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γδT cells are unconventional innate-like lymphocytes that actively participate in protective
immunity against tumors and infectious organisms including bacteria, viruses, and par-
asites. However, γδ T cells are also involved in the development of inflammatory and
autoimmune diseases. γδ T cells are functionally characterized by very rapid production
of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive
immune responses. This makes it crucial to understand the molecular mechanisms that
regulate γδ T cell effector functions. Although they share many similarities with αβ T cells,
our knowledge of the molecular pathways that control effector functions in γδ T cells still
lags significantly behind. In this review, we focus on the segregation of interferon-γ versus
interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and
CCR6 expression levels. We summarize the most recent studies that disclose the specific
epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete
pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating
(auto)immune responses.

Keywords: γδT cells,T cell differentiation, interleukin-17, interferon-γ, transcription factors, cytokines

γδ T cells, which were discovered three decades ago (1–3), remain
a very puzzling population of lymphocytes. Together with αβ T
cells and B cells, they make up the three somatically rearranged
lineages that are found in all jawed and also in jawless verte-
brates (lampreys and hagfish) (4, 5), thus highlighting a strong
evolutionary pressure to keep the three lymphocyte lineages
together.

One of the most striking characteristics of γδ T cells is
their inherent ability to very rapidly secrete pro-inflammatory
cytokines. This is likely attributable to the functional maturity
of discrete γδ T cell subsets, producing either IFN-γ or IL-17, that
readily populate secondary lymphoid organs (as well as periph-
eral tissues) where they make a key contribution to “lymphoid
stress surveillance” (6). We (7) and others (8, 9) have shown that
these functional γδ T cell subsets develop in the murine thymus
before migration to peripheral sites (10). This review outlines our
current molecular understanding of the development and func-
tion of γδ T cell subsets that influence both innate and acquired
immunity.

ROLES OF IFN-γ AND IL-17-PRODUCING γδ T CELLS IN
IMMUNE RESPONSES
By secreting large amounts of IFN-γ, γδ T cells participate in
controlling infection through the activation of macrophages and
cytotoxic lymphocytes. IFN-γ producing γδ T cells have been
shown to play major protective roles during murine West Nile, her-
pes and influenza viral infections (11–13); Listeria monocytogenes,
Escherichia coli, and Bordetella pertussis bacterial infections (14–
18); and Plasmodium chabaudi and Toxoplasma gondii parasitic
infections (19–22). Moreover, γδ tumor-infiltrating lymphocytes

constitute a critical early source of IFN-γ that controls tumor
development in vivo (23, 24).

With respect to the production of IL-17, γδ T cells are a key
component of the defense against infections with Mycobacterium
tuberculosis, E. coli, L. monocytogenes, Staphylococcus aureus, Can-
dida albicans, and Pneumococci (18, 25–32). One of the main
functions of these IL-17-producing γδ T cells is to enable extremely
fast neutrophil recruitment at the site of infection.

On the other hand, IL-17-producing γδ T cells have patho-
genic roles in various inflammatory and autoimmune disorders
(and animal models thereof), including collagen-induced arthritis
(CIA) (33), experimental autoimmune encephalomyelitis (EAE)
(8, 34–38), chronic granulomatous disease (39), uveitis (40),
ischemic brain inflammation (41), colitis (42, 43), and psoriasis
(44, 45). Moreover, IL-17 also seems to promote angiogenesis and
consequently tumor growth (46) and metastasis (47).

Therefore, from a therapeutic point of view, it is of utmost
importance: (i) to define in detail the γδ T cell subset(s) that per-
form each given function; (ii) to understand the extracellular clues
that regulate the development of each subset; and (iii) to iden-
tify the molecular program(s) of differentiation that control the
acquisition and maintenance of a specific effector function.

Here we will essentially focus on mouse models, but to empha-
size the relevance of studying specific murine effector γδ T cell
subsets we will highlight their human counterparts. For a compre-
hensive review on the differentiation of human γδ T cells please
refer to Ref. (48). Moreover, although the present review focuses
on IFN-γ- and IL-17-secreting γδ T cells, we note that some γδ

cell subsets produce other cytokines including IL-4, IL-5, IL-13
(49–51), IL-10 (52, 53), and IL-22 (54–56).
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PHENOTYPIC DESCRIPTION OF IFN-γ- OR IL-17-PRODUCING
γδ T CELL SUBSETS
Functional γδ T cell subsets in the mouse have been tradition-
ally defined by their TCR Vγ usage [please note that we use the
nomenclature proposed by Heilig and Tonegawa (57)] and pref-
erential tissue distribution. For example, epidermal Vγ5Vδ1 T
cells are mainly associated with the production of IFN-γ (58),
although they have also been shown to produce IL-17 in response
to skin injury (59). Vγ6Vδ1 T cells that are present in the tongue,
lungs, and reproductive tracts mainly produce IL-17. Moreover,
Vγ1 T cells colonize the liver, spleen, and intestine preferentially
secrete IFN-γ, whereas Vγ4 T cells, which recirculate through
blood, spleen, and lymph nodes, and are also located in the lungs,
favor IL-17 production. However, this dichotomy is not so strict
as mouse Vγ4 T cells produce IFN-γ or IL-17 depending on the
model studied (7, 60, 61).

Although a genome-wide transcriptional profiling of γδ thy-
mocytes segregated the expression of some genes associated with
IFN-γ or IL-17 production with selective Vγ chain usage (62),
work from our laboratory (7), together with others (8, 63), has
shown that γδ T cell functions are not mutually exclusive between
Vγ1 and Vγ4 T cell subsets. Our collective efforts have identified
CD27 and CCR6 as useful markers of discrete pro-inflammatory
γδ T cell subsets: CD27 is expressed on IFN-γ-producing γδ T
cells whereas IL-17-producing γδ T cells are CD27(−) but express
CCR6 (7, 54, 63) (see Figure 1 for further details). Of note, CD122

and NK1.1 constitute additional markers of IFN-γ-producing γδ

T cells (8, 63). Consequently, we favor categorization of γδ T cell
subsets based on their effector functions rather than on TCR Vγ

usage (10). The definition of surface phenotypes associated with
effector cell functions has greatly facilitated the dissection of the
molecular mechanisms that control the differentiation of IFN-γ-
or IL-17-producing γδ T cells.

DIFFERENCES IN CYTOKINE PRODUCTION BETWEEN γδ AND
CD4 T CELLS
One of the main differences between cytokine production by γδ

and CD4 T cells resides in the spontaneous release of cytokine by
γδ T cells, which strikingly contrasts with the delayed response of
naïve CD4 T cells. This can be explained by γδ T cells exiting the
thymus already functionally competent to produce either IFN-γ or
IL-17 (7–9, 64), whereas CD4 T cells require a long differentiation
program in peripheral lymphoid organs that consists of activa-
tion, intense proliferation, and induction of transcription factors
that selectively control the profile of cytokines produced (65). As
CD4 T helper cells have been extensively studied, it is reasonable to
question if the programs of differentiation that prevail in CD4 T
cells also operate in γδ T cells. Here we will focus on the molecular
mechanisms that govern the differentiation of naïve CD4 T cells
into IFN-γ-producing (Th1) and IL-17-producing (Th17) cells, as
counterparts to CD27+ (γδ27+) and CD27− CCR6+ (γδ27−) γδ

T cell subsets, respectively.

FIGURE 1 | IFN-γ-producing and IL-17-producing CD4 and γδT cells.
In this figure, we have compared the extracellular signals and the
transcriptional networks that regulate IFN-γ or IL-17 production in CD4
(left: Th1 and Th17) and γδ (right: γδ27+ and γδ27−) T cells. In addition, the
expression pattern of markers specifically associated with

IFN-γ-producing γδ27+ and IL-17-producing γδ27− T cells is detailed. The
emergence of IL-17+ IFN-γ+ T cells is highlighted for both CD4 and γδ T
cells. Of note, the transcription factors in parenthesis (TCF1 and LEF1)
below γδ27+ T cells have been proposed to inhibit IL-17 production in
these cells.
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ENVIRONMENTAL CUES THAT GOVERN THE ACQUISITION OF
TYPES 1 OR 17 EFFECTOR FUNCTIONS
Upon peripheral activation, naïve CD4 T cells are polarized toward
the Th1 fate in the presence of IL-12 (66). As yet, there is no pre-
cise information as to the role of IL-12 in the development of
γδ27+ T cells although IL-12 (in synergy with IL-18) induces
the production of IFN-γ by γδ27+ T cells expressing NK1.1
(63). Our unpublished data suggest that IL-15 and, to a lesser
extent IL-2, strongly promote IFN-γ production by γδ27+ T cells
(Barros-Martins et al., manuscript in preparation).

Th17 polarization entails TGF-β, IL-6, and IL-1β, whereas IL-
23 is required for maintenance and expansion (67–69). Although
still controversial, the development of IL-17-producing γδ T cells
in the thymus (and their maintenance in the periphery) appears
to be dependent on TGF-β but mostly independent of IL-6 (9, 70–
73). Unexpectedly, IL-7 induced rapid and substantial expansion
of IL-17-producing γδ27− T cells (74). Furthermore, they require
IL-23 and IL-1β for peripheral expansion and local induction
of IL-17 (30, 75, 76). This is clearly evidenced by the signifi-
cant reduction in IL-17-secreting γδ T cell numbers following
L. monocytogenes infection in IL-23−/− and IL-23R−/− mice (72,
77) or in IL-1R1−/− mice upon EAE induction (36). It was also
shown that IL-18 synergizes with IL-23 to promote IL-17 pro-
duction by γδ T cells (78). IL-17 production by γδ T cells can
be triggered independently of TCR signaling (36, 54, 76), but
it is worth noting that a small subset of CD44+CD62L+ γδ T
cells (a phenotype associated with γδ27+ cells; see Figure 1)
selectively recognized phycoerythrin via the TCR and became
CD44+++CD62L− cells that produced IL-17 (79). In this system
too, propagation of the IL-17-response by PE-specific γδ T cells
relies on IL-23. Finally, it has been shown that IL-17 derived from
CD4 T cells is a negative regulator of IL-17+ γδ T cell development
in adult thymus (64), underlying the potential danger that large
numbers of these pro-inflammatory cells likely represent to the
host.

TRANSCRIPTIONAL REGULATION OF CYTOKINE
PRODUCTION IN γδ AND CD4 T CELLS
During Th1 polarization of naïve CD4 T cells, IL-12 activates
STAT4 (80), but it is unclear if this IL-12/STAT4 axis plays any role
in IFN-γ production by γδ27+ T cells. The “master” transcription
factor that regulates the production of IFN-γ in CD4 T cells is T-
bet (81, 82). Whereas Th1 differentiation is fully abrogated in the
absence of T-bet, γδ27+ T cells only partially require T-bet to pro-
duce IFN-γ (83–85). Other transcription factors that have been
proposed to play major roles in γδ T cells include Eomes and Egr3
(58, 84), although the potential cooperation between these three
transcription factors within specific γδ T cell subsets still needs to
be clarified.

Th17 differentiation relies on cytokines that target STAT3 and
lead to the expression of the master transcription factor retinoic-
related orphan receptor γt (RORγt) (86) that synergizes with
RORα (87), together with IRF4 (88) and BATF (89) to propagate
IL-17 production. In vivo Th17 cell differentiation also involves
the aryl hydrocarbon receptor (AhR) (90, 91). All together this led
to the concept that a specific transcriptional network is operating
during initiation and stabilization of the Th17 phenotype (92).

IL-17 production by γδ27− T cells is also strictly dependent on
RORγt (70, 85, 86, 93). However, the similarities between the Type
17 program of γδ and CD4 T cells end with this transcription fac-
tor, since STAT3 and IRF4 have been shown to be dispensable for
the differentiation of IL-17+ γδ T cells (93, 94). Of note, detection
of IL-17+ γδ T cells in STAT3-deficient mice further suggests that
IL-6, IL-21, and IL-23 are unlikely to play major roles for their
development, although they may be involved in peripheral reacti-
vation of these γδ cells. AhR has also been shown to be dispensable
for IL-17 but required for IL-22 production by γδ T cells (54).
Finally, our unpublished data show that IL-17-producing γδ T cells
are generated in the absence of RORα or BATF (Barros-Martins
et al., manuscript in preparation). Thus, many transcription fac-
tors that are essential for Th17 development are not required for
the differentiation of their IL-17+ γδ T cell counterparts.

In fact, γδ27− T cells appear to rely on distinct molecular
pathways to regulate their production of IL-17. Namely, several
transcription factors such as Sox13 and Sox4 (95, 96), Hes-1 (93),
RelB (97), ETV5 (98) along with the kinase Blk (99), selectively
participate in IL-17 production by γδ T cells. On the other hand,
TCF1 and LEF1 are negative regulators of IL-17 expression in γδ

T cells (96).
These data clearly highlight that distinct mechanisms gov-

ern the production of IFN-γ and IL-17 in CD4 and γδ T cells
(Figure 1). Further studies are warranted to precisely delineate
the molecular components of the Types 1 and 17 programs of γδ

T cells.

STABILITY VERSUS PLASTICITY OF γδ T CELL SUBSETS
Initially studies suggested that the segregation between IL-17 and
IFN-γ production that emerged in the thymus appeared to be sta-
ble in the two γδ T cell subsets, including in peripheral lymphoid
organs and upon challenge with infectious agents in vivo (7, 76).
Furthermore, incubating the γδ27+ cells in Th17 conditioning
milieu, or the γδ27− cells in Th1 conditioning milieu, failed to
“convert” their cytokine production profile (63, 85). It was there-
fore assumed that, due to thymic “functional pre-commitment,”
murine γδ T cells harbored little plasticity, in stark contrast with
CD4 T cells (100).

To get further insight into the molecular mechanisms of sta-
ble commitment of the γδ27+ and γδ27− T cell subsets to their
respective effector functions, we undertook the first genome-wide
comparison of the chromatin landscape of these two γδ T cell
subsets. We analyzed the distribution of methylation marks on his-
tone H3 (H3). Methylation of lysine 4 (H3K4me2/3) signs actively
transcribed loci, whereas methylation of lysine 27 (H3K27me3)
represses the accessibility for the transcriptional machinery (101,
102). As expected, we found that gene loci associated with IL-17
production harbored active histone modifications only in γδ27−

T cells. By contrast, and to our surprise, gene loci associated with
IFN-γ showed active H3K4me2 profiles in both γδ T cell subsets.
Furthermore, whereas Il17 and related genes were exclusively tran-
scribed in γδ27− cells, Ifng and genes that control its expression
were transcribed in both γδ27+ and γδ27− T cells (although to
a lesser extent in the latter subset). Thus, Ifng and “Type 1” fac-
tors are epigenetically and transcriptionally primed for expression
in both γδ27+ and γδ27− T cells, which led us to hypothesize
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that γδ27− T cells could acquire IFN-γ expression under specific
conditions.

IDENTIFICATION OF γδ IL-17+ IFN-γ+ DOUBLE PRODUCERS
By performing a series of in vitro experiments, we found that
IL-1β strongly synergizes with IL-23 to induce IFN-γ expression
specifically in IL-17-producing γδ27− cells (Figure 1). Impor-
tantly, epigenetic and transcriptional polarization of IL-1R1 and
IL-23R predicted the responsiveness of γδ27− cells, but not γδ27+

cells, to these two inflammatory cytokines.
This plastic behavior of γδ27− T cells was also observed in vivo,

as IL-17+ IFN-γ+ γδ27− cells could be found in the peritoneal
cavity of mice bearing ovarian tumors (85). Moreover, these cells
have been detected in the brain of mice suffering from early stages
of EAE (103); and in the mesenteric lymph nodes of mice infected
with L. monocytogenes (104).

Double producing IL-17+ IFN-γ+ γδ T cells have also been
characterized in humans. Thus, while a fraction of neonatal and
adult Vγ9Vδ2 T cells incubated with IL-6, IL-1β, and TGF-β in the
presence of TCR agonists produced IL-17A, the addition of IL-23
resulted in IFN-γ co-production (105). Moreover, IL-17+ IFN-γ+

cells of both Vδ1 and Vδ2 subtypes were found in the circulation
of HIV+ patients (106).

Thus, although their precise physiological relevance is still to be
established, IL-17+ IFN-γ+ double producers can clearly be a dis-
tinct component of the γδ T cell response in scenarios of infection,
cancer, and autoimmunity.

CD4 IL-17+ IFN-γ+ DOUBLE PRODUCERS AND THEIR
BIOLOGICAL RELEVANCE
IL-17+ IFN-γ+ double producers have been well characterized in
the CD4 T cell compartment (Figure 1). In particular, both murine
(107, 108) and human (109–111) Th17 cells often show plasticity
in acquiring IFN-γ production. Strikingly, these IFN-γ+ (Th1-
like) Th17 cells have been strongly associated with pathogenicity
in murine (107, 112, 113) and human (114) autoimmune syn-
dromes. The molecular determinants of pathogenicity of Th1-like
Th17 cells are still controversial, with studies either implicating
T-bet and IFN-γ (108, 112, 115) or not (116–118). Nonethe-
less, it is clear that IL-23 is a major driver of Th1-like Th17 cell
pathogenicity (108, 112, 117).

Similar studies on in vivo models should now explore the
potential pathogenic role of γδ IL-17+ IFN-γ+ double producers.
This notwithstanding, it has been proposed that, in response to
L. monocytogenes, IL-17+/IFN-γ+ producing γδ27− cells become
memory cells capable of providing enhanced protection against
recall infection (104). Thus, γδ IL-17+ IFN-γ+ double produc-
ers may potentially play host-protective versus pathogenic roles
in distinct disease models, which will be an interesting topic for
future research.

CONCLUDING REMARKS
As a population, γδ T cells perform a wide variety of functions, but
discrete subsets have more restricted effector properties. Although
thymic development endows a significant fraction of murine γδ T
cells with a “pre-determined” effector function, recent data pro-
vide strong evidence for functional plasticity in the periphery
(particularly for γδ27− T cells).

Several fundamental questions remain unanswered. Is func-
tional plasticity restricted to γδ T cells located in secondary
lymphoid organs or does it extend to subsets that populate
epithelial tissues/mucosas? Why did γδ T cells and CD4 T cells
evolve different transcriptional networks to regulate the pro-
duction of the same pro-inflammatory cytokines? What are the
specific roles of γδ IL-17+ IFN-γ+ double producers in mod-
els of infection, cancer, and autoimmunity? More globally, it
will be important to dissect the physiological stimuli that drive
the activation of effector γδ T cells. It is particularly puzzling
that we still know so little about the role of the TCRγδ, and
the identity of its ligands, in the differentiation and activa-
tion of functional γδ T cell subsets. Answering these questions
will improve our understanding of γδ T cell physiology and
likely provide new avenues for the design of immunotherapeutic
approaches.
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