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Tissue drains fluid and macromolecules through lymphatic vessels (LVs), which are lined
by a specialized endothelium that expresses peculiar differentiation proteins, not found in
blood vessels (i.e., LYVE-1, Podoplanin, PROX-1, and VEGFR-3). Lymphatic capillaries are
characteristically devoid of a continuous basal membrane and are anchored to the ECM
by elastic fibers that act as pulling ropes which open the vessel to avoid edema if tis-
sue volume increases, as it occurs upon inflammation. LVs are also crucial for the transit
of T lymphocytes and antigen presenting cells from tissue to draining lymph nodes (LN).
Importantly, cell traffic control across lymphatic endothelium is differently regulated under
resting and inflammatory conditions. Under steady-state non-inflammatory conditions,
leukocytes enter into the lymphatic capillaries through basal membrane gaps (portals).
This entrance is integrin-independent and seems to be mainly guided by CCL21 chemokine
gradients acting on leukocytes expressing CCR7. In contrast, inflammatory processes in
lymphatic capillaries involve a plethora of cytokines, chemokines, leukocyte integrins, and
other adhesion molecules. Importantly, under inflammation a role for integrins and their
ligands becomes apparent and, as a consequence, the number of leukocytes entering
the lymphatic capillaries multiplies several-fold. Enhancing transmigration of dendritic cells
en route to LN is conceivably useful for vaccination and cancer immunotherapy, whereas
interference with such key mechanisms may ameliorate autoimmunity or excessive inflam-
mation. Recent findings illustrate how, transient cell-to-cell interactions between lymphatic
endothelial cells and leukocytes contribute to shape the subsequent behavior of leukocytes
and condition the LV for subsequent trans-migratory events.

Keywords: dendritic cell,T cell, lymphatic vessel, migration, inflammation

INTRODUCTION
The lymphatic vascular system is composed by a one-direction
system of conduits interrupted by lymph nodes (LN) that run in
parallel to the blood vascular system.

Up to 50% of the protein that extravasates from blood vessels is
reabsorbed by the lymphatic network (1). Besides, lymphatic ves-
sels (LVs) in the gut are also devoted to the transport of absorbed
lipids from the diet. One of the main functions of LVs is to con-
duit immune cells from tissues to the LN. This last function of the
LVs constitutes the focus of this review. The cellular mechanisms
and molecules involved in leukocyte transit across blood vessels
have been studied in more detail and are generally assumed to be
similar in the LVs (2). However, it must be stressed that although
there are partial parallelisms in cell transit across these two types
of vasculature, the diverse structure of the lymphatic capillaries
may explain non-overlapping trans-migratory mechanisms. Even
more, these peculiarities offer us new opportunities for selective
therapeutic intervention to modulate leukocyte transit across the
lymphatic capillaries.

The majority of the leukocyte populations that travels via the
lymphatics to the LN are CD4+ lymphocytes, including effec-
tor memory and regulatory T cells (3–5). Myeloid cells also use

the same conduits (6, 7), the majority of them being dendritic
cells (DC) (8, 9). Myeloid cells are present in the lymph in
lower amounts in homeostasis respect to T lymphocytes but their
quantities significantly increase under inflammatory conditions.

Dendritic cells are key elements of the adaptive immunity that
patrol peripheral tissues in search of pathogens or damage signals.
Their main mission is to recognize and process foreign antigens
in peripheral tissues and ferry them to the LN where they are
presented to naïve T cells and then trigger an effective immune
response.

In consequence, DC traffic toward LN via LVs has been exten-
sively studied by immunologists in the recent years. Due to their
abundance in the skin and its accessibility, DC transit in this tis-
sue in homeostasis and inflammation has been the model used
for most of the experimental studies. DCs from the skin include
epidermal resident CD206+ Langerhans cells as well as dermal res-
ident DC. Importantly, both cell types migrate at different times
to the LN after contacting pathogen [for review Ref. (10)]. DC
migration to the LN under steady-state conditions is constant
and occurs at modest intensity (11) being instrumental to pre-
serve peripheral tolerance to self-antigens (12–15). In contrast,
under inflammation, DC migration toward the LN is significantly
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increased in response to chemotactic signals induced by inflamma-
tory products (16). The amount of DC and specific subpopulation
of antigen presenting DC (APC) entering into in the LN from
peripheral tissues is important not only to elicit but also to sustain
proper adaptive immune responses against pathogens. Therefore,
the existence of regulation mechanisms for leukocyte-egress routes
from the peripheral tissue is reasonable. Such mechanisms as
consequence regulate leukocyte entrance into LN (16).

LYMPHATIC VESSELS UNDER STEADY-STATE AND
PRO-INFLAMMATORY CONDITIONS
Leukocyte entry into the LVs is determined by the peculiar mor-
phological features of these vessels: they are endowed with an
intermittent basement membrane and their intercellular junctions
are dispersed in button-like structures that leave small flaps of
loose overlapping membrane extensions between individual LEC
(17). Further, the LVs are attached to the extracellular matrix by
anchoring fibers (18, 19) that stretch when tissue volume increases
and lead to the opening the inter-endothelial flaps (19). It has
been firmly established how under steady-state conditions DCs
are able to penetrate into LVs via the preexisting pores (portals) of
their basal membrane and subsequently migrate into LVs through
inter-endothelial cell openings. This migration occurs in a process
guided by chemokine gradients and mediated by contractions of
the actin cytoskeleton, but is independent from integrin engage-
ment, as it was shown in experiments performed in mice whose
traceable DC are devoid of all integrins as bona fide pan-integrin
knock-out DC mice (20).

It has recently been reported that during chronic inflammation
or extensive lymphangiogenesis, there exists a transformation of
the dispersed button-like adhesive structures of the mature lym-
phatic capillaries into ones more restrictive for cell transit featuring
zipper-like contact adhesions similar to those present in collecting
LVs and in blood capillaries. Importantly, this transformation is
reversible and dependent on the activation of the glucocorticoid
receptor by its phosphorylation (21). In fact, additional find-
ings supported these observations. For example, it was reported
how inflammatory cytokines (22) and pathogen-associated pat-
terns (23) can promote VEGF-C production by the stromal cells
and induce the formation of new LVs (lymphangiogenesis). In
these models, inhibition of signaling across its receptor VEGFR-
3 impaired the resolution of inflammation while its activation
attenuated edema and induced the sprouting of new LVs (24–27).
Besides, it has been extensively reported how increments in LVs
facilitate the local resolution of the immune and inflammatory
responses by augmenting DC transit across their boundaries (27,
28).

In line with this experimental evidence, it has been demon-
strated how inflammatory mediators such as TNFα induce the
up-regulation of integrin ligands on LVs surface such as VCAM
and ICAM-1 and induce changes in the secretion of chemotactic
cytokines both in in vitro and in vivo settings (29, 30). CCL21
is the main cytokine that drives DC migration to the LVs and
its expression by LVs is strongly up-regulated upon exposure to
pro-inflammatory cytokines such as TNFα (31). Nevertheless,
other cytokines such as IFNγ limit LV proliferation (32) suggest-
ing that transit of DCs across the lymphatic boundaries seems

to be a phenomenon highly controlled by inflammatory medi-
ators, although the precise molecules at work in each situation
seem to vary. Indeed, previous reports from Vigl et al. showed how
different models of inflammation (i.e., contact hypersensibility,
CHS induction, or CFA injection) lead to diverse changes in LEC
phenotypes in a stimulus-dependent manner (30). Other reports
have demonstrated that the characteristic increment in transmural
lymph flow that accompanies inflammation also results in greater
CCL21 cytokine expression and leukocyte transmigration across
LEC (33). Besides, to further support the role of this cytokine in
DC migration Tal and co-workers have recently demonstrated by
in vivo time-lapse microscopy that DC not only ingress the initial
lymphatics through basal membrane deprived portals located in
close proximity to CCL21 depots, but once inside the vessel these
leukocytes crawl directionally on the luminal-side of the capillary.
To crawl DC advance extending filopodia at their leading edges and
retracting uropods formed at their rear end (34). These cells moved
in a way that much resembles the inflammation-mediated integrin
crawling of leukocytes inside the lumen of blood capillaries before
their extravasation into tissues (35).

Peripheral inflammation is also able to promote effects in dis-
tant LN. Reports from Kinder and co-workers show how periph-
eral activated mast cells release micro particles that contain TNFα

and other vasoactive mediators that facilitate leukocyte-egress
toward the LN and induce the lymphangiogenesis of the lym-
phatic sinusoids in secondary lymphoid organs (36, 37). This new
mechanism results in long distance-education of draining LN for
the eventual reception of activated leukocytes (38, 39).

In addition to APC and effector T lymphocytes, T cells that infil-
trate healthy or inflamed tissues may differentiate into a memory
subset that expresses CCR7 and recirculates to LN (40–42). Sim-
ilarly to DC, the arrival of antigen experienced T lymphocytes to
LN is critical to regulate the intensity of immune responses. It
is clear that there is much more detailed information regarding
the mechanisms that drive the entrance of leukocytes to tissue
to form inflammatory infiltrates than those that govern egress
from tissue via afferent LVs. The most actively studied lymph-
traveler leukocytes are DCs. However, memory T cell traffic for
recirculation is also quite important and its understudied molec-
ular mechanisms deserve much future attention, as is also the case
with polymorphonuclear leukocytes (PMN).

Polymorphonuclear leukocytes upon acute inflammation are
routed to LN via the lymph (43, 44) with potential to ferry antigens
and pathogen-associated patterns (45) and regulate antigen pre-
sentation at the LN (43). Besides, DCs which have engulfed PMN
also migrate via afferent LVs and may deliver PMN associated
antigenic material to LN resident DC (45).

The experimental methodology used so far for the assessment
of the interplay between leukocytes and LVs is quite similar to those
in use for many years to study cell transit across blood capillaries
and are being described next.

CURRENT EXPERIMENTAL MODELS TO STUDY LEUKOCYTE
TRANSIT ACROSS LYMPHATIC VESSELS
Much of our current view on leukocyte transit across different lym-
phatic vascular beads depends on the experimental setting used.
A graphical summary of such approaches is shown in Figure 1.
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Teijeira et al. Leukocytes and lymphatic endothelium

FIGURE 1 | Schematic picture representing most commonly used
experiments to study leukocyte migration through afferent LVs. Methods
are divided in different compartments regarding the type of the experimental

strategy and approach of each experiment. Lymphatic endothelial cells are
represented in green and DC in blue (red or green when represented as
stained).

ENDOTHELIAL CELL CULTURES
Human LECs can be purified based on the expression of spe-
cific markers (46) and are also commercially available as pri-
mary cells purified from human tissues such as dermis or lung.

In this line, it is worth mentioning that LEC present different
biological properties depending on their original tissue niche
(47). From them, immortalized mouse LEC cell lines have been
derived. The cell line most frequently used was purified from
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transgenic mice strains (SV-LEC) in which the expression of
temperature sensitive SV40T antigen immortalized the lymphatic
endothelial cells (48). This cell line is grown in special culture
media and needs to be kept in culture at 33°C to maintain
their immortalized status, making their use as routine exper-
imental tool rather cumbersome. Other lymphatic endothelial
cell lines derived from murine lymphoangiomas such as MELC
cells have also been reported (49). This cell line retains most
of the characteristics of primary lymphatic endothelial cells, but
do not retain other features such as LYVE-1 expression. Still,
they are a valuable source for research on lymphatic endothelial
cell function since they can be in vitro propagated and assayed
for transcriptional and functional assays. Primary isolated or
immortalized lymphatic endothelial cells can also be transfected
by liposome-based methodology and more powerful transfec-
tion techniques such as nucleofection or retrovirus mediated gene
transfer (50, 51). Reliable methods to culture primary mouse LECs
are not in place at the moment although it would offer definitive
advantages.

The in vitro study of leukocyte adhesion to LEC monolayers
provides quantitative data and permits experiments with block-
ing monoclonal antibodies to assess the role of different adhesion
molecules (29, 52, 53) as a preliminary tool to describe cell tran-
sit across these vessels. Besides, this set up allows DC imaging on
fixed and live specimens of lymphatic endothelial cells (33, 54,
55). In contrast, one of the mayor limitations of this experimental
approach derives from the fact that leukocyte binding to mono-
layers of LEC adhered to plastic or ECM coated wells ignores the
apical to basal polarization of the endothelial cells. Even though
a lack of polarization has been reported for these cells in culture
(29), in those experiments, DC used the same molecules to adhere
to either the apical or the basal face of the endothelium (56). How-
ever, more research is needed about the importance of polarity for
cell transit across LVs.

A second feasible and reproducible in vitro assay relies on
the use of transwell systems in which the endothelial cells are
seeded on the bottom of the transmigration filter between cham-
bers. Migratory cells are then added on the upper well of the
camber and allowed to cross the endothelium following a chemo-
tactic gradient originated in the bottom well of the dispositive.
This methodology also provides the researcher with a quantita-
tive system to assess chemokine-driven active migration across
monolayers. By using blocking monoclonal antibodies and decoy
receptors the contribution of each of the different receptors can
also be tested. An advantage of the use of transwell assays is
the possibility to analyze basal to apical migration, but atten-
tion should be paid to pore size and the type of ECM proteins
used to coat the transmigration membranes between chambers
(33, 54).

Novel approaches in cell culture have been developed to grow
endothelial structures in 3D micro-devices that allow both physic-
ochemical and confocal microscope-based analysis of cell trans-
migration across endothelial tubules (57–59). These devices have
been mainly applied to study tumor cell biology and metasta-
sis but are promising in the context of cell migration across
LEC as an attractive system for live imaging of leukocyte-LEC
interaction.

EX VIVO ASSAYS
This experimental approach is based on the isolation and culture
in vitro of skin samples obtained from animals or surgery sam-
ples, under sterile conditions. It has been used for the study of
DCs emigration from tissue (60). This technical approach simu-
lates more accurately the physiological context than the previously
mentioned in vitro assays. In this ex vivo set up, the visualization of
tissue-resident DC in their way across LVs by confocal microscopy
is challenging due to the scarce number of endogenous DC in
the tissue sample and their lack of motility once explanted from
tissue. Therefore, it is more feasible to directly add in vitro differ-
entiated DC onto the explanted skin samples or inject traceable
DC to the animals before sacrifice. Using this methodology leuko-
cyte migration toward LVs has been observed by in situ imaging
(61) and quantitative assays in this respect have been reported
(29, 62). Though offering evident advantages, tissue explants also
present some drawbacks because: (i) DC may abandon the tissue
using other routes different from LVs; (ii) explanted tissue offers
limited viability in culture (3 days, the longest in our hands); (iii)
the experiments are performed in the absence of lymph flow.

IN VIVO MODELS
The main in vivo approximations for the study of DC migration
across LVs have been reviewed in depth elsewhere (63). Briefly,
current functional assays for the study of leukocyte migration
toward the LNs are based largely in two different experimental
approaches: the application of different inflammatory stimuli to
induce endogenous DC migration, and the adoptive transfer of
in vitro differentiated DC. The first type of experiments include
FITC painting (16, 64), injection of fluorochrome-loaded parti-
cles (65), or the application of pro-inflammatory agents to the
skin (66). FITC painting allows easy tracing of those leukocytes
that have migrated out from skin since they are fluorescent. A pit-
fall of this methodology is that FITC molecule works as hapten
and produces inflammation per se, hence being unsuitable for the
investigation of steady-state cell migration. Injection of labeled
microparticles is used to follow phagocytic DC populations and
presents the advantage of allowing the study of DC migration
under steady-state conditions. In addition, since these micropar-
ticles can be labeled with different fluorochromes, multiple DC
populations can be traced in one single experiment. Direct injec-
tion or application of pro-inflammatory agents on the skin makes
possible the study of the changes in endogenous DC populations
both in the skin and in the draining LN. This approximation is
useful to assess differential immunological responses to diverse
inflammatory stimuli. However, with this technique it is not pos-
sible to directly follow DC migratory events. To overcome this
problem, mice engineered to express the photoconvertible fluo-
rescence protein Kaede, which changes from green to red when
exposed to violet light have been used in experiments to trace the
destiny of different leukocyte populations. In this line, Tomura
and co-workers trace skin lymphocytes routed to draining LNs
after skin exposure to violet light (5). Again, it is likely that
photoconversion might act as an inflammatory stimulus.

More accessible methods are based on the adoptive transfer of
pre-stained or genetically tagged DCs or T cells. This approach
facilitates the study of the migration of leukocytes obtained from
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different transgenic models, while keeping a wild type back-
ground in the receptor mice (53, 67). The main limitations of
this technique derive from the fact that experiments are usually
performed with DC differentiated in culture and not with actual
tissue-resident populations. It should be noted that DC are phe-
notypically diverse and may respond differently to environmental
stimuli. Besides, the injection of the cells directly into the tis-
sue may produce minor inflammation and undesired leukocyte
activation.

Recently, intravital imaging has become a powerful tool to
dissect the biology of leukocyte intravasation into the LVs. This
approach captures images of cells as they migrate toward and tra-
verse the lymphatic endothelium in live animals in a non-invasive
fashion. For this purpose, increasingly sophisticated two-photon
fluorescent microscopy technology leads our progress. Indeed,
this methodology has provided crucial in vivo information about
DC migration across LVs in steady-state conditions (34, 55).
Besides, many mouse models have been developed to visualize
LVs by in vivo microscopy based on the selective expression of
fluorescent proteins under the regulation of different promot-
ers (55, 68–72) or by the use of fluorescence-labeled antibodies
(34, 73). Non-invasiveness and performance of the experiments
in intact animals allows continuous lymph flow and makes this
approach very suitable, since the main shortcomings from the
previously explained methodologies are overcome. Yet, there are
limitations to in vivo microscopy such as paucity of relevant
transgenic animals expressing fluorescent protein under suitable
promoters to study leukocyte entrance into lymphatics, and the
fact that experimentation with human cells in this setting is
impossible.

ADHESION MOLECULES, CYTOKINES, AND CHEMOKINES
THAT CONTROL LEUKOCYTE TRANSIT INTO LYMPHATIC
VESSELS
CHEMOKINES INVOLVED IN LEUKOCYTE TRAFFICKING INTO LVs
Dendritic cells and T cells follow chemotactic gradients that lead
them toward the LVs and facilitate their transmigration and crawl
on the luminal-side of the lymphatic capillaries until they reach the
wider collector vessels from where lymph flow drifts them toward
LNs (34). The role of the chemokine receptors and adhesive mol-
ecules and the models in which they have been investigated are
summarized in Table 1.

The main chemokine-chemokine receptor system that con-
trols leukocyte migration to LNs is CCL21/CCL19-CCR7 axis.
The CCR7 chemokine receptor is expressed on DC under steady-
state conditions but is strongly up-regulated upon maturation
(74). This chemokine receptor has been described as instrumental
for DC migration to LNs in experiments using adoptively trans-
ferred or autochthonous dermal DCs both under inflammation
and steady-state conditions (11, 67). The same function applies
for T lymphocyte (40, 41) and neutrophil (44) migration into
the LVs.

The ligands of the CCR7 receptor are CCL21 and CCL19
chemokines. CCL21 is mainly produced by LEC in peripheral tis-
sues and it is adsorbed onto heparan sulfate residues present in
the ECM through its positive charged C-terminal end (75, 76).
A single aminoacid variant of CCL21 (CCL21-Ser) is expressed

by high endothelial venules (HEVs) and fibroblast reticular cells
(FRCs) present in secondary lymphoid organs to guide T lympho-
cytes and DC into the T zone. CCL21 is better sensed by CCR7+

leukocytes when it is adsorbed onto surfaces and enhances cell
mobility by a phenomenon called haptotaxis (77, 78). Besides,
CCL21 can be proteolyzed by activated DC generating solu-
ble gradients that attract DC by chemotaxis as well. Following
inflammation, CCL21 biosynthesis by LEC is up-regulated and
accounts for the enhanced leukocyte chemotaxis toward the LVs
observed in animal models (30, 31, 79). In fact, in vivo confocal-
based evidences show how DCs directly interact with the CCL21
patches deposited on the areas where lymphatic endothelium is
deprived of basal membrane (34). From these points of entry
DC subsequently crawl inside LVs (Figure 2). Interestingly, it has
been demonstrated how CCL21 is needed for integrin dependent
transmigration across LEC and promotes DC integrin activation
through the erection from their low affinity bent conformation
to the extended high affinity form (31, 80, 81). As expected,
DCs lacking CCR7 do not dock successfully to CCL21 depots
on LVs.

CCL19/MIP3β is a soluble CC chemokine abundantly
expressed in the thymus and in FRC from the LNs but it is not
expressed by LVs. Contrarily to what happens with CCL21, CCL19
lacks a negatively charged C-terminus and therefore does not bind
to the glycosaminoglycans present in the ECM. In tissue, CCL19
is mainly produced by activated DCs and diffuses as soluble gra-
dients for subsequent DC, and maybe T cells, to follow behind
(82). All in all, the conjunctive activity of CCL21 and CCL19
cytokines, accounts for all CCR7-dependent DC migration toward
LVs (77). Still, the specific role of each one of these chemokines in
DC migration is still under discussion, although the majority of
the experimental evidence shows that CCL21 is the predominant
chemokine in the guidance of DC migration and intravasation
(34, 78).

An interesting and unresolved paradox is that while CCR7
expression is the trademark of central memory T lymphocytes
(83, 84) it is not expressed by T effector memory counterparts.
The afferent lymph contains abundant CD4+ and CD8+ T cells
which are CCR7+ as well (40, 84). It is then conceivably that some
of the T cells infiltrating peripheral tissue regain CCR7 expression
to enter afferent LVs in a CCR7-dependent fashion (40, 41). It has
been reported that egress of CD4+ T cells is more efficient than
CD8+ T cells or B cells (41) but the underlying mechanism has
not been uncovered yet. To complicate things further, it has been
described how under chronic inflammation dependency for out-
migration on CCR7 is not total and other mechanisms are involved
including random migration (42).

CXCR4 is another member of the chemokine receptor family
up-regulated on DC upon maturation (74). The implications of its
cognate chemokine CXCL12 in DC migration have been demon-
strated in vivo. It has been reported that hypoxia and inflammation
drives up-regulation of this chemokine in LEC (30). CXCR4 inhi-
bition impairs DC migration in response to FITC and CHS (85).
Interestingly, CXCL12 has been proposed to enhance survival and
promote the maturation of DC (86).

The lipid Sphingosine-1-Phosphate (S1P) and its receptors (87)
have been extensively studied in lymphocyte egress from the LN
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Table 1 | Summarizing table of the main molecular players described in Leukocyte traffic through LVs.

LEC receptor/

ligand

Leukocyte

receptor/ligand

Experimental model Key observations Reference

CCL21 CCR7 DC and T adoptive transfer of CCR7−/−, LN

analysis on CCR7−/− mice, IVM of footpad

DC, lymphocytes, and neutrophils fail to migrate

into LVs to LNs both under steady-state and

inflammatory conditions

(11, 34, 40,

41, 67, 78)

CXCL12 CXCR4 FITC painting in the presence of a chemical

inhibitor, transwell assays, inflammation models

Impaired DC migration to LN when treated with

inhibitor. Induces transmigration across LEC in

transwell assays. Impaired CHS response when

inhibited

(62, 85)

S1P S1PR1-5 FITC painting in the presence of chemical

inhibitor FTY720, DC analysis in LN under

inflammation and in the presence of inhibitor,

adoptive skin transfer of T lymphocytes, and

whole mount immunofluorescence after ear

injection in FTY720 treated cells

Impaired DC and T cell migration from skin to

LNs. Induced by inhibitor. Impaired in vitro

trans-endothelial migration in LVs. Induces

transmigration across LEC in transwell assays

(54, 91, 92,

97)

D6 Inflammatory

chemokines

Immunofluorescence of skin LVs and LNs and

study of LN DC populations after TPA induced

inflammation in D6−/− mice

Accumulated inflammatory cells blocking LV

function and other DC migration in D6−/− mice

(105)

CX3CL1 CX3CR1 FITC painting in CHS preinflamed skin in the

presence of CX3CL1 Abs, adoptive transfer of

CX3CL1−/− BMDCs, transwell assays

DC migration to LN is delayed. Impaired in vitro

migration when the chemokine or its secretion

is blocked. Effects only observed under

inflammation

(99)

PECAM PECAM Transwell assays, ex vivo human skin culture in

the presence of blocking Ab,

immunofluorescence, and DC count inside LVs

Impaired trans-endothelial migration and

intravasation in human skin explants, evidence

provided only in human

(62)

ICAM-1 CD11a,b FITC painting in the presence of blocking

antibodies or in ICAM-1 deficient mouse,

BMDC adoptive transfer in the presence of

blocking Abs or from CD18−/− mice, whole

mount immunofluorescence of ears after DC

injection, transwell assays

In inflammatory and high flow conditions

Blockade of ICAM-1 and blockade or β2

integrins inhibit trans-endothelial migration and

DC migration to LN

(29, 33, 56,

107, 108)

VCAM VLA-4 BMDC adoptive transfer in the presence of

blocking Abs, transwell assays

LN impaired DC migration under inflammation

and impaired in vitro trans-endothelial migration

(29)

CD99 PILR Transwell assays, ex vivo human skin culture in

the presence of blocking Ab,

immunofluorescence, and DC count inside LVs

Impaired trans-endothelial migration and

intravasation in human skin explants, evidence

provided only in human

(62)

L1CAM L1CAM FITC painting assays in mice deficient in L1CAM

under Tie 2 promoter, transwell, and adhesion

assays

Impaired adhesion, transmigration in human

(moDC) and mice (BMDC), impaired migration

to LN

(52)

ALCAM CD6 Lung injection of FITC microbeads in ALCAM−/−

mice

Impaired DC arrival to LNs in ALCAM−/− mice (119)

Podoplanin CLEC-2 FITC painting in CLEC1b−/−mice, adoptive

transfer of CLEC1b−/− DC,

immunofluorescence of mice ear dermis

cultured with BMDC

Impaired arrival of DC to LN, impaired

intravasation, importance for protrusion

formation

(123)

JAM-A JAM-A CHS response and FITC painting in Jam-A−/−

and adoptive transfer of Jam-A deficient BM

DCs, transwell assays

Jam-A ablation increases DC migration to LN

and CHS responses as well as in vitro TEM

(161)

(Continued)
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Table 1 | Continued

LEC receptor/

ligand

Leukocyte

receptor/ligand

Experimental model Key observations Reference

CLEVER-1 – Adoptive lymphocyte transfer in the presence of

blocking Abs in mice and rabbit

Lymph node migration of lymphocytes is blocked (127)

Mannose

receptor

Glycoproteins Adoptive lymphocyte transfer in footpad of

MR−/− mice and IF of LNs

Lymphocyte migration to LN and adhesion to LEC

in LNs is impaired

(130)

Semaphorin

3A

Plexin-A1 Adoptive transfer of Plexin-A1−/− BMDCs, or wt

DCs in Sema3A−/− mice, functional studies of T

cell responses upon OVA skin sensitization in

Plexin-A1−/− mice. In vitro videomicroscopy

Both, Plexin-A1 and Sema3A absence impairs DC

migration to LNs. Sema3A is able to induce

actomyosin contraction in BMDCs

(125)

The table includes ligands expressed on both leukocyte and LEC, the evidence provided in leukocyte traffic and the experimental approach performed.

FIGURE 2 | Artistic representation of novel steps in DC migration into
LVs under inflammatory conditions. (1) DC (Yellow) are attracted by
CCL21 interstitial gradient and other chemokines toward LVs lined by
specialized endothelial cells (red). (2) DCs dock to CCL21 (blue) adsorbed as
enriched patches prior to adhesion and intravasation. (3) DCs adhere to LEC
surface and get entrapped by ICAM-1 enriched microvilli
projections(Orange). (4) DC intravasate in a LV accompanied by ICAM-1
enriched microvilli projections. (5) DC actively crawl inside the LV.

into lymph and blood (88, 89). Besides, the LVs had been reported
to express Sphingosine Kinases and secrete S1P.

Although S1P expression is dispensable for homeostatic migra-
tion of DCs (90), S1P readily augments upon inflammation and

presents a leading role in guiding T lymphocytes into LVs during
acute inflammation (54) but is less important for memory/effector
T cell egress from tissues during chronic inflammation (42). In
fact, a number of reports show how S1P directs the migration of
bone marrow-derived mature DC (91), skin DCs (92), or other
DC subsets (93). Treatment of DCs with FTY720, a potent S1P
analog that induces internalization of S1P receptors (94), block
DC migration into LVs and their arrival to LNs (91). In addition,
it has been reported how lack of CD69, that sequestrates S1PRs in
lymphocytes (95, 96), enhances the effects of S1P-driven migra-
tion on T cell and DCs (97). Other inflammatory lipids such as
PGD2 also sensitize memory T cells for egress from tissue to LN
in a CCR7-dependent manner (98).

Recently the chemokine CX3CL1/Fractalkine has been involved
in DC transit across LVs (99). This cytokine is only expressed
upon inflammation and is differently processed in blood and
LVs. In blood capillaries CX3CL1 is expressed predominantly
as a transmembrane endothelial cytokine with both adhe-
sive and chemoattractanct functions while in lymphatic cap-
illaries it is, almost in its totality, shed from the basolat-
eral surface of the lymphatic capillary and released as solu-
ble chemokine. Importantly CX3CL1 lacks acidic residues and
hence diffuses freely through the ECM promoting chemotaxis
but not haptotactic migration. In fact, it seems to act as a pre-
mier inflammation-driven soluble attractor for tissue-resident DC
before CCL21 is deposited on the ECM. In addition, CX3CL1
receptor (CX3CR1) impairment partially inhibits DC migra-
tion to LN and concomitant blockade of CCL21 does not
show additive effects. The study of the specific mechanisms that
this chemokine promotes in an in vivo setting deserves further
research.

Another molecule involved in chemokine-driven DC migra-
tion is the chemokine decoy receptor D6. This protein is a non-
signaling scavenging receptor (100, 101) that binds some inflam-
matory chemokines but does not bind CCL21 (102, 103). D6 is
expressed on LEC surface after being cultured in the presence of
inflammatory cytokines such as IL-6 or IFNγ (104). In vitro D6
elimination from primary LECs selectively increases the adhesion
of immature DCs but not mature DC (104) and mice knocked-
down for D6 showed impaired DC migration to LNs by means of
macrophage accumulation around LVs (105). Therefore, it seems
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that D6 acts on LVs as scavenger receptor to avoid the adhesion of
DC or other leukocytes that fail to express CCR7.

In our group we have been interested in the role of inflam-
mation induced receptors in the modulation of DC transit across
LVs. We have studied the participation of CD137/TNFR9/4-1BB,
a receptor of the TNFR family receptors in this process. We
demonstrated CD137 up-regulation in inflamed LVs. Besides,
CD137 cross-linking with an agonistic mAb resulted in the up-
regulation of VCAM, and increased production of CCL21 and DC
accumulation close to LVs (81).

ADHESION MOLECULES INVOLVED IN LEUKOCYTE TRAFFICKING
INTO LVs
To traverse LVs, leukocytes must find the gaps opened in their
basal membrane and situate on top of the open endothelial flaps
devoid of intercellular junctions. From there, cells must squeeze
their cytoplasm by cytoskeletal contraction and nuclear deforma-
tion, a process in which Rho associated protein kinases have a said
(106). This transit although originally described to occur in an
integrin-independent manner, is now seen as a dynamic process
modulated by context dependent-factors. In fact, the participation
of adhesion molecules as expressed on LVs during leukocyte tran-
sit, particularly those belonging to the family of integrin receptors,
is a field under intensive investigation (Table 1). Besides, a num-
ber of receptors not belonging to CAMs family have recently been
described in this process such as podoplanin, CLEVER-1, Plexin
A, and CD137.

The role of ICAM-1 and VCAM in leukocyte intravasation
into LVs has been controversial. Seminal studies showed a role of
ICAM-1 and β2 integrins in DC migration toward LNs (107, 108).
However, as mentioned above Lämmerman and colleagues showed
the entrance of DCs genetically devoid of every known integrin
into LVs in ex vivo explanted non-inflammed mouse ears (61).
In contrast, TNFα, or TLR agonists induce the integrin ligands
ICAM-1 and VCAM expression on LEC (29, 30, 109). These same
ligands are expressed at low levels in non-inflamed LVs. Besides,
blocking these CAMs or their integrin ligands inhibited the migra-
tion of DC to LNs under inflammation as well as in vitro assessed
trans-endothelial migration (TEM) (29, 31, 53). These apparently
opposing results are reconciled in light of the differential distri-
bution of the adhesive structure under inflammatory conditions:
McDonald and co-workers showed the transformation of button-
like junction structures into zipper-like junctions after chronic
inflammation of lung lymphatic capillaries. Thus, it seems reason-
able to speculate that under these circumstances the LVs become
less permeable to cell transit as a mean to regulate leukocyte tran-
sit during the resolution of tissue inflammation. In this regard,
we have recently observed that ICAM-1 and VCAM integrin lig-
ands usher DC crawling over LEC and TEM by forming microvilli
like projections similar to those previously described in vascular
endothelium (56, 110, 111). Such structures were only observed
under inflammatory conditions and were not formed if β1 and β2
integrins were blocked on the leukocyte surface or when the CCL21
chemokine was sequestered by neutralizing monoclonal antibod-
ies. There are no experimental data providing a direct involvement
of CCL21 in the activation of β2 integrins on DC adhering to
LVs in vivo but all the indirect evidences point in this direction.

Interestingly, it has also been described how DC crawling within
initial lymphatics depends on ICAM-1 only under inflammatory
conditions (55). Of note, no role has been reported yet for ICAM-2
and ICAM-3 on LEC.

PECAM (CD31) is a molecule expressed on most endothe-
lial cells and involved in leukocyte extra- and intravasation (112).
LVs express less CD31 (113) than their blood counterparts and
it is mostly distributed at cell–cell homotypic interactions (17,
29). Studies made with human cells have shown that block-
ing this molecule as well as CD99 in CXCL12 treated LEC was
able to reduce TEM, both in vitro and on ex vivo tissue cul-
tures (62). PECAM binds to integrin αvβ3 and αvβ5 integrins
expressed on LVs surface, but care should be taken since PECAM
is also expressed by most leukocyte subsets and might mediate
homophilic interactions.

L1CAM and ALCAM have been reported to participate in
leukocyte transit across LVs, although the experimental evidence
provided in this regard is limited. L1CAM is a transmembrane
protein widely described in neurons (114). It is also expressed
in skin LC and bone marrow-derived DCs (115). L1CAM has
been detected on inflamed LVs (52). This integrin ligand medi-
ates both homophilic binding (116) and heterophilic interactions
with a number of integrins (i.e., β3 and β5) (117). Recent stud-
ies described L1CAM as a protein that mediates DC adhesion
and TEM across EC (52), although the molecular mechanisms
involved and the relevance of this adhesion molecule are far from
being clear.

ALCAM receptor mediates homophilic (ALCAM-ALCAM) or
heterophilic (ALCAM-CD6) intercellular adhesion. This receptor
is well established as one of the protagonist of leukocyte extrava-
sation across blood vessels, the stabilization of the immunological
synapse, and T cell activation (118) Although ALCAM function
seems to be of great importance in LV organogenesis, its partic-
ipation in DC migration has been described in vitro. However
the definitive role of DC migration through LVs in lungs was not
definitely proved (119).

Other adhesion molecules that do not belong to the family of
integrin receptors have been related to DC adhesion to LVs. One
of such examples is the LV marker podoplanin. Podoplanin has
been described to bind CCL21on LEC surface with high affin-
ity (120), and this interaction has interesting implications for
lymphocyte trafficking (121, 122). Recent reports demonstrate
how podoplanin expressed on LVs surface sustains DC migra-
tion and intravasation via the engagement between lectin CLEC-2
as expressed by DC and podoplanin expressed on LVs. CLEC-2
deficiency in DCs impaired their entry into lymphatics and traf-
ficking to and within LN, thereby reducing T cell priming. Besides,
the activation of CLEC-2 by podoplanin induced Rho A-mediated
rearrangements of DCs actin cytoskeleton to promote motility
along stromal surfaces (123). This finding is of particular interest
because podoplanin is also expressed on other stromal cells and
may sustain DC migration in the tissue as well as on or across LVs.

Semaphorins and their receptors, plexins and neuropilins, have
been for long known as modulators of normal and pathologi-
cal angiogenesis and lymphangiogenesis (124). Interestingly, the
plexin-A1/sema3A axis has also been described to participate in the
migration of DCs to LN. Thus, binding of sema3A to its receptor,
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the complex formed by plexin-A1 and neuropilin-1 expressed on
the surface of the LVs, promotes DC contraction of its actomyosin
cytoskeleton and squeezing across small gaps (portals) opened on
the lymphatic walls (125).

Other receptors such as CLEVER-1 and the mannose recep-
tor have been described to intervene in leukocyte transit across
LVs, but their protagonism in this process is far from being clear.
CLEVER-1 is a scavenger receptor expressed on LVs (126) that
has also been involved in trafficking of adoptively transferred T
lymphocytes from the skin to LNs (127). The Mannose receptor
is a C-type lectin carbohydrate binding protein primarily present
on the surface of macrophages and DCs that mediates endocyto-
sis (128). The expression of the mannose receptor has also been
described on LEC of both afferent and efferent LVs and evidence
of impaired migration to LNs of DC lacking its expression has
been published (113, 129). Still, its importance in vivo has only
been shown in lymphatic sinuses inside LNs, where the absence of
MR impairs lymphocyte adhesion (130).

THE TRANSIENT SYNAPSES OF LEC AND TRANSMIGRATING
LEUKOCYTES: EXCHANGE OF INFORMATION TO SHAPE THE
IMMUNE RESPONSE
Beyond the control of leukocyte traffic to LNs, LECs have demon-
strated to show interesting immunomodulatory functions both in
afferent LVs and Lymphatic sinuses inside LNs. in these sinuses,
LEC constitutively express MHC class II molecules (131) and some
co-stimulatory molecules such as ICAM-1 and CD58, but do not
promote allogenic T-cell proliferation (132).

In contrast, LEC of lymph node sinuses directly promote
peripheral tolerance by antigen presentation to CD8 T cells (133,
134). In this work it was demonstrated that LECs are significant
albeit suboptimal APC and promote peripheral tolerance by their
lack from key co-stimulatory molecules such as CD80 or 4-1BBL
(135) and the rapid up-regulation of significant expression levels
of the co-inhibitory molecule PD-L1 (B7-H1) (134). In fact, the
exploitation of the ability of LN sinuses to induce tolerance has
been recently shown as an escape mechanism for B16 melanoma
grafted tumors. Interestingly, the blockade of lymphangiogenic
cytokine VEGF-C in this model was able to reduce LEC-induced
CD8 T cell tolerance (136). The tolerogenic potentials of LEC in
LN sinuses have been recently revised into detail (137).

The possibility of this immunosuppressive/tolerogenic process
taking place in peripheral afferent LVs has not been investigated
yet. Although IFNγ promotes MHC class II expression on der-
mal LEC without concomitant up-regulation of co-stimulatory
molecules (unpublished observations) it is not known whether
peripheral LVs can promote tolerance in such conditions. The fact
that CD4+ T lymphocytes traffic frequently via lymphatics may set
up a possibility of peripheral antigen presentation on LVs, upon
CD4 T cell/LEC contact with potential consequences for instance
in transplanted organs. It remains to be demonstrated whether
LEC serves as a key professional antigen presenting cell for tol-
erance. Suggestive data on the likeliness of these phenomena has
been reported in allogenic transplantation settings, where lympho-
cyte nodular infiltrations that resemble a tertiary lymphoid organs
have been described in grafted organs, around CCL21-podoplanin
complexes expressed by the LVs (120). Even more, recent findings

demonstrated by intravital imaging approaches how DC crawl
rather than roll once inside lymphatic capillaries (34, 55) thus
favoring extensive and durable contacts between DC and LEC that
may be also true for CD4 T cells and LEC. As early mentioned, tight
contacts between CD4 T cells or DC and LEC are formed precisely
on ICAM-1 enriched microvilli projections (56) that may facilitate
a sort of “immune synapse” between leukocytes and LVs. It should
not be forgotten that LFA-1 itself is an important co-stimulatory
molecule for T cells (138).

In this line, immunomodulatory roles of LEC over DC have
already been demonstrated. It has been reported that inflamma-
tion induced ICAM-1 is able to decrease the co-stimulation capa-
bilities in immature and TNF-α matured (but not LPS matured)
DC. This phenomenon seems to involve Mac-1 integrin ligation on
DC (139). These findings raise an intriguing issue since contacts
between LEC and DC or T cells do occur both under inflammation
and steady–state conditions, it seems that the set of molecules that
mediate such intercellular interaction are peculiar for each condi-
tion (55, 56) and most probably trigger different phenotypes in the
LEC-interacting leukocyte subpopulation. For instance, the inte-
grin ligand ICAM-1 is only engaged under inflammation. In this
line, we have observed strong phospho-Tyr staining in the areas
of contact between LEC Microvilli and DC (unpublished results)
supporting that ICAM-1 in this specific context facilitates bidirec-
tional crosstalk between both cell types that tiggers intercellular
signals.

Another extracellular receptor involved in LEC-shaping of the
immune response is CD137/4-1BB molecule. As already men-
tioned, we have recently identified CD137 (4-1BB) expression
on inflamed LVs. The ligation of this molecule on LEC pro-
motes CCL21 up-regulation (81) and increased DC transmi-
gration. CD137-Ligand reverse signaling would in turn pro-
mote the increased expression of co-stimulatory molecules and
chemokine receptors on migrating APCs (140). This system
may be a first example of molecules denoting inflammation
and subsequently fine-tuning lymphocyte activation and migra-
tion via afferent LVs. It is tempting to speculate that tran-
sit of an activated leukocyte sensitizes for subsequent transit
events by a variety of immunologically relevant ligand recep-
tor pairs, including other members of the TNF and TNFR
families.

OPPORTUNITIES FOR THERAPEUTIC INTERVENTION AT THE
INTERFACE BETWEEN LEC AND IMMUNE SYSTEM CELLS
ENHANCING LEUKOCYTE MIGRATION TO INCREASE VACCINE
EFFICIENCY
Dendritic cell based vaccines often given subcutaneously consti-
tute an interesting approach for the treatment of cancer (141).
Immunization is attempted toward defined antigens shared by
tumors or against individual neoantigens product of the altered
genome of individual malignancies. The latter is very attractive
and encompasses strategies varying from DC loading with mRNA,
tumor lysates to intratumoral DC injections.

The intradermal route of administration seems to be more
effective in eliciting immune responses (142), while one of the key
limitations for its efficacy seems to be DC arrival to LNs (143, 144).
Since intravasation in LVs is a key step in the migration of DCs
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to LN, intervention in this particular step may provide increased
efficiency in DC therapies. It has been reported that precondition-
ing the area of injection by promoting for example, acute inflam-
mation promotes migration and maturation on DC vaccination
when TLR agonist poly I:C is used as an adjuvant (145, 146). The
TLR7 agonist imiquimod has also been applied to the skin at the
vaccination site with a similar purpose (147). Pro-inflammatory
cytokines have proved to be good local adjuvants (148).

Other methods may provide also good preconditioning for
injection sites, as local irradiation (149) or laser illumination (150)
which additionally enhances migratory possibilities by increasing
the degradation of the basal membrane of the vessels. The prepa-
ration of DC is also particularly relevant in the migration and
efficacy of DC vaccines (141). By including different cytokines
in DC maturation cocktails, their migration to LNs can also be
enhanced. For instance IFN-alpha (53, 151) induces increments
in the expression of chemokine receptors one LEC and inte-
grin activation on DC surface. The strongest stimulus for CCR7
expression and functionality is the lipid mediator PGE2 (152,
153). However, many immunosuppressive functions of PGE2 on
DC discourage the use of this prostaglandin in DC maturation
cocktails.

THE ROLE OF LYMPHATICS ON INFLAMMATORY DISEASES
In the last few years it has been shown how the plasticity of LV in
response to inflammation can also contribute to the progression
of diseases whose mechanisms involve chronic inflammation, as
some autoimmune diseases (154).

Increased LV density has been observed in psoriatic skin (155)
and rheumatoid arthritis lesions in mice joints (156). As previously
mentioned, there is increased LV presence in kidney transplants
and their secretion of CCL21 promotes DC migration and alloanti-
gen response and rejection (120). Diminishing (157) or normaliz-
ing lymphangiogenesis by VEGFR stimulation (27) is considered
a promising treatment to control chronic inflammation.

There is already some evidence for pharmacological treatments
directed toward leukocyte intravasation on LVs that may help
in the treatment of these diseases. For instance, the blockade of
DC traffic with anti-VEGF antibodies reduces inflammation (158)
and rejection of mice corneas. Interestingly, in a heart transplan-
tation model, blockade of VEGF with antibodies has proved to
decrease inflammation by a mechanism directly dependent on
CCL21 production by LVs (159).

While the role of blood vessels in leukocyte traffic is known
in great molecular detail, that of LV is less well understood. Reg-
ulation of adhesiveness and chemotaxis in blood vessels can be
interfered for the sake of suppressing inflammation in multiple
sclerosis or transplantation with anti-VLA-4 mAb. In fact, it is
quite possible that the S1P antagonist sphingolimod exerts an
important effect on memory lymphocyte egress from the inflamed
territory suffering autoimmunity toward LN.

In our view there is also much potential in pharmacological
manipulation of the CCR7 axis (160). From a drug development
perspective is not an easy target but it certainly would provide
a tool to disorient recirculation of pathogenic T lymphocytes
and limit the arrival of immunogenic autoantigens to lymphoid
tissue.

CONCLUDING REMARKS
Research performed mainly in the last 10 years regarding leuko-
cyte migration via afferent LVs has unraveled that the process
is highly regulated and more complex than originally expected.
Importantly, new incisive experimental procedures including
in vivo imaging have provided detailed knowledge of the process.
Some interesting and unexpected molecular players including
chemokines and adhesion molecules have been identified as gate-
keepers of LV intravasation and intriguing data about a tight
relationship between LEC and leukocytes have been reported.
Knowledge on the regulation of DC migration out of periph-
eral tissue is beginning to be exploited for vaccination, but we
are only starting to learn the pathological and therapeutic impli-
cations that leukocyte-LVs contact may have. Especially, the field
of the tissue-egressing mechanisms of T Lymphocytes remains
neglected. We believe that a more in depth knowledge of these
leukocyte-LVs interactions may provide interesting cues or poten-
tial targets for chronic inflammation. Migration through LVs must
not be observed as a passive drain but as process that is highly
regulated by changes in the tissue homeostasis, and that may
help to shape immune responses both under steady-state and
inflammatory conditions.
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