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Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-
associated molecular patterns as well as exogenous pathogen-associated molecular pat-
terns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs,
and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense
by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs
and ALRs both encode a PYD, which is crucial for relaying signals that result in an effi-
cient innate immune response through activation of several key innate immune signaling
pathways. However, mutations in these PRRs have been linked to the development of auto-
inflammatory and autoimmune diseases. In addition, they have been implicated in meta-
bolic diseases. In this review, we summarize the function of PYD-containing NLRPs and
ALRs and address their contribution to innate immunity, host defense, and immune-linked
diseases.
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INTRODUCTION
The innate immune system relies on germline-encoded pattern
recognition receptors (PRRs) to detect threats against tissue home-
ostasis. In response to pathogen infection, tissue damage or envi-
ronmental stress, inflammatory mediators including cytokines,
type I interferons (IFNs), and anti-microbial factors are produced.
While Toll-like receptors (TLRs) utilize their TIR domain and RIG-
I-like receptors (RLRs) and NLRCs their CARD for downstream
signaling upon activation, NLRPs and AIM2-like receptors (ALRs)
recruit signaling adaptors through their PYRIN domain (PYD).
Active NLRPs and ALRs trigger multiple innate immune effector
pathways, but by far the best established function of these PYD-
containing proteins is the assembly of inflammasomes, which are
large multiprotein platforms that form in response to infection and
tissue damage and are responsible for the activation of inflamma-
tory caspases, in particular caspase-1 (1, 2). Thus, a necessity of
these PRRs is to be able to promote the clustering of inflamma-
some adaptors, which is essential for induced proximity-mediated
activation of caspase-1 (3). Active caspases then induce inflam-
matory cell death (pyroptosis), maturation, and/or secretion of
the leaderless pro-inflammatory cytokines IL-1β and IL-18, and
contribute to the release of the related IL-1α (4, 5) as well as the
stress-associated danger signal HMGB1 (6, 7). Furthermore, there
is increasing evidence for a broader contribution of inflamma-
somes to unconventional protein secretion (8), to lipid biogenesis
and to the release of inflammatory lipids (9–11). Although not as
well-established and in many cases derived from overexpression
studies, these proteins have also been linked to transcriptional
responses, through activation of NF-κB, IRFs, and MAPKs to
regulate pro-inflammatory and anti-microbial gene expression,
autophagy, and to affect adaptive immune responses.

PYRIN DOMAIN
The PYD, also referred to as PAAD or DAPIN, is a protein bind-
ing domain belonging to the death domain superfamily (12). The
structure of several PYDs has been determined, which revealed
a bundle of 5- to 6-α-helices. PYDs display distinct negatively
and positively charged surface patches, which are indicative of
electrostatic interactions to occur during PYD-PYD interactions,
reminiscent to other death domain folds (13–18). NLRPs and ALRs
both encode an N-terminal PYD, but while NLRPs are further
composed of a central nucleotide binding NACHT domain and
varying copies of C-terminal leucine-rich repeats, ALRs rather
contain one or two copies of the oligonucleotide binding HIN-
200 domain at the C-terminus. The PYD is the effector domain
required for downstream signaling, while evidence supports a role
of the LRR and HIN-200 domain in ligand recognition (19–21).
The current model for both PRR families is that ligand recogni-
tion promotes a conformational change (15, 21–23), which allows
nucleotide binding by the NACHT domain and consequently,
enables NLRP oligomerization (24–27), while ALRs cluster along-
side the DNA staircase (21). Ultimately, this exposes the PYD
in NLRPs and ALRs, thus enabling the recruitment of ASC by
homotypic PYD–PYD interactions and clustering of ASC. In the
context of inflammasomes, the recruitment and clustering of ASC
then triggers its interaction with pro-caspases-1 (3, 28) and -8
(29, 30) and their activation by induced proximity. The precise
order of events is still elusive and a recent model proposed sponta-
neous self-oligomerization of the ASC-PYD, which subsequently
facilitates its interaction with NLRP3 and potentially also other
PYD-containing PRRs (31). Hence, this model suggests that PYDs
contain a dual binding interface (31). The influence of NLRPs on
other signaling pathways is even less well understood, but might
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also occur through these adaptors (32, 33). In contrast to ASC-
mediated inflammasome activation in response to KSHV (34), the
ALR IFI16 promotes induction of IFN-β through connecting to
the common pathway leading to IRF-3 phosphorylation through
the adaptor STING (stimulator of IFN genes) (35).

Only 14 NLRPs and 4 ALRs are encoded in humans, while
both families are amplified to 34 and 13 members, respectively, in
mice (Figures 1A,B). However, the precise function of most family
members is still unknown (36–39). Besides NLRPs and ALRs, the
PYD is also present in the inflammasome adaptor protein ASC,

the regulatory PYD-only proteins (POPs) and Pyrin (Figure 1C)
(12). Below, we will specifically discuss the mechanism of activa-
tion and function of NLRPs and ALRs, and how defects within
these proteins are involved in immune-related disorders.

NOD-LIKE RECEPTORS
NLRP1
NLRP1 (Figure 1A) is also known as NALP1, NAC, DEFCAP,
CARD7, and CLR17.1 and has initially been linked to caspase-9
activation within the apoptosome (40).

FIGURE 1 | Domain architecture of PYD-containing proteins involved in innate immunity. Depicted are human and mouse (A) Nod-like receptors,
(B) AIM2-like receptors, and (C) regulatory proteins.
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Inflammasomes were first discovered in 2002 with the initial
observation that NLRP1 is able to assemble in an ASC, caspase-1,
and caspase-5-containing large inducible protein complex respon-
sible for the autocatalytic activation of caspase-1 in THP-1 cells
(1). However, caspase-5 is not recruited to other inflammasomes
(25, 41), which is likely due to the unique domain structure of
NLRP1. In addition to the common tripartite domain organi-
zation of NLRPs, NLRP1 also encodes a C-terminal function to
find (FIIND) domain and a CARD, which enables direct caspase-
5 recruitment (Figure 1A). Despite its early identification, the
in vivo function of NLRP1 however remains largely elusive, at
least partially due to several key differences between mice and
human, which limits the relevance of in vivo mouse models. In
contrast to human NLRP1, mouse NLRP1 lacks the PYD and
exists in three tandem paralog genes (Nlrp1a, Nlrp1b, and Nlrp1c)
(Figure 1A). While the PYD is crucial for the recruitment of ASC
and subsequently of caspase-1, the C-terminal CARD directly
recruits caspase-5, which is necessary for full caspase-1 activa-
tion in human cells (1). However, analysis of the first in vitro-
reconstituted inflammasome with purified recombinant human
proteins demonstrated that the core inflammasome components
NLRP1 and caspase-1 are sufficient for promoting caspase-1 acti-
vation in the presence of NTPs and MDP as a specific agonist
(25). In this context, ASC was not necessary, but addition of ASC
increased the efficiency of caspase-1 activation. Similar results have
also been observed in vivo for murine NLRP1b (22). In contrast, a
recent analysis suggested that caspase-1 is directly recruited to the
C-terminal CARD of NLRP1 and that the PYD is dispensable for
inflammasome activation (42). This model could therefore explain
NLRP1 inflammasome activation of human and mouse NLRP1,
in spite of mouse NLRP1 lacking the PYD. Although the role of
the PYD in human NLRP1 is still elusive, the presence of ASC,
facilitated by PYD–PYD interaction, could enable an increase in
NLRP1-mediated caspase-1 activation in addition to CARD medi-
ated caspase-1/5 recruitment. Additional insights into the molec-
ular mechanism of NLRP1 inflammasome activation came from
studies showing that the FIIND domain resembles the autoprote-
olytic ZU5-like domain found in PIDD, which contains a LRR and
a death domain and is part of the caspase-2-activating PIDDosome
(43). Accordingly, the FIIND domain in NLRP1 also undergoes
autoproteolytic cleavage, which is required for inflammasome
activation and congruently, NLRP1bV988D, which disrupts the pro-
tein conformation required for autoproteolysis, or NLRP1bS984A,
which disrupts the catalytic serine residue, results in deficient
caspase-1 activation without impairing NLRP1 oligomerization
(42–44). This step is further regulated by splicing, since an alterna-
tive transcript lacking exon 14, which contains the FIIND cleavage
site, is deficient in autoproteolytic processing (42). Moreover, rat
NLRP1 activation by the Bacillus anthracis virulence factor lethal
toxin (LTx), a metalloproteinase composed of the pore-forming
antigen (PA) and a lethal factor (LF), also cleaves NLRP1, but
within the N-terminal domain, suggesting that NLRP1 potentially
has several protease cleavage sites (45, 46). Both steps appear nec-
essary for caspase-1 activation, and a possibility could be that
the FIIND has partial autoproteolytic activity, and cleavage of
NLRP1 by LT might increase this activity (46). Accordingly, a
C-terminal fragment of NLRP1b containing the CARD and 56

adjacent amino acids is sufficient for caspase-1 activation with the
56 adjacent amino acids being required for oligomerization (47).
However, LTx-mediated cleavage of NLRP1b is still controversial,
since another study failed to observe LTx-mediated cleavage of
NLRP1b, although LTx was required for autoproteolysis (44).

A first glimpse into the functional importance of NLRP1 was
discovered, when genetic mapping identified NLRP1b as the gene
responsible for LTx sensitivity in mice. In mice, only NLRP1b,
and none of the two other paralogs (NLRP1a and NLRP1c), con-
fer susceptibility to LTx (Figure 2) (48). The exact role of LTx
in this context during B. anthracis infection is, however, a mat-
ter of controversy, since in vitro cell death and in vivo end-stage
LTx-induced disease and death appear to not be linked (49). Fur-
thermore, different mechanisms have been reported for LTx and
spores, with the latter promoting an inflammasome response in
LTx susceptible and resistant macrophages (50). A similar protec-
tive response has also been reported in response to Toxoplasma
gondii infection, where NLRP1b activation ensured selective elim-
ination of the niche for pathogen proliferation, cytokine release,
and effective spreading of danger signals to neighboring cells (51).

Several studies observed NLRP1/NLRP1b sensing of MDP (22,
25, 52). However, while the recently generated NLRP1b deficient
mice demonstrated impaired inflammasome response to LTx, the
response to MDP was intact and rather NLRP3-dependent (53).
Furthermore, NLRP1b has been suggested to sense energy stress
in fibroblasts, as a consequence of starvation (54). In particu-
lar, NLRP1b senses the reduction of intracellular ATP levels and
the subsequent activation of the AMP-activated protein kinase
(AMPK). Congruently, a mutation of the ATP binding pocket
within the NACHT of NLRP1b yielded a constitutively active
inflammasome, suggesting that ATP binding might inhibit, rather
than activate NLRP1b, in contrast to what has been reported for
human NLRP1 (25, 55).

Underlining its functional importance, further control mecha-
nisms besides RNA splicing may regulate the activity of the NLRP1
inflammasome. The anti-apoptotic proteins Bcl-2 and Bcl-XL were
reported to specifically inhibit NLRP1 activation by blocking ATP
binding (52, 55). Both proteins appear to bind to the LRR of
NLRP1 with their loop region, suggesting that different domains
are responsible for their NLRP1 inflammasome-suppressing activ-
ity compared to their apoptosis-suppressing activity. Furthermore,
recent evidence suggests that NLRP1 may provide a more effective
immune response by associating with NOD2 (22). Finally, there
is evidence that the anti-inflammatory omega-3 (ω-3) polyun-
saturated fatty acids attenuate NLRP1b through interaction of
NLRP1b with β-arrestin-2, the downstream scaffold for GPR120
and GPR40 (56).

NLRP2
Although NLRP2 (Figure 1A), also known as PYPAF2, NALP2,
PAN1, and CLR 19.9 failed to affect activation of NF-κB or caspase-
1 in initial in vitro studies (57), it was later shown to inhibit
cytokine-induced NF-κB activation. Subsequently, it was shown
that PYD-mediated interaction of NLRP2 with ASC resulted in the
abrogation of the expression of NF-κB target genes in the mono-
cytic THP-1 cell line (58). Highly expressed in T-cells, NLRP2
was also found to inhibit NFAT and AP-1, in addition to NF-κB,
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FIGURE 2 | Mechanism of NLRP1 activation in human and mice. MDP, muramyl dipeptide; LF, lethal factor; PA, protective antigen.

following TCR activation by anti-CD3 and anti-CD28 antibod-
ies or PMA/ionomycin (59). Besides its transcriptional regulation,
biochemical studies in THP-1 cells, suggesting that NLRP2 could
assemble into an ASC and caspase-1-containing inflammasome
(41). NLRP2 does not contain a FIIND domain, but CARD8 (also
known as Cardinal and TUCAN), which is the only other FIIND
domain-containing protein besides NLRP1, is recruited to NLRP2
via its NACHT (41). In a manner similar to NLRP1, the FIIND
domain of CARD8 is also autoproteolytically cleaved, potentially
to promote downstream signaling (43). The in vivo function of
CARD8 and its role in inflammasome activation, however, is still
poorly defined, since CARD8 is does not exist in mice (60). NLRP2
is highly expressed in human astrocytes within the central nervous
system and, similar to NLRP3, appears to assemble in an ASC-
and caspase-1-containing inflammasome in response to exoge-
nous ATP, as shown by gene silencing (61). In this context, NLRP2
may directly interact with the P2X7R and pannexin-1, suggesting
a direct effect on the NLRP2 inflammasome, rather than the indi-
rect effect that is observed for NLRP3. However, these findings will
need further corroboration, in particular in vivo.

NLRP3
NLRP3 (Figure 1A), also known as Cryopyrin, NALP3, PYPAF1,
CIAS1, CLR1.1, is the best-studied member of the NLRP family.
It was initially discovered by positional cloning in the search for
the genetic cause of a group of auto-inflammatory diseases, now
referred to as Cryopyrinopathies or Cryopyrin-associated peri-
odic syndromes (CAPS) (62). While initial overexpression studies
suggested that NLRP3 affects NF-κB activation, NLRP3-deficient
mice displayed defects restricted to inflammasome activation (63–
66). In contrast to other Nod-like receptors (NLRs), NLRP3 is

activated by, and responds to a diverse set of stimuli originating
from microbes pathogen-associated molecular patterns (PAMPs)
(Figure 3) or from environmental and endogenous danger signals
danger-associated molecular patterns (DAMPs), which can be of
either soluble or particulate matter (Figure 4). Microbial activa-
tors include various Gram-positive and -negative bacteria (Liste-
ria monocytogenes, Staphylococcus aureus, Vibrio cholera, Neisseria
gonorrhoeae, and others) (64, 67–71), fungi (Candida albicans, Sac-
charomyces cerevisiae) (72), RNA and DNA viruses (adenovirus,
influenza virus, Sendai virus, MCMV) (73–75), as well as protozoa
(Plasmodium malariae) (76–78). The fact that NLRP3 also senses
sterile environmental and endogenous stress signals, and pro-
motes inflammatory responses further expands the repertoire of
NLRP3 reactivity. Environmental triggers include the particulates
alum (79–83), asbestos (84, 85), silica (81, 84, 85), skin irritants
(trinitrochlorobenzene, trinitrophenylchloride, and dinitrofluo-
robenzene) (66, 86), and even UVB radiation (87). An increasing
complexity of endogenous danger signals is now also known to
activate NLRP3, since the discovery that monosodium urate crys-
tals (MSU) and pyrophosphate dihydrate (CPPD) crystals are able
to activate NLRP3 (65). Other known NLRP3-inducing crystals
are cholesterol, amyloid deposits (88, 89), hydroxyapatite crystals
(90), and hyaluronan (91). In addition to these crystalline danger
signals, NLRP3 also senses non-crystalline stress signals, including
ATP (64), high glucose (92), and saturated fatty acids (93). The
mechanism that causes NLRP3 activation in response to so many
different stimuli is still controversial and more discussed below.

Basic concepts of NLRP3 inflammasome activation
Based on the diverse structural nature of NLRP3 agonists, the cur-
rent model assumes that intermediate factors may be involved in
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FIGURE 3 | Mechanism of NLRP3 activation in response to pathogen infection.

FIGURE 4 | Mechanism of NLRP3 activation in response to endogenous and exogenous danger signals.

sensing of these activators, rather than a direct receptor-ligand
interaction. Among all NLRPs, an essential in vivo function of
the LRR in NLRP activation has only been shown for NLRP3. In

contrast to many in vitro studies showing that deletion of the LRR
renders the NLRP constitutively active, likely because of a lack
of autoinhibition, the absence of the LRR in vivo renders NLRP3
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unresponsive to MSU and ameliorates MSU-induced inflamma-
tion in mice (19). Activation of NLRP3 does not fit into a unify-
ing model (94), but it is well-established that NLRP3 activation
employs a two-step mechanism.

Signal 1: activation of NLRP3, especially in mouse myeloid cells,
requires a “priming” step. While it was initially believed that this
step is necessary for providing the cytokine substrates, in particular
proIL-1β, which is highly inducible by NF-κB, it was subsequently
proposed that induction of NF-κB is necessary for transcription of
NLRP3 itself (95, 96). This proposal was based on the observation
that ectopic expression of NLRP3 uncouples NLRP3 activation
from priming (95). In addition to NLRP3 expression, priming has
been shown to potentiate NLRP3-specific activation of caspase-1
at short time points that do not affect NLRP3 expression levels
and furthermore, also potentiates NLRP3 inflammasome activity
following ectopic NLRP3 expression (97). The mechanism behind
this observation is likely TLR4-MyD88-dependent deubiquitina-
tion of NLRP3 by BRCC3, which is essential for its activation
(98–100).

Signal 2: subsequently, a specific activating step (signal 2)
triggers NLRP3 activation and assembly of the NLRP3 inflam-
masome. Three main activating mechanisms have been pro-
posed: (1) K+ efflux, (2) mitochondrial dysfunction and gen-
eration of mitochondria-derived reactive-oxygen species (ROS),
and (3) phagolysosomal destabilization in response to particulates
(Figures 3 and 4).

(1) ATP is released into the extracellular space after tissue injury
and cell death. The extracellular ATP then triggers the puro-
genic P2X7R, which is an ATP-gated K+ ion channel, that
facilitates K+ efflux, which activates the NLRP3 inflamma-
some (64, 101, 102). Although the interaction of P2X7R with
the hemichannel protein pannexin-1 was initially proposed
to allow influx of PAMPs/DAMPs into the cytosol through a
900 kDa pore, based on pannexin-1 blocking peptides (103).
However, this scenario is not any longer considered to play
any role in NLRP3 activation, since pannexin-1-deficient
macrophages exhibit no defect in NLRP3 activation (104).
Similarly, microbial pore-forming toxins (such as hemolysins)
on the cell surface or on phagolysosomal membranes trigger
K+ efflux and NLRP3 activation (105). The precise mecha-
nism by which low K+ levels affect NLRP3 activation is not
understood. While K+ efflux in NLRP3 activation is well-
established, Ca2+ mobilization and Ca2+-mediated signaling
has also been linked to NLRP3 activation, but this is contro-
versial (75, 106–108). ATP induced Ca2+ signaling is regu-
lated by the calcium-sensing receptor (CASR), phospholipase
C-mediated generation of inositol-1,4,5-trisphosphate, IP3R
mediated release of Ca2+ from the ER, and store-operated
Ca2+ entry (SOCE) mediated influx of extracellular Ca2+,
which is important for NLRP3 inflammasome activation by
extracellular ATP. Hence, caspase-1 and IL-1β processing and
release are also controlled by PLC, IP3R, and SOCE (75,
106–108). In addition to ER stores, Ca2+ influx has also
been proposed to occur through the plasma membrane chan-
nel TRPM2 (108). However, the involvement of Ca2+ in
NLRP3 activation has been recently disputed and linked to the

precipitation of insoluble particulates, which then activates
NLRP3 in a K+ efflux-dependent manner (102).

(2) A second mechanism proposed to contribute to NLRP3
activation, involves mitochondria and generation of ROS
(92, 109, 110). However, involvement of mitochondria and
mitochondria-derived molecules, including mROS in NLRP3
inflammasome activation is controversial with arguments
found for and against throughout the literature. ATP-
mediated ROS production is necessary for caspase-1 acti-
vation (111) and initial studies linked NADPH oxidase-
produced ROS to NLRP3 activation (76, 85). Interaction
of NLRP3 with the thioredoxin (TRX)-interacting protein
TXNIP through its LRR, has been proposed as a mecha-
nism, since NLRP3 agonists caused ROS-dependent dissocia-
tion of TXNIP from TRX (92). However, subsequent studies
in chronic granulomatous disease (CGD) patients disproved
these earlier observations. CGD patients lack p22phox, which
is essential for the proper function of the NADPH oxidase
Nox1-4, but CGD macrophages showed either no defect in
IL-1β release (112), or even an increased caspase-1 activity
and IL-1β release (113, 114). This is in agreement with the
finding that ROS actually inhibit caspase-1 through reversible
oxidation and glutathionylation of two redox-sensitive cys-
teine residues (C397 and C362), which is in contrast to an
earlier study. Furthermore, the crystal structure of the NLRP3
PYD revealed that it is unique in containing a disulfide bond
between C8 and C108, which could be important for redox
potential-dependent regulation (13). Mitochondria are the
other main source for ROS, and mitochondria have been
linked to NLRP3 activation through mROS generation and
as a platform for inflammasome assembly. While mROS are
necessary for homeostasis, cellular stress including hypoxia,
acidosis, changes in intracellular ionic milieu and membrane
damage are known to promote release of mROS (115, 116).
It has also been proposed that all NLRP3-activating stim-
uli induce apoptosis in target cells, thereby causing opening
of the voltage dependent anion channel (VDAC), decreases
the mitochondrial membrane potential (∆Ψ), generation of
mROS, which in turn promotes mitochondrial permeabil-
ity transition (MPT) and cytosolic release of mitochondrial
DNA leading to NRLP3 activation (92, 110, 117). Accord-
ingly, inhibiting VDAC1 and 2, but not VDAC3 decreased
NLRP3 activation (110). Furthermore, defect mitophagy or
autophagy,and consequently,accumulation of damaged mito-
chondria, causes NLRP3 activation and elevated IL-1β levels
(109, 110, 118, 119). However, autophagy is also involved
in degrading ubiquitinated inflammasomes through recruit-
ing the autophagic adaptor p62 (119). Moreover, it has also
been proposed that mitochondrial damage does not con-
tribute to NLRP3 activation, but can occur in response to
NLRP3-activating stimuli at later time points (102). Addi-
tional support for a significance of mitochondria as a platform
facilitating NLRP3 activation is supported by studies show-
ing that ER-localized NLRP3 is redistributed to mitochondria
upon activation (110). This transport has been shown to occur
by a dynein-mediated movement of mitochondria in response
to reduced NAD+ levels caused by defect mitochondria. This
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facilitates inactivation of sirtuin 2, an NAD+-dependent α-
tubulin deacetylase, and consequently, accumulation of acety-
lated α-tubulin necessary for mitochondrial movement (120).
However, mitochondrial ASC and NLRP3 localization is also
controversial. Yet another study proposed that the CARD-
containing RLR adaptor MAVS is necessary for full NLRP3
inflammasome activation through targeting NLRP3 to mito-
chondria, which requires a short peptide within the PYD
(121). However, MAVS appears to be only necessary for non-
crystalline activators, suggesting that other adaptors might
be involved in crystalline responses. However, this finding is
controversial and has only been partially reproduced in the
context of Sendai virus infection (122).
Altogether, there is widely conflicting information of the
involvement of mitochondria and mROS to NLRP3 activa-
tion. Analyses of various mitochondria-targeted drugs sug-
gested an involvement of mitochondria and mROS dependent
and independent mechanisms (123). But a recent study sug-
gested that, rather than acting on the signal 2 of NLRP3
inflammasome activation, ROS might only be necessary for
inflammasome priming through NF-κ activation or deubiq-
uitination (95, 98). Yet, these studies have also been disputed
and attributed to the use of high concentrations of ROS
inhibitors and proposed that ROS do not play any role in
signal 1 and 2 (102).

(3) Reactive-oxygen species are also generated upon lysosomal
rupture and leakage of lysosomal contents in the cytosol, as
a consequence from the digestion of particulate matter or
infection. Phagolysosomal destabilization itself, rather than
the absorbed particulate matter, seems to be perceived as the
danger signal leading to NLRP3 activation (81, 89). Abnormal
release of H+ into the cytosol, either from lysosomal rupture
or from the activation of a proton-selective ion channel, such
as the M2 channel upon infection with Influenza virus (124),
activates NLRP3. The lysosomal-derived protease cathepsin B
is one of the lysosomal factors that activate NLRP3 (81, 89).
However, this finding was dependent on a chemical cathep-
sin B inhibitor, while cathepsin B−/− macrophages do not
show defects in caspase-1 activation (76), suggesting off target
effects of this inhibitor (125).

A recent study aimed to provide an explanation for these diverse
NLRP3-activating mechanisms, by essentially demonstrating that
all tested NLRP3-activating stimuli act through promoting K+

efflux and subsequent Na+ influx, and that K+-free medium alone
is sufficient to activate NLRP3 in the absence of any other agonist
(102). This study further suggested that neither mitochondrial
perturbation nor the generation of ROS directly contributes to
NLRP3 activation (102).

Special considerations for NLRP3 inflammasome activation and
alternative upstream pathways
Several co-factors have been proposed to affect NLRP3 activation
in response to all or select stimuli, which, however, in some cases
are not as well-established. According to the universal NLR model,
NLRP3 likely exists in an inactive, auto-inhibited conformation,
which is aided by the interaction with the ubiquitin ligase SGT1

and the heat shock chaperon HSP90 (126). This is in agreement
with the above described finding that deubiquitination of NLRP3
is essential for its activation (98–100). Yet another mechanism to
maintain an inactive conformation or to prevent oligomerization,
has been proposed to be interaction with cAMP via its NACHT.
Ca2+ signaling through CASR during NLRP3 activation then
causes depletion of intracellular cAMP levels and promotes NLRP3
activation (106). Yet another player regulating NLRP3 inflamma-
some activation, is the double-stranded RNA-dependent protein
kinase (PKR), which phosphorylates NLRP3, but also interacts
with other NLRs and ALRs (127). Once activated, oligomeriza-
tion via its NACHT domain also requires ATPase activity and
ATP hydrolysis (24). NLRP3 oligomerization is necessary for ASC
clustering, which, however, in response to non-crystalline stimuli,
may require PYD-mediated interaction with tetrameric guany-
late binding protein 5 (GBP5) to facilitate oligomerization (128).
Activation of NLRP3 is also inhibited by anti-inflammatory ω-3
polyunsaturated fatty acids through binding of the downstream
scaffold β-arrestin-2, as also shown for NLRP1 (56). Furthermore,
LRRFIP2 inhibits NLRP3 inflammasome activation by recruiting
the pseudo caspase-1 substrate Flightless-I through NACHT-LRR
interaction (129).

Although, NLRP3−/− and ASC−/− mice are less sensitive to
LPS-induced shock, this only occurs at lower LPS doses and
only provides partial protection (64, 130, 131). Contrary, caspase-
11−/− mice are fully protected from LPS-induced shock (132).
In response to selective Gram-negative Escherichia coli, Citrobac-
ter rodentium, Salmonella typhimurium, or V. cholera, or upon
cytosolic delivery of LPS, caspase-11 is required for full acti-
vation of caspase-1 within the NLRP3 inflammasome, which is
referred to as the non-canonical inflammasome pathway (132–
136). In the presence of NLRP3, ASC and caspase-1, caspase-11
favors secretion of the pro-inflammatory cytokines IL-1β and IL-
18. However, in their absence, caspase-11 drives pyroptosis, IL-1α,
and HMGB1 secretion. In particular, caspase-11 activation upon
infection by Salmonella renders cells more susceptible to pyrop-
tosis, which is even detrimental to the host in the absence of
caspase-1 (136). Similar to NLRP3, a priming step is necessary to
up-regulate caspase-11 transcripts. A TRIF-type I IFN-dependent
transcriptional response has been initially proposed (135, 136).
However, subsequent studies disputed a TRIF-specific mechanism,
but nevertheless highlighted the necessity for TLR-mediated prim-
ing to up-regulate caspase-11 (137, 138). However, the LPS sensor
upstream of caspase-11, however, is still elusive.

NLRP4
The function of NLRP4 (also known as NALP4, PAN2, PYPAF4,
RNH2, and CLR19.5) (Figure 1A) in innate immunity is still
poorly understood. It has not been linked to inflammasome acti-
vation, but overexpression studies indicated that NLRP4 modu-
lates NF-κB activation in response to pro-inflammatory cytokines,
including TNFα and IL-1β (139). Recently, NLRP4 has been pro-
posed to modulate type I IFN signaling and autophagy, based
on gene silencing and overexpression (140, 141). In response to
Group A Streptococcus (GAS) infection, NLRP4 inhibits the initia-
tion of autophagy through interaction with beclin-1. Interestingly,
all other tested NLRs, including NLRC4, NLRP3, and NLRP10 also
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interacted with beclin-1, potentially indicating this is a more com-
mon mechanism of NLRs (140). NLRP4 further interacted with
the class C vacuolar protein-sorting complex to inhibit phagolyso-
somal maturation (140), suggesting that NLRP4 and possibly other
NLR family members play a role in autophagosome maturation
following bacterial infection. Yet, during viral infection, NLRP4
has been proposed to play a regulatory role within the type 1 IFN
pathway in response to dsDNA and dsRNA (141). NLRP4 targets
the central type IFN signaling component TBK1 for K48-linked
polyubiquitination and degradation, through recruiting the E3
ubiquitin ligase DTX4 to TBK1, resulting in loss of IRF-3 activity.
Only the NACHT of NLRP4 is required for this activity. While
humans encode only NLRP4, mice encode seven paralog genes,
NLRP4a-g, with at least NLRP4b and NLRP4g also inhibiting type
I IFN production (141).

NLRP6
Initial overexpression studies suggested that NLRP6 (also known
as NALP6, PAN3, PYPAF5, CLR11.4) (Figure 1A) mediates acti-
vation of NF-κB and caspase-1 in the presence of ASC (57).
A subsequent study hinted at a function of NLRP6 within the
intestinal epithelium, based on transcriptional profiling (142),
and it is now evident that NLRP6 might function differently in
myeloid cells and in intestinal epithelial cells. Three recent studies
in NLRP6-deficient mice confirmed a role for NLRP6 in the regula-
tion of intestinal host-microbiota (Figure 5) (143–145). NLRP6-
deficient mice develop an increased sensitivity to DSS-induced
colitis and colitis-induced tumorigenesis, suggesting a protective
role of NLRP6 against intestinal inflammation and inflammation-
induced cancer (143, 145). Although, it was previously suggested

that NLRP6 is mostly expressed in the non-hematopoietic com-
partment, bone marrow chimera demonstrated the requirement of
hematopoietic cells for this function (143). These studies further
elute to a function of NLRP6 in intestinal epithelium self-renewal
during steady state and during repair after inflammation through
suppressing inflammation and associated colorectal carcinogene-
sis (143, 145, 146). NLRP6 is essential in regulating the interplay
between host and gut microflora. Mice deficient in the NLRP6, or a
potential NLRP6 inflammasome, although the latter is only based
on overexpression data, develop a transferable colitogenic intesti-
nal microbiota due to failure to produce IL-18,a necessary cytokine
for the restriction of Prevotellaceae and TM7 species in the steady
state and upon DSS treatment through induction of CCL5 and
IL-6 (144, 146). These results support the idea that NLRP6-driven
IL-18 production from the epithelium is the major contributor to
prevent the development of the colitogenic phenotype, as opposed
to IL-18 secreted from the hematopoietic compartment. IL-18 is
at least partially responsible for the down-regulation of IL-22BP
during inflammation, allowing IL-22 to improve epithelial cell
repair, while IL-22BP increases again at the end of regeneration
with the decrease of IL-18 (147). In addition to restricting col-
itogenic microbiota species, NLRP6 also functions downstream
of TLR signaling to dampen anti-microbial host defense. Rather
than contributing to elimination of infections, NLRP6 has a dele-
terious role within the hematopoietic and the non-hematopoietic
compartments and, accordingly, NLRP6−/− mice show increased
resistance to infection by extracellular E. coli, intracellular L. mono-
cytogenes and S. typhimurium, and display increased circulatory
monocytes and neutrophils upon infection (148). Mechanistically,
NLRP6 acts as an inhibitor of MAPK and the canonical NF-κB

FIGURE 5 | Function of NLRP6, NLRP10, and NLRP12 in intestinal homeostasis and dendritic cell (DC) homing.
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pathway activated by TLR, but not NLR ligation (148). A potential
explanation could be that the full extent of the immune response
is required to defend against systemic infection, whereas a more
controlled immune response might be required in the case of local-
ized inflammation in the gut. Thus, NLRP6 may play a regulatory
role in both scenarios by providing protection against chronic
inflammation, but consequently being deleterious during acute
infections.

NLRP7
NLRP7 (also known as NALP7, PAN7, PYPAF3, NOD12, CLR19.4,
HYDM) (Figure 1A) is one of four NLRPs, which exist in humans,
but not in mice. Although, earlier overexpression studies NLRP7
failed to observe effects on NF-κB and caspase-1 activation (57),
several studies since then reported modulation of these pathways
by NLRP7. However, conflicting reports describe NLRP7 as either
an activator or inhibitor of caspase-1 (Figure 6). NLRP7 has been
proposed to directly interact with pro-caspase-1 and pro-IL-1β,
without affecting NF-κB (149). It was also proposed that NLRP7
affects secretion of IL-1β and TNFα in PBMCs isolated from
patients harboring NLRP7 mutations, which affected its localiza-
tion to the microtubule-organizing center and the Golgi apparatus,
and was associated with a down-regulation of intracellular pro-
and mature IL-1β (150). NLRP7 also interacts with FAF-1, which
also interacts with several other NLRPs and promotes apopto-
sis and inhibits NF-κB activation (151). However, modulation of
NF-κB was not observed following NLRP7 over expression nor
on endogenous level following NLRP7 silencing (57, 71). Over-
all, there are several potential mechanisms by which NLRP7 could
negatively regulate release of inflammatory cytokines (152). In

contrast, there is also evidence for a pro-inflammatory role of
NLRP7 through the formation of an ASC-containing inflamma-
some that is triggered in response to bacterial acylated lipoproteins
(71). NLRP7 collaborates with NLRP3 and TLR2 in restricting
intracellular growth of S. aureus and L. monocytogenes in human
macrophages (71). Similar to NLRP3, NLRP7 also functions
downstream of lysosomal damage, with the difference that NLRP7
appears to be only partially sensitive to K+ efflux (71). Thus,
NLRP7 might contribute to pro- as well as anti-inflammatory
processes (152).

NLRP10
NLRP10 (also known as NALP10, PAN5, NOD8, PYNOD,
CLR11.1) (Figure 1A) is the other structurally atypical NLRP
besides NLRP1, since it lacks the typical C-terminal LRR. The
LRR is essential for NLRP3 activation in response to specific
agonists, such as MSU (19), while deletion of the LRR reliefs
autoinhibition and renders the NLR active in several in vitro stud-
ies. Thus, one may predict that NLRP10 might not respond in
a stimuli-dependent manner. Over expression studies proposed
that NLRP10 oligomerizes with ASC and inhibits ASC-mediated
NF-κB activation and apoptosis, as well as caspase-1-dependent
IL-1β release (153). Direct caspase-1 inhibition only requires the
NACHT domain of NLRP10, but inhibiting ASC-mediated apop-
tosis, NF-κB and caspase-1 activation required the PYD (154). In
contrast to human NLRP10, mouse NLRP10 failed to reduce self-
aggregation of ASC, which is required for inflammasome activa-
tion. However, transgenic mice ubiquitously expressing high levels
of mouse NLRP10 recapitulated the inhibitory effects observed
in vitro, and mice were more resistant to endotoxic shock in vivo

FIGURE 6 | Pro- and anti-inflammatory mechanisms of NLRP7.
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(154). In contrast, NLRP10 contributes to host defense to Shigella
flexneri in epithelial cells and fibroblasts by promoting secretion of
IL-6 and IL-8 through induction of NF-κB and p38 signaling path-
ways, without affecting IL-18 release, arguing against an inflam-
masome role by gene silencing. This response required the ATPase
activity and the PYD of NLRP10 (155). Mechanistically, NLRP10
interacts with signaling components of the Nodosome, including
NOD1, RIP2, TAK, and IKKγ in response to S. flexneri infec-
tion (155). However, NLRP10−/− mice revealed a pronounced
defect in mounting adaptive immune responses in the Th1/Th17-
dependent experimental autoimmune encephalomyelitis (EAE)
mouse model and Th2-dependent OVA- and Alum-driven asthma
models (156). These defective Th cell responses were caused by a
defective emigration of activated DCs from sites of inflammation
to draining lymph nodes, loss of antigen transport, and subse-
quent priming of CD4+ T-cell, though their activation profile
remained unaffected (Figure 5). Similar results were obtained in
a C. albicans dissemination model, in which NLRP10−/− mice
displayed increased susceptibility marked by defective Th1 and
Th17 responses (157). In both studies, NLRP10−/− macrophages
and DCs did not reveal any impact on inflammasome-dependent
pathways, and thus above described observations might be caused
from overexpression (156, 157). Although hereditary mutations in
NLRP3, found in CAPS patients, have been shown to affect Th17
polarization in mice (158, 159), and since CAPS itself is a purely
innate immune-driven disease, this is thus the first demonstration
of a profound effect of an NLRP on adaptive immunity.

NLRP12
NLRP12 (also known as NALP12, PYPAF7, RNO2, PAN6,
Monarch-1, CLR19.3) (Figure 1A) associates with ASC to form an
inflammasome and to promote NF-κB activation, when overex-
pressed (160). It also enhances expression of the non-classical and
classical MHC Class I genes (161). However, NLRP12 also antago-
nizes signals originating from TLRs and TNF receptor superfamily
members upstream of IκBα within the canonical NF-κB signaling
pathway by binding to IRAK-1 via its NACHT domain (162) and
the non-canonical NF-κB signaling pathway by binding to NIK
and inducing its proteasomal degradation (163). Like several other
NLRPs, also NLRP12 is an ATPase, and ATP binding/hydrolysis is
critical for its function (27). Similar to NLRP3, the interaction
of NLRP12 with HSP90 is also important for its stability (164).
NLRP12−/− mice recently revealed immune defects. NLRP12 is
predominately expressed in DCs and neutrophils, and mice lack-
ing NLRP12 display less severe inflammation in models of contact
hypersensitivity (165). However, in contrast to in vitro studies,
this effect was independent of inflammasome activation and anti-
gen presentation and did not alter inflammatory cytokine levels
(165). Similar to NLRP10−/− mice, NLRP12−/− mice also dis-
play defects in the migration of peripheral DCs and neutrophils
to draining lymph nodes due to an impaired chemokine response
(Figure 5) (165). In agreement with in vitro data showing that
NLRP12 antagonizes NF-κB signaling pathways, NLRP12−/−mice
were more susceptible to intestinal inflammation, colitis and the
associated colorectal tumorigenesis, due to a failure to resolve pro-
inflammatory non-canonical NF-κB, ERK, and AKT signaling,
which resulted in elevated levels of pro-inflammatory cytokines

and chemokines (Figure 5). Overall, this suggests an important
role for NLRP12 in maintaining intestinal homeostasis (166, 167).
Although these functions are uncoupled from inflammasome acti-
vation, NLRP12 and NLRP3 inflammasomes do contribute to
the host defense against Yersinia pestis through IL-18 and subse-
quent IFN-γ production. Surprisingly, NF-κB activation was not
affected in this study (168). Thus, dependent on the context and
cell type, NLRP12 either promotes or antagonizes immune and
inflammatory responses, which has also been observed for several
other NLRPs.

AIM2-LIKE RECEPTORS
The ALRs AIM2 and IFI16 belong to the PYHIN protein fam-
ily, which is named after their domain architecture, typically
consisting of an N-terminal PYD and one or two C-terminal
hematopoietic IFN-inducible nuclear protein with 200-amino
acids (HIN-200) domains (Figure 1B). The HIN-200 domain
contains partially conserved repeats, which assemble into an
oligonucleotide/oligosaccharide-binding fold (OB-fold), which
facilitates DNA binding. The OB-fold is a common DNA bind-
ing motif, which allows numerous proteins to directly recognize
and bind single- and double-stranded DNA (20, 169). While AIM2
preferentially binds dsDNA (170, 171), IFI16 can bind to ssDNA
and dsDNA, but only duplex DNA and not the single-stranded
form of aVaccinia virus-derived oligonucleotide was able to induce
an IFI16-dependent IFN-β response (35, 172). While only four
human PYHIN genes exist, this gene cluster is amplified in mice
and contains at least 13 predicted and diverse members with only
AIM2 being conserved between man and mice (36–38). However,
co-localization of several mouse PYHIN proteins with ASC and/or
STING, suggests their involvement in inflammasome and/or type
I IFN responses (36).

AIM2
AIM2 or PYHIN4 was initially identified in a human malignant
melanoma cell line, where the absence of AIM2 caused increased
cell growth and has subsequently been mostly studied in the con-
text of cancer (173). However, a connection between AIM2 and
innate immune responses was made when AIM2 was found to
recruit ASC to form an inflammasome (Figure 7) (170, 171,
174, 175). The DNA binding capability of the OB-fold within
the HIN-200 domain of AIM2 (20) was confirmed to recog-
nize synthetic cytoplasmic dsDNA as well as dsDNA from vari-
ous pathogens including Francisella tularensis (174, 176–178), L.
monocytogenes (178), Vaccinia virus (170, 174, 178), and MCMV
(178), but not DNA from herpes simplex virus type I (HSV-1)
and S. typhimurium (178). Reminiscent to NLRs, AIM2 activa-
tion relies on promoting clustering of ASC and consequently, also
caspase-1, but in the case of AIM2, requires the presence of dsDNA
(174). Structural analyses proposed that simultaneous binding of
multiple AIM2 molecules through electrostatic interaction to the
sugar-phosphate backbone of the DNA helix may facilitate the
assembly of AIM2 inflammasomes along the DNA staircase (21).
In vivo experiments also confirmed the importance of AIM2 in
host defense, since AIM2−/− mice are unable to limit F. tularen-
sis replication, similar to caspase-1−/− mice, and thereby failed to
control F. tularensis infections (176, 177). AIM2 was also crucial

Frontiers in Immunology | Molecular Innate Immunity December 2013 | Volume 4 | Article 440 | 10

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Ratsimandresy et al. PYRIN domain-containing sensor proteins

FIGURE 7 | Signaling of AIM2 and IFI16 leading to inflammasome activation and induction of IFNβ in response to bacterial and viral infection.

for innate immune responses to MCMV in vivo, since the serum
levels of IL-18 and the linked production of IFN-γ by NK cells
was significantly reduced in the absence of AIM2, which, how-
ever, caused an increased splenic virus titer (178). Interestingly,
even though cytosolic DNA and some cytosolic bacteria such as
F. tularensis and L. monocytogenes induce an IFN-β response and
AIM2 expression is induced by type I IFN, IFN-β signaling is still
intact in AIM2−/− macrophages, where it is even enhanced (176,
177, 179, 180). Moreover, type I IFN priming is essential for AIM2-
dependent activation of caspase-1, inflammasome-mediated cell
death and the release of IL-1β and IL-18 (176, 179). The HIN-200
protein, p202, negatively regulates AIM2 through competition for
DNA binding in mice, but due to lacking a PYD, it cannot form
an inflammasome (152), but since this protein does not exist in
human, alternative regulatory mechanisms may exist. The anti-
microbial cathelicidin peptide LL-37 can compete with AIM2 for
DNA binding in psoriatic lesions (181).

IFI16
IFI16 or PYHIN2 was the first human IFN-inducible PYHIN pro-
tein identified in myeloid cells (182). Of the three IFI16 isoforms
(A, B, and C), the B form is most abundantly expressed (183).
IFI16 is also able to bind and recognize DNA to promote transcrip-
tional regulation of genes involved in innate immunity, including
type I IFN. Cytosolic DNA recognition promotes recruitment of
STING to IFI16 and subsequent NF-κB and TBK-1-dependent
IRF-3 activation (Figure 7) (21, 35). Besides this transcriptional
response, IFI16 also recruits ASC to form an inflammasome upon

recognition of latent viral DNA in the nucleus (34, 172), as well as
in the cytoplasm (35, 184) (Figure 7). Curiously, in the steady state,
IFI16 localizes mostly to the nucleus, but IFI16 is able to efficiently
launch an immune response in the presence of both, nuclear and
cytoplasmic DNA. The subcellular localization of IFI16 might
determine its function as an IFN-β inducer in the cytoplasm, or an
inflammasome-activating PRR in the nucleus. Thus, the immune
response following DNA exposure may depend on the cellular or
tissue micro-environment, since the function of IFI16 can shift
from a transcriptional activator leading to IFN expression to a
PRR that causes caspase-1 dependent IL-1β and IL-18 processing
in inflammasomes (185). Moreover, one could predict the exis-
tence of a regulatory mechanism that restrains IFI16 and AIM2
inflammasome activation in the cytosol upon contact with self-
DNA during cell division, since during this process nucleic acids
are temporarily exposed to the cytoplasm.

NLRPs IN INFLAMMATORY, IMMUNE, AND METABOLIC
DISEASES
As discussed above, PYD-containing PRRs play central roles in
key innate immune pathways and are necessary for host defense
against a wide range of pathogens and to initiate wound healing
of damaged tissue following sterile insults. However, there is now
compelling evidence that dysregulated activation of these PRRs,
leading to either excessive or impaired activation, causes or con-
tributes to immune-linked diseases. Below we briefly summarize
the contribution of NLRPs to auto-inflammatory-, autoimmune-,
and metabolic diseases.

www.frontiersin.org December 2013 | Volume 4 | Article 440 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


Ratsimandresy et al. PYRIN domain-containing sensor proteins

AUTO-INFLAMMATORY DISEASES
Auto-inflammatory diseases are generally characterized by recur-
rent episodes of inflammation and fever in spite of lack of an
apparent stimulus and involvement of autoantibodies and autore-
active T cells, causing widespread systemic inflammation which
affects multiple tissues and organs (186).

NLRP3
Initially a genetic linkage between hereditary point mutations in
NLRP3 and auto-inflammatory conditions, now referred to as
Cryopyrinopathies or CAPS, was discovered (51). These mutations
are gain of function mutations, mostly localizing to the NACHT
domain, which create a constitutive active NLRP3 (164). Muta-
tions prevent the inactive conformation of NLRP3 and promote
activation in the absence of any specific agonist. Knock-in of CAPS
mutations into mice revealed that the disease symptoms are caused
primarily by excessive production of IL-1β, but also by pyropto-
sis in myeloid cells. However, due to IL-1β signaling, mice also
show hyperactive Th17 responses (158, 159, 187, 188). Since IL-1β

also drives Th17 differentiation in humans (189, 190) it was not
surprising that CAPS patients also display significantly increased
IL-17 serum levels as well as a higher frequency of Th17 compared
to control subjects (191, 192).

Although not driven by hereditary mutations, endogenous
crystalline danger signals similarly promote chronic and excessive
inflammasome activation and cause crystalline arthropathies and
related disorders. Calcium pyrophosphate, monosodium urate,
and hydroxyapatite crystal depositions promote NLRP3 activa-
tion, excessive inflammation and eventually cause pseudogout,
gout, and osteoarthritis (65, 90, 193). Hence, novel treatment
regiments with IL-1β blockers have been proven effective (194).
NLRP3 is similarly activated following phagocytosis of sev-
eral other particulate matters. Silica and asbestos fibers activate
NLRP3 and result in a non-resolving IL-1β-mediated inflamma-
tion, leading to lung fibrosis and ultimately to organ dysfunc-
tion in silicosis and asbestosis (84, 85). Cholesterol crystals are
also sensed by NLRP3, which contributes to chronic vascular
inflammation and ultimately the development of atherosclerosis
(195). Similarly, amyloid-β fibrils and islet amyloid polypeptide
(IAPP) activate NLRP3, which contributes to Alzheimer’s dis-
ease and the progression of type 2 diabetes, respectively (88, 89).
Even hemozoin crystals, which are generated during Plasmodium
infection of red blood cells, trigger NLRP3 activation (76–78),
although experimental cerebral malaria progresses independently
of NLRP3 (196).

NLRP12
In addition to NLRP3, hereditary mutations in NLRP12 have also
been linked to auto-inflammatory disease. Guadeloupe fever is
clinically similar to CAPS, but is caused by NLRP12 mutations,
which truncate the NACHT or delete the LRR (168). However,
in contrast to CAPS, anti-IL-1β therapy provided only tempo-
rary clinical improvements in two patients, followed by relapse
and re-activation of IL-1β secretion, possibly due to enhanced
TNFα levels, which were observed in response to the treatment
and may have lead to hypersecretion of IL-1β, which circumvented
anti-IL-1β therapy (169).

NLRP1
Excessive NLRP1-induced IL-1β signaling and pyroptosis can also
lead to deleterious organ-specific inflammatory events, such as
acute lung injury (53). Moreover, as discussed later, polymor-
phisms of NLRP1 have been linked to an increased risk developing
a number of autoimmune diseases. Although their pathogene-
sis has not yet been linked to excessive NLRP1 inflammasome
activation in humans, it is of interest that analysis of one of
these polymorphisms, NLRP1M1184V, showed increased NLRP1
autoproteolysis and, consequently, activation of caspase-1 and
release of IL-1β (42). Furthermore, N -ethyl-N -nitrosourea (ENU)
mutagenesis screening in mice revealed that NLRP1aQ593P, an
activating mutation located within the linker connecting the
NACHT and LRR, causes lethal systemic neutrophilia, thus linking
NLRP1 mutations to hyper-inflammation (197). NLRP1aQ593P-
driven disease was dependent on IL-1β and caspase-1, but did
not require ASC and caspase-11. Moreover, similar to hyperactive
NLRP3 mutations, LPS priming of macrophages was sufficient for
maturation of IL-1β in NLRP1aQ593P mutant macrophages (197).
Interestingly, while the elevated IL-18 release due to NLRP1aQ593P

mutation ameliorated the disease, NLRP1aQ593PIL18−/−mice dis-
played increased neutrophilia, independently of IFN-γ, and an
accelerated disease onset. IL-18 has emerged as a major interme-
diate in the crosstalk between the host and commensal microbiota.
In this case, the onset and severity of NLRP1aQ593P-driven disease
was independent, although aggravated, by the presence of com-
mensal microbiota. NLRP1aQ593P specifically caused cell intrinsic
hematopoietic stem and progenitor cell defects and particularly
manifested in reduced macrophage- and granulocyte-macrophage
progenitor cell numbers, caused by pyroptosis, which is only
evident in Il1r−/− mice in the absence of IL-1β-driven inflam-
mation, and is exaggerated by hematopoietic stress (197). Thus,
there is evidence that hereditary mutations in NLRP1 may also
lead to excessive inflammasome activation, which is much better
understood for NLRP3, as discussed below.

AUTOIMMUNE DISEASES
Although inflammasome activation is closely linked to innate
immune responses, there is now increasing evidence for a role
of inflammasomes in adaptive immunity. Although, IL-1β and IL-
18 are prototypical cytokines produced by innate immune cells,
both are also important for maintaining the Th1-Th17 vs. Th2
balance. Thus, inflammasomes play a role in initiating inflamma-
tory events, but also in the perpetuation of autoimmune diseases
characterized by a defect in the T-cell balance.

NLRP1
Strong evidence supports an etiologic role of NLRP1 in various
autoimmune diseases, since NLRP1 variants have been associ-
ated with an increased susceptibility for Addison’s disease, type
1 diabetes, Alzheimer’s disease, celiac disease, Kawasaki disease,
autoimmune thyroid disease, generalized vitiligo, systemic sclero-
sis, and rheumatoid arthritis (198–204). Little is known regarding
the mechanism by which NLRP1 mutations affect autoimmunity.
However, in generalized vitiligo high-risk NLRP1 haplotypes dis-
play elevated IL-1β processing (203), and in rheumatoid arthritis
patients, NLRP1 transcripts are elevated (198). Similarly, fibrotic
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patients display elevated IL-1β levels (205, 206), and systemic
sclerosis patients produce considerably higher amounts of extra-
cellular matrix upon exposure to IL-1β (207, 208). This is sig-
nificant, since caspase-1 is necessary for unconventional protein
secretion of numerous leaderless proteins in keratinocytes, which
includes several proteins linked to fibrosis in response to UVB
irradiation (8).

NLRP3
The most direct link of NLRP3 activation to adaptive immunity
came from studies with mice harboring CAPS mutations, clearly
providing evidence for an abnormal Th1/Th17-skewed immune
response (158, 159, 209). Mice displayed spontaneous skin inflam-
mation, consistent with a Th17-skewed response, and produced
elevated levels of the Th17-related cytokines IL-17A, IL-21, and
IL-22 and the Th17-specific transcription factor RORγt. This is in
agreement with an activated phenotype driven by excessive IL-1β

levels. In multiple sclerosis (MS), the prototypical Th1- and Th17-
derived cytokines, IFNγ, and IL-17, respectively, play an important
role. But this concept has been challenged recently by the discovery
that only T helper-derived GM-CSF, and neither IFNγ nor IL-17,
was essential during the effector phase of EAE, the animal model
for MS (210, 211). NLRP3 inflammasome-derived IL-1β is essen-
tial for the production of GM-CSF (212), and accordingly, NLRP3
is involved in the pathogenesis of EAE and NLRP3-deficient mice
show a strongly ameliorated pathogenesis (213, 214). Nevertheless,
this finding is still controversial (215). Also the contribution of
NLRP3 to allergic airway disease is still controversial. While some
studies observed significantly attenuated airway inflammation, IgE
production, and cytokine release in response to OVA in Nlrp3−/−

mice (79, 216), others failed to observe any major contribution of
NLRP3 (217, 218). Yet another link to adaptive immunity comes
from the observation that NLRP3 mediates responses to aluminum
hydroxide-containing particular adjuvant formulations (79, 82,
83). However, the precise contribution of NLRP3 to this adaptive
immune response is still controversial (80).

NLRP10/NLRP12
NLRP10−/− and NLRP12−/−mice both show impaired DC migra-
tion to draining lymph nodes, which is independent of inflamma-
some activation. NLRP12 has been linked to atopic dermatitis and
hereditary periodic fever in humans. Hence, NLRP12-deficient
mice exhibited attenuated inflammatory responses in mouse mod-
els of contact hypersensitivity, which was attributed to a reduced
capacity of DC and neutrophil migration and their inability to
respond to chemokines in vitro (165). Similarly, NLRP10−/− mice
displayed a profound impairment in T-cell-mediated immune
responses due to the loss of antigen transport to the draining
lymph nodes. The defective emigration of DCs from inflamed tis-
sues lead to an almost complete loss of naive CD4+ T-cell priming.
Hence, there is a critical link between innate immune stimulation,
NLRP10 activity, and the immune function of mature DCs (156).

AIM2-like receptor
Evidence supports a role of AIM2, IFI16, and the regulatory p202
proteins (p202a and p202b) in the pathogenesis of Sjogren’s syn-
drome and systemic lupus erythematosus (SLE) (219). In partic-
ular, p202 proteins have been linked to increased susceptibility for

murine SLE and are regulated by AIM2 (220, 221). However, p202
genes are lacking from human. On the other hand, SLE and Sjo-
gren’s syndrome patients develop autoantibodies to IFI16 in 29 and
70% of all cases, respectively (222, 223), implying a causative link,
which is significant due to the reported AIM2 inhibition by IFI16
(224). The most direct evidence shows a contribution of AIM2 to
the pathogenesis of Lupus nephritis in an apoptotic lymphocyte
DNA-induced SLE model (225). Nevertheless, mechanistic stud-
ies implicating ALRs in the pathogenesis of autoimmune disorders
are still lacking.

METABOLIC DISEASES
NLRP3
Chronic low-grade metabolic inflammation (metaflammation) is
an underlying cause for metabolic diseases. In obesity an excess
of nutrients triggers inflammation, since the metabolic surplus
induces the expression of inflammatory cytokines, including IL-
1β. Hence, there are numerous obesity-related diseases, which
include cardiovascular disease, atherosclerosis, insulin resistance,
and type 2 diabetes mellitus (T2DM), which are linked to the
NLRP3 inflammasome. The NLRP3 inflammasome can be trig-
gered by oligomers of IAPP, which commonly form amyloid
deposits in the pancreas during T2DM. In response to IAPP,
inflammasome priming, which causes the transcriptional up-
regulation of IL-1β, requires a sufficient glucose metabolism and
can be facilitated by minimally oxidized low-density lipoprotein
(88). Subsequently, IL-1β causes apoptosis of insulin producing
β-cells, which results in reduced insulin secretion over time and
eventually leads to insulin resistance and T2DM (226, 227). Weight
loss in obese individuals with T2DM correlates with reduced
NLRP3 expression in adipose tissue. In addition, there is decreased
inflammation and improved insulin sensitivity and glucose toler-
ance in adipose tissue macrophages (ATM) (228). Evidently, the
lipotoxicity-associated increase of the intracellular saturated fatty
acid palmitate and the metabolite ceramide, are also sensed by
NLRP3, in particular following a high fat diet (93, 228). Accord-
ingly, NLRP3−/− mice also show reduced hepatic steatosis and
are protected against the accumulation of lipid deposits in the
liver (228). Thus, NLRP3 is centrally involved in metabolic health.
However, NLRP3, in concert with NLRP6, is also necessary for
maintaining a healthy intestinal microbiota to prevent abnormal
accumulation of bacterial PAMPs in the hepatic portal circulation.

NLRP6
Increasing evidence supports a profound impact of the intesti-
nal microbiota to metabolic health and the intestinal micro-
biota of obese individuals differs from that of lean people and
shows increased prevalence of Prevotellaceae (229). NLRP3 and
NLRP6 are required for inflammasome-mediated surveillance of
the gastrointestinal tract to prevent the spreading of colitogenic
microbiota species, including Prevotellaceae and TM7 (144, 230).
Restricting these bacteria requires IL-18 and failure promotes
CCL5-dependent colonic inflammation and increased TLR4 and
TLR9 agonist influx into the portal vein, which eventually causes
non-alcoholic fatty liver disease (NAFLD), a comorbidity associ-
ated with obesity, metabolic syndrome, and NASH progression
(144, 230). Thus, NLRP3 and NLRP6 appear to have a specific
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protective role within the gastrointestinal tract through produc-
tion of IL-18, and accordingly, NLRP3−/− and NLRP6−/− mice
are more susceptible to colon inflammation and colon cancer (142,
143, 145, 146).

NLRP12
Similar to NLRP6, NLRP12 dampens gastrointestinal inflam-
mation and associated tumorigenesis, albeit through a distinct
mechanism. Rather than through inflammasome-mediated IL-
18 production, NLRP12 prevents intestinal inflammation through
dampening NF-κB, ERK, and AKT activation and release of pro-
inflammatory cytokines, chemokines, and tumorigenic factors
from macrophages and intestinal epithelial cells (166, 167).

CONCLUSION
By now, the crucial role of PYD-containing PRRs in host defense
is well-established. Although, these PRRs trigger many key innate
immune pathways, their contribution to inflammasome activation
is currently best understood. Nevertheless, it becomes increasingly
recognized that not all PYD-containing PRRs assembly inflamma-
somes or even promote a pro-inflammatory response. However,
the precise signaling mechanisms and in particular, the stimuli
that trigger their activation, are largely elusive for most members.
The tight affiliation of these PRRs with immune-based diseases
further underscores their critical function in maintaining home-
ostasis, while at the same time opening up exciting avenues for
developing novel therapies targeting these PRRs.
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