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Historically, human NK cells have been identified as CD3−CD56+CD16± lymphocytes.
More recently it has been established that CD57 expression defines functionally dis-
crete sub-populations of NK cells. On T cells, CD57 expression has been regarded as a
marker of terminal differentiation and (perhaps wrongly) of anergy and senescence. Simi-
larly, CD57 expression seems to identify the final stages of peripheral NK cell maturation;
its expression increases with age and is associated with chronic infections, particularly
human cytomegalovirus infection. However, CD57+ NK cells are highly cytotoxic and their
presence seems to be beneficial in a number of non-communicable diseases.The purpose
of this article is to review our current understanding of CD57 expression as a marker of NK
cell function and disease prognosis, as well as to outline areas for further research.
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CD57 IS A MARKER OF NK CELL DIFFERENTIATION
CD57 was first identified on cells with natural killer activity using
the mouse monoclonal antibodies Human Natural Killer-1 (HNK-
1) (1) and Leu-7 (2) and was subsequently assigned the cluster of
differentiation (CD) designation, CD57, at the fourth Interna-
tional Workshop of Human Leukocyte Antigens in 1989. HNK-
1/Leu-7/CD57 was initially believed to be uniquely expressed on
NK cells – and was used to define this population (1, 3) – although
it was soon apparent that CD57 was expressed only on a subset of
functionally distinct NK cells (4). CD57 was subsequently identi-
fied on CD8+ T cells (5–7) as well as cells of neural crest origin (1,
8–13). Indeed, it was the neuroscience community that ultimately
defined CD57 as a terminally sulfated carbohydrate epitope (glu-
curonic acid 3-sulfate) (14–16). In neural cells, the CD57 epitope
is predominantly restricted to adhesion molecules (17) but little
attention has been paid to the precise identity of the molecules
expressing the CD57 epitope on NK cells and T cells, precluding
a full understanding of the relationship between CD57 expres-
sion and lymphocyte function. Although one study identified the
CD57 epitope on the IL-6 receptor gp130 of resting lymphocytes
(18), the cells expressing CD57/gp130 were not identified and no
comprehensive analysis of CD57-expressing molecules on T cells
or NK cells has been reported.

While first characterized as an NK cell marker, CD57 has been
most widely explored as a marker of replicative senescence on T
cells (19). Under conditions of persistent immune stimulation,
memory T cells convert from CD28+CD57− to CD28−CD57+

(20); CD57+ cells have short telomeres, low telomerase activity,
low expression of cell-cycle associated genes and limited prolifer-
ative capacity (20, 21). However, CD57+CD28−CD8+ T cells can
proliferate given an appropriate cytokine milieu (22), their sensi-
tivity to apoptosis is disputed (23,24), they are highly cytotoxic (25,
26) and express natural killer receptors (27). CD57+CD8+ T cells
should thus be regarded as terminally differentiated, oligoclonal

populations of cytotoxic cells generated in response to chronic
antigen stimulation.

In light of the T cell data it was suggested that CD57 may
also be a marker of NK cells with poor proliferative capacity
and, perhaps, a degree of immunosenescence (21, 23, 28). Indeed,
acquisition of CD57 on NK cells – following stimulation with IL-2
or coculture with target cells – correlates with maturation of the
CD56dim NK cell subset, with lower expression of NKp46, NKp30,
NKG2D, and NKG2A, and higher expression of CD16, LIR-1, and
killer cell immunoglobulin-like receptors (KIRs) (29). Similarly, in
hematopoietic stem cell transplant recipients exposed to human
cytomegalovirus (HCMV) infection, differentiation of CD56dim

NK cells involves acquisition of CD57, loss of NKG2A, gain of
KIRs, and changing expression of homing molecules (30). These
studies, together with experiments in Rag2−/− γcR−/−mice recon-
stituted with human hematopoietic stem cells and treated with
IL-15 (30), and the observation that fetal and newborn NK cells
lack CD57 (31), indicate that CD57+ NK cells differentiate from
CD56dimCD57− NK cells in an irreversible process with highly
stable expression of CD57 likely being the final step in maturation
(30, 32). This differentiation is accompanied by functional changes
(29, 30): compared with CD57− cells, CD57+ NK cells proliferate
less well in response to IL-2 and IL-15 and produce less IFN-γ
in response to IL-12 and IL-18, consistent with their lower levels
of IL-12Rβ mRNA (29) and reduced surface expression of IL-2Rβ

and IL-18Rα (30). On the other hand, CD57+ NK cells retain their
cytolytic potential (30) and a proportion of CD57+ NK cells are
able to produce IFN-γ after crosslinking of CD16 [Ref. (29); White
et al. submitted] indicating that CD57+ NK cells are intrinsically
able to produce IFN-γ but that they may have different activation
requirements.

In summary, therefore, progression from CD56bright to
CD56dimCD57− to CD56dimCD57+ reflects a maturation pathway
for NK cells (33, 34) and rather than being a marker of anergy or
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immunosenescence, acquisition of CD57 represents a shift toward
a higher cytotoxic capacity, greater responsiveness to signaling via
CD16 and natural cytotoxicity receptors (NCRs) and decreased
responsiveness to cytokines (29, 35). The extent to which CD57
expression per se drives these changes in function, as opposed to
being a marker for cells with altered expression of other attributes
of a mature NK cell, is not entirely clear and may represent a fertile
area for further research. In addition, a much better characteriza-
tion is required of the cell surface molecules that express the CD57
epitope, the mechanisms by which CD57 is induced on them, and
its functional consequences.

CD57 EXPRESSION AND CANCER
Both CD8+ T cells and NK cells are able to kill tumor
cells through mechanisms including perforin/granzyme-mediated
cytolysis and TRAIL- or FAS-mediated apoptosis (36). Accumula-
tion of CD57+CD8+ T cells is seen frequently in individuals with
various forms of cancer (37) and has been associated with reduced
survival in those with renal cell carcinoma (38), melanoma (39),
gastric carcinoma (40), multiple myeloma (41), lymphomas, acute
and chronic myeloid, and lymphocytic leukemias (42), among
many other examples. CD57 expression on CD4+ T cells has also
been associated with Hodgkin’s lymphoma (43) and chronic lym-
phocytic leukemia (44). This association between malignancy and
expanded populations of CD57+ T cells is likely explained by per-
sistent stimulation of these cells by tumor-associated antigens in
the absence of effective tumor clearance (45).

NK cells were initially identified by their ability to kill malig-
nant cells (46–48) and a large body of clinical and experimental
evidence now supports their crucial role in cancer immunosur-
veillance (49). Reduced MHC Class I expression (50) and de novo
expression of stress related molecules (such as B7-H6, MICA,
MICB, RAE-1, MULT1, and members of the ULBP family) in
malignant cells alter the balance of inhibitory (via KIRs and
NKG2-CD94 heterodimers) and activating (via NCRs and NKG2D
homodimers) signals for NK cells (51), leading to their activation.
High frequencies of peripheral or tumor-associated CD57+ NK
cells are reported in cancer patients and – in sharp contrast to
what has been seen for CD8+ T cells – have frequently been linked
to less severe disease and better outcomes (Table 1). This would
be consistent with enhanced tumor surveillance/cytotoxicity of
the mature, CD57+ NK cell subset (29); whether these associa-
tions are confounded by HCMV infection status (see below) is
currently unclear. In the case of advanced gastrointestinal stromal
tumors treated with the chemotherapeutic agent imatinib mesy-
late, NK cell secretion of IFN-γ after IL-12/IL-2 stimulation was
correlated with improved long-term survival (52). Since CD57−

NK cells are the major subset producing IFN-γ in response to
cytokines, this suggests that a heterogeneous NK cell population
comprising both CD57− and CD57+ subsets may be optimal for
combating neoplasia. Clearly further studies, ideally longitudinal
in nature and accompanied by data on potentially confounding
factors, are needed to determine the roles of different NK cell
subsets in combating different types of malignancies.

CD57 EXPRESSION AND AUTOIMMUNITY
Autoimmune diseases tend to be highly antigen-specific and medi-
ated by autoantibodies or autoreactive T cells. In general, expanded

populations of autoreactive CD57+ T cells are associated with
more severe disease – Wegener’s granulomatosis (65), pars plani-
tis (25), multiple sclerosis (MS) (66), type I diabetes mellitus
(67), Graves’ disease (68), and rheumatoid arthritis (RA) (69),
amongst others. This likely reflects killing of vital host cells by
these highly cytotoxic lymphocytes (68), although the loss of T
cells with immunosuppressive potential may also play a role (67).

Perhaps surprisingly, autoimmune disease is consistently asso-
ciated with reduced frequencies or absolute numbers of circulating
CD57+ NK cells and/or impaired NK cell cytotoxicity (Table 2)
(70–78), suggesting that cytotoxic CD57+ NK cells may play a
regulatory role, preventing or suppressing autoimmune disease.
In MS, peripheral NK cells lose expression of FAS during relapse
and regain it during remission (70) and FAS+ NK cells can inhibit
myelin basic protein-specific T cell IFN-γ responses (79), suggest-
ing that NK cells may regulate autoreactive T cells. On the other
hand, chronic NK cell lymphocytosis (which is associated with
peripheral neuropathy, arthritis, and vasculitis) is characterized by
increased absolute numbers of circulating immature NK cells with
low cytotoxicity (80, 81). Similarly, NK cells have been found in the
inflammatory infiltrates of psoriatic skin lesions (82), in synovial
fluid of joints affected by RA (83), and in pancreatic islets of type
I diabetes patients (84). NK cells in the synovial fluid of patients
with RA, and those infiltrating psoriatic skin lesions, are immature
CD56bright or CD57− and able to secrete IFN-γ and TNF (85, 86),
suggesting that they may contribute to the inflammation rather
than suppress it (84).

Taken together, these data are consistent with the hypothesis
that immature CD57− NK cells may contribute to autoimmune
inflammation and tissue damage whereas more highly differenti-
ated, cytotoxic, CD57+ NK cells may fulfill an immunoregulatory
role, possibly deleting chronically activated T cells, as in viral
hepatitis (103).

CD57 EXPRESSION DURING INFECTION
Chronic viral infections such as HCMV (104), human immuno-
deficiency virus (HIV) (105), hepatitis C virus (106), and Epstein–
Barr virus (EBV) (107) infections offer some of the clearest exam-
ples of expansion of CD57+CD8+ T cells, presumably as a result
of persistent antigenic stimulation, and increased proportions of
CD57+CD8+ T cells have also been reported in those infected with
human parvovirus (108), measles (109), pulmonary tuberculosis
(92), and toxoplasmosis (93). The majority of these CD57+CD8+

T cells, at least in HCMV infection, appear to be antigen-specific
and their presence is associated with a low incidence of reactivation
(94, 95). Similar skewing of NK cells toward the CD57+ phenotype
is now reported in a variety of viral infections (Table 2).

Increased frequencies of CD57+CD16+ NK cells were first
reported in HCMV-infected individuals by Gratama et al. (110)
and have been repeatedly confirmed (99, 111, 112). Studies of
hematopoietic stem cell transplantation (HSCT) have been par-
ticularly informative, allowing detailed comparison of stem cell
differentiation into NK cells in HCMV-infected and uninfected
transplant recipients (111, 112) with rapid and persistent expan-
sion of CD57+ NK cells that are also NKG2C+, KIR+, CD158b+,
and potent producers of IFN-γ after stimulation with MHC Class
I-deficient target cells, only in the HCMV-infected group (111). We
now know that HCMV drives expansion of NKG2C+ NK cells and
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Table 1 | Associations between cancer prognosis and CD57 expression by NK cells.

Cancer type Observations Reference

Acute lymphoblastic

leukemia

Increased NK cell activity and increased numbers of CD57+ and CD16+ NK cells in bone marrow

associated with complete remission

Sorskaar et al. (57)

Hodgkin’s disease Absence/low number of CD57+ NK cells in tumor tissue (by immunohistochemistry) associated

with relapse

Ortaç et al. (58)

Non-Hodgkin’s lymphoma Higher numbers of intratumoral CD57+ NK cells are associated with relapse free survival in

pediatric cases

Ortaç et al. (58)

Metastatic tumors in the

brain

CD57+ NK cells infiltrate brain metastases of various origins (lung, breast, and renal carcinomas;

melanoma) but no correlation between numbers of infiltrating CD57+ NK cells and apoptosis of

malignant cells

Vaquero et al. (59)

Colorectal cancer Increased CD57+ NK cells in germinal centers of draining lymph nodes, but rarely in primary or

metastatic lesions; CD57+ NK cells may prevent establishment of tumor in lymph nodes?

Adachi et al. (60)

Bladder carcinoma Lower frequency of CD56+ and CD57+ PBMC in patients with invasive and non-invasive tumors

is correlated with reduced cytotoxicity against T24 bladder cancer cell line

Hermann et al. (61)

Breast carcinoma Survival is positively correlated with the number of tumor infiltrating CD57+ NK cells and with

expression of CX3CL1 (a known NK cell chemoattractant) by the tumor cells

Park et al. (62)

Gastric carcinoma CD57+ NK cell infiltration associated with a lower clinical grade tumor, reduced venous invasion,

fewer lymph node metastases, less lymphocytic invasion, and increased 5 year survival outcome

Ishigami et al. (63)

Oral squamous cell

carcinoma

Low density of tumor infiltrating CD57+ NK cells and high numbers of TNF+ cells associated

with higher clinical staging

Turkseven and Oygur

(64)

Esophageal squamous cell

carcinoma

Tumor infiltrating CD57+ NK cells positively associated with increased survival over 80 months Lv et al. (87)

Squamous cell lung

carcinoma

Tumor infiltrating CD57+ NK cells positively correlated with increased survival 2 years after

surgery

Villegas et al. (88)

Pulmonary adenocarcinoma Higher absolute numbers of tumor infiltrating CD57+ NK cells correlated with tumor regression Takanami et al. (89)

Various Low numbers of CD57+ NK cells in peripheral blood are associated with carcinomas of colon,

lung, breast, and neck; no association was with melanoma or sarcoma

Balch et al. (90)

that these cells preferentially acquire CD57 (97–99, 111, 112). In
HCMV-uninfected donors, there are roughly equal proportions of
CD57+NKG2C+ and CD57−NKG2C+ NK cells whereas the ratio
of CD57+NKG2C+ to CD57−NKG2C+ NK cells ranges from <1
to >60 in HCMV-infected donors (99); whether this variation
reflects varying duration of HCMV infection is not known. HCMV
reactivation after HSCT is associated with a threefold increase in
the ratio of CD57+NKG2C+ to CD57−NKG2C+ NK cells within
one year (111). Yet, in the absence of HCMV infection, NKG2C+

NK cells are no more likely to acquire CD57 than are NKG2C−

NK cells (112), suggesting that either binding of NKG2C to spe-
cific HCMV ligands or chronic viral infection per se drives NK
cell differentiation. Importantly, CD57+CD16+ NK cells can kill
HCMV-infected target cells (96) and this may be dependent upon,
or enhanced by, α-HCMV antibodies (113).

While HCMV remains the clearest example of infection dri-
ving NK cell differentiation, other viral infections may cause a
similar effect. For example, there is a three to fourfold expansion
of the NK cell pool during acute hantavirus infection; NK cell
numbers peak approximately 10 days after the onset of symptoms

and remain above baseline for at least 60 days (114). This expan-
sion is restricted to the NKG2C+ NK cell subset and the majority
of these cells are CD57+, KIR+ and highly responsive to MHC
Class I-deficient target cells. Hantavirus-infected endothelial cells
express high levels of the NKG2C ligand HLA-E and expansion of
the NKG2C+ NK cell subset is seen only in HCMV seropositive
hantavirus patients, suggesting that hantavirus-induced HLA-E
expression and/or inflammatory cytokines released during infec-
tion may drive the expansion and subsequent maturation of
NKG2C+ NK cells that have been induced or “primed” by HCMV
infection (114). Similarly, transient expansion of the CD57+

NKG2C+ NK cell population during acute chikungunya virus
infection is also associated with HCMV seropositivity (115).

Expansion of the NKG2C+CD57+ NK cell subset has also
been reported in HCMV+ individuals with chronic hepatitis B
and hepatitis C infections, although the proportions of these cells
did not differ markedly from previous reports in HCMV-infected
but hepatitis virus-uninfected donors, leading the investigators to
conclude that HCMV, rather than viral hepatitis, is the underly-
ing driver of NK cell differentiation (97). In line with this, no
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Table 2 | Associations between autoimmune diseases or infections and CD57 expression by NK cells.

Observations Reference

AUTOIMMUNE DISEASE

Alopecia areata CD57+ NK cells are significantly reduced in peripheral blood of patients with multiple foci

of alopecia

Imai et al. (91)

Atopic dermatitis Reduced frequencies of CD57+ NK cells in peripheral blood of patients compared to

healthy controls, with greatest reduction in the most severe cases

Wehrmann et al. (126) and

Matsumura (127)

Sjögren’s syndrome Decreased numbers of CD57+ NK cells observed in peripheral blood of patients compared

to controls

Struyf et al. (128)

IgA nephropathy Decreased proportion of CD57+ CD16+ lymphocytes in the peripheral blood of patients

compared to healthy controls

Antonaci et al.(129)

Psoriasis NK cells infiltrating skin lesions – but also unaffected skin – are predominantly CD57low Batista et al. (85)

INFECTION

HCMV Increased proportions of CD57+ NK cells in infected individuals; CD57 expression limited

to the NKG2C+ subset

Gratama et al. (110),

Lopez-Vergès et al. (99) and

Foley et al. (111, 112)

HIV In chronic infections, there is a loss of CD57-/dim NK cells, but the absolute number of

CD57+ NK cells remains constant

Hong et al. (100)

Chikungunya virus Increased proportions of CD57+ NK cells after infection in HCMV+ patients Petitdemange et al. (115)

Hantavirus NKG2C+ NK cell subset expanded during infection in HCMV+ patients and the majority of

these cells are CD57+
Björkström et al. (114)

Hepatitis B and

Hepatitis C

NKG2C+ NK cell population is expanded in chronic infections, and these are predominantly

CD57+, but co-infection with HCMV appears to be the driver of this effect

Béziat et al. (97)

Lyme disease Conflicting evidence on whether chronic disease leads to a reduced proportion of CD57+

NK cells in peripheral blood

Stricker et al. (117), Stricker and

Winger (118), and Marques et al.

(119)

association was found between expansion of the NKG2C+CD57+

NK cell subset and clinical indicators of hepatitis such as viral load
or liver enzyme concentrations (97).

In HIV-infected individuals, the absolute number of CD57+

NK cells is stable and comparable to HIV-negative individuals but
the ratio of CD57+ to CD57− NK cells is higher than in unin-
fected individuals due to a gradual loss of CD57− cells (which are
highly dependent on monocyte and T cell-derived cytokines for
their survival) (100). Unfortunately, the HCMV status of these
subjects was not reported and may confound the comparison
between the HIV+ and HIV− individuals. Indeed, in another
study, the positive association between frequency of NKG2C+ NK
cells and HIV-1 infection disappears when adjusted for HCMV
status (101). Nonetheless, it is also the case that the frequency
of NKG2C+(CD57+) NK cells is higher in HCMV seroposi-
tive donors with HIV-1 infection than in HCMV seropositive
donors without HIV-1 infection (102), suggesting either that –
as for hantavirus or chikungunya virus – HIV-1 infection drives
expansion of the HCMV-induced NKG2C+ population or that
HIV-1 infected individuals experience more frequent reactivation
of HCMV which then expands the NKG2C+ population. Signif-
icantly, CD57+ NK cells of HIV+ individuals retain a highly dif-
ferentiated phenotype (CD16+KIR+perforin+) but have defects

in degranulation (100) suggesting that they may have reduced
cytotoxic potential. Finally, although no association was seen
between accumulation of CD57+ NK cells and recurrence of gen-
ital herpes lesions due to herpes simplex virus 2 (HSV-2) infection
(116), interpretation of this study is hindered by the lack of an
HSV-2-uninfected control group.

There have been very few studies of NK cell subsets in the con-
text of bacterial or parasitic infections. Patients with chronic Lyme
Disease (Borrelia burgdorferi) have lower proportions of periph-
eral blood CD57+ NK cells compared to those with acute disease
and uninfected controls and this phenotype was maintained for
over 10 years in one person with persistent infection (117, 118). In
contrast, no significant differences in numbers of peripheral blood
CD3−CD57+ cells were noted between patients with post-Lyme
disease syndrome, individuals recovered from Lyme disease and
healthy controls (119). The suggestion (118) that high frequencies
of CD57+ NK cells may be a biomarker of Lyme disease progres-
sion thus seems premature, especially given the potential impact
on NK cell phenotype of HCMV and other infections.

In summary, viral infections are important drivers of NK cell
differentiation with HCMV playing a primary role in selecting for
NKG2C+CD57+ cells and other viruses driving their expansion
and differentiation.
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CD57 EXPRESSION AND AGING
Given the enormous impact of infection on NK cell maturation
and differentiation, it is not surprising that NK cell populations
change with age, which is a proxy for cumulative exposure to infec-
tion and other physiological insults. At birth virtually no T cells
express CD57 (120) but the proportion rises with age, reaching
20–30% in young adults (20); by 80 years of age 50–60% of CD8+

T cells are CD28− (and thus likely CD57+) (20, 121). Similarly,
with increasing age, increasing numbers of circulating NK cells
are achieved by an expansion of the CD56dim and CD57+ subsets
and an absolute, as well as a proportional, decline in CD56bright

cells (35, 53–55, 122–125). At birth, all CD56dim NK cells are
CD57−; among European adults (18–60 years of age) 25–60%
of CD56dim NK cells are CD57+ and this continues to increase
slightly, but significantly, after the age of 80 years (124). Inter-
estingly, CD56dimCD57+ NK cells accumulate very rapidly in an
African (Gambian) population reaching adult levels (20–70%) by
the age of 5 years (Goodier et al. unpublished); this may reflect
very high HCMV seroprevalence rates in this age group in this
community.

The increased proportion of CD56dimCD57+ NK cells in
the elderly likely explains the maintenance of NK cell cytotoxic
responses despite reduced responsiveness to cytokine stimulation
[reviewed in Ref. (56)], however, the significance of these changes
in terms of overall immune competence is poorly understood. The
gradual loss of the CD56bright NK cell population, and the conse-
quent decline in NK-derived cytokines that activate dendritic cells
and monocytes, has been assumed to contribute to age-associated
declines in immune competence but the potential counterbalanc-
ing effect of an increased proportion of highly cytotoxic CD57+

NK cells has received little attention (123). Comprehensive stud-
ies are now needed to assess the cytokine-producing and cytotoxic
function of individual NK cell subsets in response to cytokine stim-
ulation as well as activation via CD16 and NCRs and the extent to
which this changes with age and HCMV status.

CONCLUSION AND FUTURE DIRECTIONS
CD57 is a very useful marker of NK cell maturation, identify-
ing cells with potent cytotoxic potential but decreased sensitivity
to cytokines and reduced replicative potential. CD57+ NK cells
appear to be a stable sub-population, increasing with age and
exposure to pathogens (especially, but not exclusively, HCMV)
and their presence is consistently associated with better outcomes
in cancer and autoimmune disease. However, the majority of clin-
ical studies have been cross-sectional, with limited follow up and
data on crucial confounding factors such as HCMV infection are
typically lacking. Recent studies of HSCT (111, 112) demonstrate
the power of prospective and longer term studies in beginning
to assign causality in terms of NK cell phenotype, function, and
disease. Nevertheless, precise understanding of the role of CD57
expression on NK cells requires a detailed dissection of the under-
lying biology of CD57, about which very little is known. Given that
there is no evidence that CD57 is expressed on murine NK cells,
this is not a simple task. Possible approaches in human NK cells
might include conducting a comprehensive analysis of NK cell
molecules expressing CD57, blocking CD57 in in vitro functional
NK cell assays, or manipulating expression or enzymatic activity

of B3GAT1 (the key enzyme in the biosynthesis of CD57) using
RNA interference or specific inhibitors.
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