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The incidence of acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing.
However, there is no effective therapy for AKI and current approaches only slow down, but
do not prevent progression of CKD. TWEAK is a TNF superfamily cytokine. A solid base of
preclinical data suggests a role of therapies targeting theTWEAK or its receptor Fn14 in AKI
and CKD. In particular TWEAK/Fn14 targeting may preserve renal function and decrease
cell death, inflammation, proteinuria, and fibrosis in mouse animal models. Furthermore
there is clinical evidence for a role of TWEAK in human kidney injury including increased
tissue and/or urinary levels of TWEAK and parenchymal renal cell expression of the recep-
tor Fn14. In this regard, clinical trials of TWEAK targeting are ongoing in lupus nephritis.
Nuclear factor-kappa B (NF-κB) activation plays a key role in TWEAK-elicited inflammatory
responses. Activation of the non-canonical NF-κB pathway is a critical difference between
TWEAK andTNF.TWEAK activation of the non-canonical NF-κB pathways promotes inflam-
matory responses in tubular cells. However, there is an incomplete understanding of the
role of non-canonical NF-κB activation in kidney disease and on its contribution to TWEAK
actions in vivo.

Keywords: acute kidney injury, fibrosis, inflammation, kidney, lupus nephritis, podocyte, proteinuria

UNSOLVED ISSUES IN KIDNEY DISEASE
Acute kidney injury (AKI) and chronic kidney disease (CKD)
are the most severe forms of kidney disease (1, 2). AKI is char-
acterized by a sudden loss of renal function. AKI patients have
increased short- and long-term mortality and risk of CKD pro-
gression. However, there is no therapy that accelerates recovery
from AKI. CKD is a major healthcare problem, with more than
20 million aged 20 years or older affected in the United States.
Diabetic kidney disease is the leading cause of end stage renal dis-
ease in the Western Countries. However, current treatments based
on blockade of the renin-angiotensin system are not sufficient to
prevent progression of diabetic kidney disease (3).

Recent evidence suggests a role for TNF superfamily member
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK,
Apo3L, or TNFSF12) in both AKI and CKD, where it has been
shown to regulate cell death, inflammation, and fibrosis through
activation of the TWEAK receptor Fn14 and a variety of intracel-
lular signaling pathways, including the transcription factor nuclear
factor-kappa B (NF-κB) (4, 5) (Figure 1). Clinical trials are test-
ing anti-TWEAK neutralizing antibodies1,2. One key difference
between TWEAK and the best characterized member of the family,
TNF, is that TWEAK activates the non-canonical NF-κB pathway.
We now review current information on TWEAK, non-canonical
NF-κB activation, and kidney disease.

1http://clinicaltrials.gov/ct2/show/NCT00771329
2http://clinicaltrials.gov/ct2/show/NCT01499355

TWEAK
TWEAK may be membrane-bound or soluble, although most
functional studies have been performed with soluble TWEAK.
Soluble TWEAK is thought to be generated from full-
length TWEAK by furin-mediated cleavage of the extracellular
domain (6).

The TWEAK receptor, Fn14 (TNFRSF12a), is the smallest
member of the TNF receptor superfamily. Fn14 is a type I trans-
membrane protein which has 102 aa in its mature isoform. The
extracellular domain has 53 aa and harbors a cysteine rich domain
required for TWEAK binding (7). Interestingly, the Fn14 intra-
cellular domain (29 aa) lacks the characteristic death domain of
TNFRSF receptors but contains TNFR-associated factor (TRAF)
binding sites. Fn14 trimerization recruits TRAF2 and TRAF3 upon
TWEAK binding (8).

TWEAK may regulate cell proliferation, cell death, cell differ-
entiation, and inflammation (4, 6).

TWEAK may trigger cell death or proliferation processes,
depending on cell type and microenvironment; TWEAK pro-
motes proliferation of numerous cell types including quiescent
renal tubular cells through activation of NF-κB, MAPK, and
phosphatidyl-inositol 3-kinase (PI3K)/AKT pathways (9). In addi-
tion TWEAK was described as a weak inductor of apoptosis
which required special microenvironment (such as the presence
of interferon-γ – IFN-γ) to induce cell death (10–12). Under
certain circumstances TWEAK can induce apoptosis without co-
treatment with other cytokines. It has been proposed that levels
of Fn14 expression may sensitize cells to TWEAK but it is also
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FIGURE 1 | Key intracellular pathways activated byTWEAK engagement of Fn14 in kidney tubular cells. TWEAK signaling in kidney cells has been
characterized most in detail in tubular cells. TWEAK engages both the canonical and the non-canonical NFκB pathways and kinase signaling mechanisms.

clear that this cannot be the only mechanism (9). Indeed, the
signaling cascade which triggers cell death following Fn14 acti-
vation remains poorly understood as Fn14 does not contain a
death domain (7). Induction of TNF expression by TWEAK has
been reported in certain cell types. In immortalized tumor cells,
TWEAK activation of Fn14 recruits a TRAF2/cellular inhibitor of
apoptosis 1 (cIAP1) complex that results in the lysosomal degrada-
tion of cIAP1-TRAF2 in a cIAP1-dependent manner (13). TWEAK
depletion of cIAP1 and TRAF2 activates non-canonical NF-κB sig-
naling. However the function of non-canonical NF-κB signaling
was not explored.

TWEAK is expressed in many tissues. High levels are found in
the pancreas, intestine, heart, brain, lung, ovary, vasculature, and
skeletal muscle, and lower levels in the liver and kidney (4). Fn14 is
expressed by many cell types, including epithelial, mesenchymal,
and endothelial cells. In healthy tissues Fn14 expression is low.
However, cellular Fn14 levels are increased in response to stress or
injury.

TWEAK/FN14 IN KIDNEY DISEASE
Fn14 is expressed in kidney tubular cells, mesangial cells, and
podocytes (10). Fn14 expression by kidney endothelium has
not been well characterized. Renal infiltrating cells such as
macrophages also express Fn14 (14). Fn14-expressing cells are
potentially responsive to TWEAK. In addition TWEAK and Fn14
expression is increased in kidney injury and targeting of the system
is beneficial in different models of kidney injury.

TWEAK/FN14 ACTIONS ON RENAL CELLS
Potential kidney sources of TWEAK include infiltrating mono-
cytes and T lymphocytes and local cells such as mesangial and
tubular cells (10, 15–17).

During glomerular injury both mesangial cells and podocytes
may be targets of the inflammatory response. Mesangial cell injury
is observed in proliferative glomerulonephritis, while podocyte
injury is characteristic of proteinuric kidney diseases. TWEAK
promotes the expression of chemokines, adhesion molecules,
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and matrix metalloproteinases in human and murine mesan-
gial cells (17, 18). TWEAK also increases mesangial cells pro-
liferation, but TWEAK combined with IFN-γ promotes mesan-
gial cells apoptosis (17, 18). In human and murine podocytes
TWEAK induces the expression of proinflammatory mediators
in an NF-κB-dependent manner (18, 19). TWEAK also pro-
motes nephrin expression and human podocyte proliferation (18).
Expression of nephrin and proliferation are not usually associ-
ated in vivo. In fact, podocytes are terminally differentiated cells
that do not divide. Podocyte proliferation is only observed under
very specific pathological circumstances and is usually associated
with dedifferentiation and loss of podocyte markers including
nephrin.

In murine and human renal tubular cells TWEAK also pro-
motes the expression of cytokines and chemokines (20). TWEAK
also increases tubular cell proliferation through recruitment
of the mitogen-activated protein kinases ERK and p38, the
PI3K/Akt pathway and the canonical NF-κB pathway (9). Sim-
ilar to observations in mesangial cells, in a proinflammatory
milieu TWEAK induces apoptosis of tubular cells (10). By con-
trast to mesangial cells, the lethal action of TWEAK in tubular
cells requires the simultaneous presence of TNFα and INFγ.
Surprisingly, caspase inhibition prevented the features of apop-
tosis induced by the cytokine cocktail but increased overall
cell death through a reactive oxygen species-dependent necrotic
pathway (10). More recently, TWEAK/TNFα/INFγ-induced cell
death in tubular cells was shown to have features of necropto-
sis (21). Necroptosis is an active form of cell death that requires
the kinase activity of receptor-interacting protein 1 (RIP1) and
RIP3.

TWEAK also promotes murine renal fibroblasts proliferation
through activation of the Ras/ERK pathway (22). The prolifera-
tive effect of TWEAK on fibroblasts overrides its negative effect
on extracellular matrix production. Thus, the overall effect of
TWEAK targeting in experimental renal fibrosis is decreased fibro-
sis (22). In addition, TWEAK also promotes the expression of
inflammatory cytokines in renal fibroblasts (22).

So far, the proinflammatory effect of TWEAK on mesangial
cells, podocytes, and fibroblasts have been shown to proceed
through canonical NF-κB activation involving RelA migration
to the nucleus and expression of canonical RelA targets such as
MCP1, RANTES, and others (18, 19, 22). By contrast, both canon-
ical and non-canonical NF-κB activation by TWEAK have been
observed in tubular cells (20, 23). The known consequences of
non-canonical NF-κB activation are discussed below.

TWEAK/FN14 EXPRESSION IN KIDNEY INJURY
TWEAK and Fn14 expression is increased in experimental animal
models of AKI, lupus nephritis, albumin overdose-induced pro-
teinuria, kidney fibrosis induced by unilateral ureteral obstruction
and anti-GBM nephritis (10, 19, 20, 22, 24, 25). High levels of tubu-
lar Fn14 expression have been also observed in human ischemic
AKI and in acute or chronic human tubulointerstitial inflamma-
tion (24, 26). In human lupus nephritis glomerular Fn14 mRNA
expression was increased and was higher in proliferative than in
membranous lupus nephropathy (27, 28). Urinary TWEAK has
been proposed as a biomarker of lupus nephritis activity (29–32).

THERAPEUTIC MODULATION OF TWEAK OR FN14 IN EXPERIMENTAL
KIDNEY INJURY
Therapeutic modulation of the TWEAK/Fn14 pathway has been
successful in experimental models of AKI, kidney fibrosis, lipid-
induced kidney injury, proteinuria-induced kidney injury, and
immune-mediated glomerular injury, including lupus nephritis.
The TWEAK/Fn14 pathway was modulated in mice either by
gene targeting of TWEAK/Fn14, by neutralizing anti-TWEAK
antibodies or by blocking anti-Fn14 antibodies.

Mice with experimental ischemic or folic acid-induced AKI dis-
played a variety of benefits from TWEAK targeting that included
better histological parameters and renal function, and reduction
of chemokine expression, tubular cell apoptosis, and renal fibrosis,
while the anti-inflammatory and anti-aging hormone klotho was
increased (4, 9, 20, 23, 24, 26, 33). TWEAK downregulates Klotho
in normal kidneys (33).

Fn14-deficient mice show decreased kidney damage, inflam-
mation, and fibrosis in models of lupus nephritis (5, 34).
Anti-TWEAK neutralizing antibodies reduced inflammatory gene
expression and renal damage in lupus nephritis (34). Reduced
residual fibrosis was observed in mice which had been protected
from the acute phase of ischemia reperfusion by anti-Fn14 block-
ing antibodies (24). Protection from fibrosis by interfering with
TWEAK/Fn14 is not limited to residual fibrosis following amelio-
ration of the initial injury. TWEAK knockout mice were protected
from fibrosis in the unilateral ureteral obstruction of model of
persistent kidney insult while overexpression of TWEAK causes
renal fibrosis in normal previously normal kidneys (22).

Fn14-deficient mice were protected from anti-GBM induced
glomerulonephritis (25). In addition, neutralizing anti-TWEAK
antibodies improved nephritis in wild type mice without alter-
ing the adaptive immune response, indicating that TWEAK/Fn14
directly regulates the inflammatory response (25). In this regard,
anti-TWEAK antibodies decreased hyperlipidemia-induced kid-
ney inflammation and injury (35).

Experimental kidney diseases in which TWEAK/Fn14 target-
ing has been successful share the presence of diverse degrees
of local inflammation. Thus, the kidney milieu to some extent
reproduces the cell culture conditions under which TWEAK pro-
motes kidney cell death. However, the environment also influences
TWEAK actions in the kidney in vivo. The TWEAK/Fn14 pathway
may contribute to tissue regeneration (9, 36, 37). In experimen-
tal, inflammation-free unilateral nephrectomy TWEAK promotes
remnant kidney growth and tubular cell proliferation (9). How-
ever, TWEAK knockout mice have decreased remnant kidney size
and tubular cell proliferation (9). This information may be useful
in the context of regenerative medicine. However, the regenerative
potential of TWEAK was not apparent in animal models of inflam-
matory kidney injury, where the injurious effect was observed in
all models studied so far.

NON-CANONICAL NF-κB SIGNALING
The NF-κB transcription factor binds to the κB enhancer in DNA
to control transcription of over 400 genes. NF-κB controls immune
and inflammatory responses, developmental processes, cellular
growth, and apoptosis. Dysregulation of NF-κB has been linked to
cancer, inflammatory, and autoimmune diseases (9, 23, 38).

www.frontiersin.org December 2013 | Volume 4 | Article 447 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Inflammation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Poveda et al. TWEAK, NF-κB, and the kidney

The mammalian NF-κB family has five members, RelA/p65,
RelB, c-Rel, NF-κB1 p50, and NF-κB2 p52 (39, 40). All share a
highly conserved DNA-binding/dimerization domain called the
Rel homology domain (RHD), through which they form homo or
heterodimers. RelA, c-Rel, and RelB contain a C-terminal transac-
tivation domain (TAD) with multiple ankyrin repeats. In order to
activate transcription, they form dimers with either p50 or p52.

Nuclear factor-kappa B activation does not require the novo
synthesis of NF-κB proteins. In most cells, NF-κB proteins are
present as an inactive complex in the cytoplasm. The activity of
NF-κB is regulated by its interaction with inhibitory IκB proteins.
The IκB proteins include p105, p100, IkBα, IκBβ, IκBγ, IκBε, IκBz,
and Bcl-3 (41–43), NFκB1 and NFκB2 are synthesized as precur-
sors, p105 and p100, respectively. These precursors contain an
IκB-like C-terminal portion and function as NF-κB inhibitors.
Ubiquitin/proteasome processing results in selective degradation
of the C-terminal ankyrin repeats, disrupts the IκB-like function
and generates the active NF-κB subunits p50 and p52 (44, 45).

Nuclear factor-kappa B activation in response to extracellular
signals can proceed through classical/canonical, alternative/non-
canonical, or hybrid pathways (4, 38, 46–49). Classical NF-κB
activation is a rapid and transient response to a wide range of
stimuli, while the alternative pathway involves slow activation of
the p100/RelB heterodimer leading to the generation of p52/RelB
and prolonged activation of NF-κB target genes in response to a
more limited set of stimuli (45,50). There is interplay between both
pathways. Thus, classical NF-κB activation-induced transcription
of NF-κB2 and RelB favors activation of the non-canonical path-
way. Both pathways converge on the activation of a complex that
contains a serine-specific IκB kinase (IKK). IKK contains at least,
three distinct subunits: the catalytic kinase subunits IKKα (IKK1)
and IKKβ (IKK2) and the regulatory subunit, IKKγ (NEMO).

Nuclear factor-kappa B inducing kinase (NIK, MAP3K14) is
the apical kinase triggering non-canonical NF-κB activation. NIK
belongs to the family of MAP3Ks that are known to be activated
through T-loop phosphorylation. Upon activation, NIK activates
IKKα and serves as a docking molecule that recruits IKKα to p100,
facilitating ubiquitination by the β-TrCP ubiquitin ligase and sub-
sequent proteasomal processing into the mature p52 subunit in
a manner dependent on IKKα-dependent p100 phosphorylation
(50–52). This allows the RelB/p52 heterodimer to translocate to
the nucleus and to activate transcription of target genes (53). p100
processing is regulated by a short list of activators known to signal
through NIK (53–57). This list includes TWEAK (58).

A variety of functions have been described for NIK including
generation and/or maintenance of memory T cells (59), the for-
mation of Th17 cells (60), promotion of glucagon responses (61),
and the pathogenesis of chronic inflammation and insulin resis-
tance in type 2 diabetes (62). Some of these functions may be
independent from activation of IKKα and the non-canonical NF-
κB pathway (63) and for others the relationship to non-canonical
NF-κB was not explored. Thus, NIK modulates melanoma sur-
vival and growth through a β-catenin-mediated transcription way
(64), is recruited to the promoters of pro-inflammatory genes
to induce H3K9 histone acetylation in response to TNFα (65)
and may favor or repress Smac mimetic induced death depend-
ing on the cell context. NIK upregulation in response to Smac

mimetics/TNF repressed apoptosis induced by this combination,
likely by maintaining FLICE inhibitory protein (c-FLIP) levels to
suppress caspase-8 activation. Thus, resistant cells were sensitized
to cell death by NIK depletion. NIK was required for activation
of both canonical and non-canonical NF-κB pathways but their
relative contribution to the protective effect was not explored (66).

NON-CANONICAL NF-κB ACTIVATION AND KIDNEY DISEASE
There is little information on the occurrence and role of non-
canonical NF-κB activation in kidney disease. Few studies have
addressed the overall regulation of the pathway. However, a
few reports have explored individual molecules participating in
non-canonical NF-κB activation, frequently without exploring
function.

In diabetic mice kidney cortex NIK and RelB are upregulated
several fold and phosphorylation of IKK alpha was increased (67).
Non-canonical NF-κB components were predominantly located
in tubular epithelial cells (67). NIK overexpression in cultured
human proximal tubular cells increased RelB/p52 nuclear lev-
els and DNA-binding activity and expression of inflammatory
cytokines such as IL-6, IL-8, and MCP1 (68). TRAF3 silencing
also increased nuclear RelB/p52 and transcription of proinflam-
matory cytokines. AGEs increased NIK and nuclear RelB/p52 in
cultured proximal tubular cells (68).

In human kidney graft biopsies with delayed graft function NIK
was increased in proximal tubular, interstitial, and mesangial cells
and was observed in nuclei. In pig ischemia-reperfusion tubular
and glomerular NIK phosphorylation was increased as observed by
immunohistochemistry. In cultured proximal tubular cells throm-
bin induced NIK phosphorylation (69). However, no functional
study addressed the consequences of NIK phosphorylation.

RelB targeting by siRNA may protect mice against lethal kidney
ischemia (70). Mice injected with RelB siRNA had lower serum cre-
atinine, histological tissue injury, and TNF expression as compared
to controls. Furthermore, RelB targeting increased survival (70).

In cultured proximal tubular cells, lentiviral small hairpin
RNA (shRNA)-mediated knockdown of RelB, abrogated the excess
apoptosis induced by TNF in combination with cisplatin. Thus,
cells with targeted RelB exposed to TNF/cisplatin have the same
apoptosis rate as cells treated only with cisplatin. RelB targeting
protection from apoptosis was associated with phenotypic mark-
ers of epithelial-to-mesenchymal transition. A transcriptomics
analysis disclosed that knockdown of RelB was associated with
upregulation of Snai2 and Rho GTPases. Targeting Rho kinase
prevented the protective action of RelB knockdown (71).

The uremic toxins p-cresylsulfate and indoxylsulfate increased
NF-κB2 expression by 50–80% in cultured proximal tubular cells
(72). However, whether this was associated with increased protein
levels or the functional consequences of this observation for the
tubular cell cytotoxicity or inflammatory response elicited by these
toxins (73) were not explored.

TWEAK AND NON-CANONICAL NF-κB ACTIVATION IN
KIDNEY DISEASE
A sustained NF-κB activation, persistent for up to 24 h, was
observed in tubular cells exposed to TWEAK, consistent with acti-
vation of the non-canonical pathway in addition to the already
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Table 1 |TWEAK actions on kidney cells involving NF-κB activation and evidence for the role of canonical or non-canonical pathways.

Cell type Effect Functional modulation NF-κB pathway involved Reference

Mesangial cells Inflammation BAY11-7082 Canonical Gao et al. (18)

Podocytes Inflammation Parthenolide Canonical Sanchez-Nino et al. (19)

Tubular cells Inflammation Parthenolide Canonical Sanz et al. (20)

Proliferation Parthenolide Sanz et al. (9)

Inflammation: CCL21, CCL19 NIK siRNA, RelB siRNA Non-canonical Sanz et al. (23)

Renal fibroblasts Inflammation Parthenolide Canonical Ucero et al. (22)

characterized canonical NF-κB activation (20) (Table 1). In this
regard, in cultured renal tubular cells TWEAK increases nuclear
RelB/p52 accumulation, RelB and p52 DNA-binding activity,
and NIK- and RelB-dependent CCL21 and CCL19 expression
(23). Nuclear RelB/p52 migration and CCL21/CCL19 expression
peaked at 24 h and, thus, were delayed as compared to RelA nuclear
migration and expression of canonical RelA-dependent genes such
as MCP1 and RANTES that peak at 3 and 6 h, respectively. By
contrast, parthenolide, which inhibits the degradation of IκBα

and RelA nuclear translocation, did not prevent CCL21 upregula-
tion (20, 23, 74). Furthermore, TWEAK administration in vivo to
healthy mice resulted in nuclear translocation of RelB and p52 in
tubular cells and in increased renal CCL21 expression. Conversely,
neutralizing anti-TWEAK antibodies prevented both RelB/p52
accumulation and increased expression of CCL21 in mice with
folic acid-induced AKI (20). CCL21 expression had been previ-
ously shown to be dependent on non-canonical NF-κB activation
in non-renal cells (53). CCL21 is T-cell and fibrocyte chemotactic
factor that plays a role in renal tubulointerstitial fibrosis (75, 76).

In summary, TWEAK is the only cytokine known to activate the
non-canonical NF-κB pathway in tubular cells, both in cell culture
and in vivo. Activation of the non-canonical NF-κB pathway is
a key difference with TNF. However, whether TWEAK activates
the non-canonical NF-κB pathway in mesangial cells, podocytes,
or kidney fibroblasts and the functional in these cells remains
unexplored.

CONCLUSION
Accumulating evidence suggests a role for TWEAK in the patho-
genesis of diverse forms of kidney injury, thus making TWEAK an
attractive therapeutic target. Indeed, ongoing clinical trials are tar-
geting TWEAK in kidney disease. Recently, a phase I clinical trial of
anti-TWEAK neutralizing antibodies in rheumatoid arthritis was
completed.1 Intravenous administration of anti-TWEAK resulted
in undetectable serum-TWEAK for a month and in decreased lev-
els of several inflammatory biomarkers. An ongoing phase II trial
in lupus nephritis patients is testing the nephroprotective effect
of BIIB023 anti-TWEAK antibody.2 TWEAK is one of a hand-
ful of cytokines that activate the non-canonical NF-κB pathway
and the only one to have been explored with respect to non-
canonical NF-κB pathway activation in kidney cells. Functional
studies suggest that non-canonical NF-κB activation is a rele-
vant action for TWEAK-induced kidney inflammation. Potential
therapeutic approaches include both the simultaneous inhibition
of both NF-κB pathways when targeting TWEAK as well as the
eventual independent regulation of canonical and non-canonical

NF-κB responses by designing differential inhibitors. While these
non-canonical NF-κB inhibitors are not yet ready for human use,
progress is being made on the design of NIK inhibitors (77). How-
ever, there is little functional information on the overall role of
NIK and non-canonical NF-κB activation in kidney disease and
on the consequences of differential therapeutically manipulation
of canonical and non-canonical NF-κB responses. Clearly, more
research is needed in this area.
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