiplication (114). Thus,
miravirsen is a potential new therapy for the treatment of HCV-
positive patients. Secondly, miRNA mimics, such as miR-34a
(115) and let-7 (116), can be used to restore the function of
miRNAs which are lost in the diseased cells (117). Unlike gene
therapy which can be difficult to achieve because of the need
to introduce large plasmids into the target tissue, miRNA mim-
ics can be delivered using silencing RNA technology. The fact
that miRNA mimics are small and representative of the endoge-
nous miRNA sequences means that mRNA target specificity is
increased and thus off-target effects (targeting many mRNAs)
are less problematic. MiRNA mimics target the same mRNAs
as the endogenous miRNA population which is lost due to the
disease (117). With the array of technologies that are constantly
being developed and made available in the miRNA field, nor-
malization of deregulated miRNAs is feasible. Similarly, more
effective therapeutic options such as the anti-miR in HCV can
be developed once the signature miRNAs in GVHD have been
discovered.

FUTURE OUTLOOK
Although miRNA studies in the field of GVHD are in their infancy,
recent investigations have demonstrated the tremendous potential
for these small regulatory molecules as diagnostic, prognostic, and
therapeutic markers. Clinical applications exploiting our knowl-
edge of miRNA function may play a crucial role in the future of
GVHD management and treatment.

Our own studies are currently focusing on the use of clini-
cal skin biopsies for assessment of miRNA in GVHD diagnosis
and the use of serum, plasma, and urine for investigating the
potential of miRNAs in monitoring GVHD in response to therapy.
Once miRNA profiles are established, functional studies involving
silencing of miRNA will assess the potential of specific miRNAs as
therapeutic targets.
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