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The lymphatic fluid originates from the interstitial fluid which bathes every parenchymal
organ and reflects the “omic” composition of the tissue from which it originates in its
physiological or pathological signature. Several recent proteomic analyses have mapped
the proteome-degradome and peptidome of this immunologically relevant fluid point-
ing to the lymph as an important source of tissue-derived self-antigens. A vast array of
lymph-circulating peptides have been mapped deriving from a variety of processing path-
ways including caspases, cathepsins, MMPs, ADAMs, kallikreins, calpains, and granzymes,
among others.These self peptides can be directly loaded on circulatory dendritic cells and
expand the self-antigenic repertoire available for central and peripheral tolerance.
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LYMPH FORMATION
The lymphatic fluid originates from the interstitial fluid which
bathes every parenchymal organ and it is generated through a
process of ultrafiltration of the plasma, circulating through the
blood capillaries, as well as by the addition of metabolic and
catabolic products collected from the tissue of origin (1–4).

Once the proteins have been filtered into the extracellular space,
they will not re-enter the blood circulatory system by uptake into
the venous capillaries as previously thought. Indeed, what was
known as the Starling principle has been recently revisited and
it is now apparent that almost all the extravasated fluid will be
drained into the lymphatics (5).

In addition to the proteins and molecules originating from
plasma ultrafiltration, the interstitial fluid will be further enriched
with products derived from tissue/organ catabolism/metabolism
(6–13).

The interstitial fluid will then drain into open end lymphatic
capillaries and hence forth be called lymph (14, 15). The pre-nodal
lymph will flow into progressively larger collectors up to the drain-
ing lymph nodes (500–600 in humans), disseminated throughout
the body. All lymph passes through one or more lymph nodes
and each node collects lymph from a distinct region of the body
(4). Thus, a molecular signature of tissue-specific self proteins is
collected in each node.

LYMPH PROTEOME, DEGRADOME, AND PEPTIDOME
During the last two decades there has been an increasing interest
in the analysis of the protein composition of human and rodent
lymph under physiological and pathological conditions and in
the comparative analysis with plasma samples (6–13, 16–20). This
analysis has been elusive for many years due to the difficulty in
cannulating lymphatics, which run much deeper then veins and
have a smaller diameter and more fragile walls. Additionally, mass
spectrometric techniques employed just a few years ago were much
less sensitive than they are now in mapping proteins expressed at
low levels within scarce amounts of collected fluid.

Proteomic profiles have been reported for human, rodent,
bovine, and ovine lymph, and two major conclusions can be drawn
from the compilation of these: (6–13, 16–20).

(i) The lymph proteomic profile is not merely overlapping with
the one from the plasma but qualitative and quantitative differ-
ences can be appreciated; indeed the lymph proteome appears
to be enriched in products deriving from tissue and cellu-
lar metabolism/catabolism, organ remodeling, extracellular
matrix processing, and cellular apoptosis.

(ii) The proteomic molecular signature reflects the tissue from
where the lymph is collected and the organ’s physiological or
pathological condition. Indeed tissue-specific proteins have
been mapped in the lymph collected from capillaries draining
specific organs and infectious or inflammatory tissue condi-
tions are reflected in proteomic changes in lymph more so than
in plasma.

The proteomic profile of the lymph also revealed the presence
of several low molecular weight products composed by fragments,
derived from protein processing, and short peptides (12). A similar
degradome and peptidome was previously mapped in the plasma
and serum and other biological fluids; the most comprehensive
analysis so far reports up to 6000 peptides, identified with high
confidence in mouse serum (21). Several more groups reported on
the low molecular weight cleaved proteome and peptidome reveal-
ing the remarkable richness of protein fragments and naturally
processed peptides present in lymph, plasma, synovial fluid, urine,
and cerebrospinal fluid (22–28). Our group recently mapped
the first peptidome transported by the human lymph. Over
300 self peptides were sequenced which derived from the cata-
bolic processing of both intracellular and extracellular proteins
(12). The peptidome comprised processed proteins derived from
extracellular matrix proteins, cell adhesion molecules, and plasma
membrane/receptors as well as an intracellular-derived peptidome
consisting of fragments of cytosolic, nuclear (transcription factors
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and regulators of gene expression), mitochondrial, endosomal,
Golgi, and endoplasmic reticulum proteins (12).

Peptide quantification by 14N/15N labeling and amino acid
sequencing from 2D-DIGE spots indicated that many peptides
were present in human lymph in at least nanomolar concentrations
(12) and analysis of peptide half life in biological fluids indicated
a stability of over 24 h (22).

Collectively all the experimental findings point to the lymph as
an important biological fluid that transport the tissue “omics”
(proteomes, degradomes, peptidomes) to the draining lymph
nodes to convey a snapshot of each parenchymal organ in
physiological and pathological conditions.

PROCESSING THE LYMPH AND PLASMA DEGRADOME AND
PEPTIDOME
Two major advances have improved our capability in identifying
the lymph and plasma degradome and peptidome’s processing
pathways; (i) improved mass spectrometric techniques, which
allow high confidence peptide identification and correct amino
acid assignment and (ii) increased representation of proteins in
databases (Brenda, CutD, MEROPS), which facilitated prediction
of the processing enzymes involved in peptide cleavage. Analysis
of the human lymph- and plasma-carried peptidome identified
peptides derived from both intra and extracellular sources and
mapped several proteases likely involved in peptide processing
including caspases, cathepsins, MMPs, plasmin, kallikreins, cal-
pains, and granzymes (4, 21, 22, 24, 29–31). Peptides derived from
intracellular proteins are likely released by damaged and apop-
totic cells, several of which are normally found in the lymph (17,
32). These proteins could be cleaved by the proteasome, furins,
calpains, cytosolic proteases, and caspases as well as extracellu-
lar proteases. Several peptides cleaved by cathepsins and other
endosomal proteases were also found. These peptides were likely
released from endosomal compartments during exosome exocy-
tosis or processed extracellularly by released cathepsins (33). Pep-
tides generated by the processing of matrix proteins and collagens
could be generated by MMPs and ADAMs whose activity controls
the constant remodeling of the extracellular matrix to accom-
modate organ growth, cell migration, and cell replenishment
(34–36). Surface receptors, adhesion molecules, growth factors,
and cytokines/chemokine, represent another category of processed
peptides found in lymphatic fluid (37, 38). Additionally, products
deriving from the complement cascade, thrombin and plasmin
peptidases, and the kallikrein system were also found in the lymph.

Several other studies mapped the peptidome present in plasma,
serum, and other biological fluids in physiological and patho-
logical conditions including various types of cancer, inflamma-
tory, and degenerative pathologies (4, 21, 22, 24, 29–31, 39, 40).
Altogether, two major conclusions can be derived from these
analyses:

(i) there is a great variety of processing pathways involved in the
formation of the degradome/peptidome present in different
biological fluids and

(ii) the degradome/peptidome profile changes according to the
physiological or pathological state of the organ from where
the lymph/plasma are collected.

Indeed, in pathological conditions, the mapped peptidome/
degradome is highly enriched with new peptides as compared to
the peptidome/degradome found in healthy physiological condi-
tions (4, 7, 21, 22, 24, 29, 31, 39, 41, 42). This reflects the increased
number of peptide fragments cleaved by proteases up-regulated
during inflammation (21, 22, 24).

MHC II LOADING OF THE SELF PEPTIDOME
MHC II peptide complexes can be loaded in late endosomal MIIC
compartments, early endosomes and at the plasma membrane
(43–53). In the late endosomal compartment, antigen processing
is dependent on cysteine, aspartic and asparagine endo-peptidases,
and MHC II loading depends on the editing molecule HLA-DM
(54–57). In early endosomes the antigen processing and MHC II
loading is cathepsins and mostly HLA-DM-independent (49, 53,
58–60). Similarly extracellular peptides can be loaded at the cell
surface either on empty MHC II molecules or through peptide
exchange (47, 50, 52, 61–63).

Having distinct MHC class II loading compartments allows
presentation of a larger array of peptides. Indeed many of the
peptides loaded in recycling/early endosomes and at the cell sur-
face are low affinity and are eliminated by HLA-DM in endosomal
compartments (64). Thus, if the MIIC endosomal antigen process-
ing and loading machinery restrict the array of presented peptides
by kinetic stability and HLA-DM editing, generating an overall
higher affinity, higher stability, long-lived MHC II peptidome (65),
the HLA-DM-independent pathway generates a broader, lower
stability/easily exchangeable MHC II peptidome.

These two different pathways are exploited by the antigen-
presenting cells (APC) to control immunogenicity (65, 66).

Indeed the early endosomes/plasma membrane MHC II load-
ing pathway is active in immature dendritic cells (DC) and down-
regulated upon DC maturation (50–52, 64). As a result immature
DC present an overall broader MHC II peptidome that includes
low affinity/stability peptides which, by diluting the high affinity
self peptides, contribute to the maintenance of self tolerance. The
importance of maintaining a broader MHC II peptidome under
physiological conditions is further supported by the notion that
in immature DC and non-stimulated B cells the HLA-DM editing
activity is down regulated, within the MHC II endosomal pathway,
by HLA-DO; resulting in decreased presentation of high affinity
self peptides that could induce autoimmunity (66, 67). Upon APC
maturation/activation surface MHC II loading is shut off (50–52)
and HLA-DM editing activity is up-regulated (66, 67). This would
favor presentation of high affinity pathogen-derived peptides to
generate immunity.

MHC II PRESENTATION OF THE SELF PEPTIDOME
Different mechanisms ensure that tissue-derived self antigens are
constantly presented to the immune system for the maintenance
of central and peripheral self tolerance (68–70).

In the thymus, medullary epithelial cells (mTEC), conventional
dendritic cells (cDC) (Sirpα+ CD11c+ CD8−), CD8+DC (Sirpα−

CD11c+ CD8+), and plasmacytoid DC delete immature thymo-
cytes with high affinity for the self MHC II peptidome (71).
These populations of APC display an MHC II-bound peptidome
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derived from exogenous antigens, acquired through phagocyto-
sis, and endogenous antigen acquired through autophagy (69, 72).
Additionally, a subset of mTEC expresses the transcriptional regu-
lator AIRE which promotes expression of tissue-specific antigens,
expanding the antigen repertoire to be presented (73). Since mTEC
are equipped with all the proteins associated with the antigen pro-
cessing and presentation machinery, they can directly process the
AIRE-expressed antigens. Indeed the presence of autophagosomes
in these cells indicates that antigens could enter the endosomal
tract through autophagy (72). On the other hand several reports
also indicate that mTEC can hand over AIRE-acquired antigens to
cDC for thymic selection (74).

Self-antigens in the thymus can also give rise to natural or
thymic T regs, through an avidity-dependent selection process.
The APC controlling the formation of Treg are the same as those
involved in the process of negative selection (75).

Cells that escape thymic deletion are tolerized in the periphery
through anergy or Treg-mediated suppression by tissue and nodal
resident dendritic cells (DCs) and macrophages (MΦ) which con-
tinuously process and present the self proteome of parenchymal
organs. Additionally, AIRE-independent mechanisms have also
been described in the periphery which mediate expression of
tissue-specific self antigens by lymphatic endothelial cells, further
expanding the presentation of the self proteome (76).

All the above described mechanisms depend on self-antigen
delivery to endosomal compartments, through endocytosis or
autophagy. Thus, they generate an MHCII peptidome mostly
restricted by endosomal processing enzymes (77).

Recently, circulating cDC have been shown to promote both
central and peripheral tolerance by displaying circulating self-
antigens to immature thymocytes or mature peripheral T cells (78,
79). Indeed, even though it has been known for some time that
intrathymic injection of organ specific APC induce long lasting tol-
erance to the organ self antigens (80, 81) it was the Goldschneider
group that linked thymic tolerance, to extrathymic self antigens,
to the role of cDC (82, 83). Work from his group and others indi-
cated that under physiological conditions migratory DC transport
self-antigens to mediate thymic negative selection or peripheral
T cell anergy and Treg differentiation. In both humans and mice,
circulating DC differentiate in a FLT3-dependent manner and are
CD11c+, CCR7+, CD103+, and express high levels of MHC II and
intermediate expression of co-stimulatory molecules (84). Impor-
tantly, migratory DC do not only rely on endosomal processing to
display the MHC II peptidome but are capable of loading exoge-
nous peptides as well. Indeed peptides have been shown to induce
thymic negative selection not only when directly injected in the
thymus (85) but also when injected in the blood stream (78, 86) or
in the peritoneum (87–90) which is connected to mesenteric lym-
phatic drainage (91). Importantly, circulating self antigens have
been shown to induce thymic negative selection at physiological
concentrations, as the ones achieved on MHC II on the surface of
APC (92).

CONCLUSION
The interaction between MHC II-peptides and TCRs constitutes
the molecular base for all CD4 T cell-mediated immune responses
and the displayed MHC II peptidome is critical to the generation

of tolerance, immunity, and autoimmunity. The loaded MHC
II peptidome is selected based on MHC II affinity, presence or
absence of HLA-DM activity, and arrays of available peptides.
The degradome/peptidome present in the extracellular milieu and
transported by the plasma, lymph, and other biological fluids
could contributes to the generation of the MHC II peptidome.
Indeed, in the last few years a series of proteomic analysis indi-
cated that the amount of peptides present in biological fluids
(lymph, blood, urine, peritoneal fluid) is much higher then what
previously known, it is broader in repertoire and has a long
half life (4, 21, 22, 24, 29–31, 39). These peptides could func-
tion in thymic negative selection similarly to the ones injected
exogenously (78, 85–90, 92). Distinct from the peptidome gen-
erated in MIIC, the peptidome carried by the lymph/plasma is
not restricted by endosomal proteases but originates from sev-
eral other processing pathways, further expanding the self antigen
repertoire presented by circulating DC for the maintenance of
tolerance.
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