
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MINI REVIEW ARTICLE
published: 11 December 2013

doi: 10.3389/fimmu.2013.00451

Analytical tools for the study of cellular glycosylation in
the immune system
Yvette van Kooyk, Hakan Kalay and Juan J. Garcia-Vallejo*

Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands

Edited by:
Deirdre Coombe, Curtin University,
Australia

Reviewed by:
Manuela Mengozzi, Brighton and
Sussex Medical School, UK
Daniel Kolarich, Max Planck Institute
of Colloids and Interfaces, Germany

*Correspondence:
Juan J. Garcia-Vallejo, Department of
Molecular Cell Biology and
Immunology, VU University Medical
Center, P.O. Box 7057, 1007MB
Amsterdam, Netherlands
e-mail: jj.garciavallejo@vumc.nl

It is becoming increasingly clear that glycosylation plays important role in intercellular com-
munication within the immune system. Glycosylation-dependent interactions are crucial
for the innate and adaptive immune system and regulate immune cell trafficking, synapse
formation, activation, and survival. These functions take place by the cis or trans interac-
tion of lectins with glycans. Classical immunological and biochemical methods have been
used for the study of lectin function; however, the investigation of their counterparts, gly-
cans, requires very specialized methodologies that have been extensively developed in
the past decade within the Glycobiology scientific community. This mini-review intends to
summarize the available technology for the study of glycan biosynthesis, its regulation and
characterization for their application to the study of glycans in immunology.
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INTRODUCTION
Glycosylation is the most common post-translational modifica-
tion of proteins. It is often estimated that more than 50% of all
mammalian cellular and membrane-bound proteins are glycosy-
lated, implicating an essential role in protein and cell function for
carbohydrates. Indeed, carbohydrates play multiple roles in gly-
coprotein function: they participate in folding and maturation,
contribute to the structural properties of glycoproteins, provide
charge and hydrophilicity, and mediate interactions. In particular,
carbohydrate-mediated interactions are specially crucial for the
immune system (1). Glycans have been involved in the generation
and loading of antigenic peptides into MHC-I (2), immune cell
trafficking (3), T cell receptor signaling and apoptosis (4), B-cell
receptor signaling (5), antibody function (6), immune cell differ-
entiation (7), pathogen recognition (8), and immune homeostasis
(9). Therefore, determining glycan structure, their biosynthetic
regulation, their aglycon, and their binding partners is a funda-
mental step toward understanding the role of glycosylation in the
immune system.

Glycans are often defined as assemblies of carbohydrates
that include monosaccharides, oligosaccharides, polysaccharides,
and their conjugates (glycoproteins, glycolipids, and proteo-
glycans). The structural diversity of glycans depends on sev-
eral factors, namely differences in monosaccharide composition,
anomeric state, glycosidic linkage, branching, the presence of non-
carbohydrate substituted components (phosphorylation, sulfa-
tion, acetylation, etc.) and linkage to their aglycones (peptide, lipid,
etc.) (10). Each of these structural factors is ultimately determined
during glycan biosynthesis by the relative composition of the gly-
cosylation machinery. The term“glycosylation machinery”refers to
the set of, mainly enzymes, but also co-factors, transporters, and
activated sugar donors that are necessary for the natural biosynthe-
sis of glycans. It has been estimated that approximately 1% of the

genome is dedicated to glycosyltransferases (11) and, if all genes
involved in the glycosylation machinery are considered, this figure
would probably rise to approximately 3–4%, thus a significant pro-
portion. The glycosylation machinery is not localized to a single
specific organelle within the cell and should be envisioned as a vir-
tual engine (Figure 1) which involves mainly the Golgi apparatus,
but also several other organelles and intracellular compartments,
such as the nucleus (sialic acid biosynthesis), the endoplasmic
reticulum (initial steps of N -glycosylation), lysosomes (monosac-
charide recycling), or the cytoplasm (sugar donor and N -glycan
precursor biosynthesis). With such a widespread localization and
the involvement of so many factors it is no surprise that several lev-
els of regulation have been described that affect the glycosylation
process. Central to the glycosylation process, many glycosyltrans-
ferases have been shown to be regulated through transcriptional
(12), post-transcriptional (13, 14), and post-translational (15)
mechanisms. In addition, the activity of some glycosyltransferases
may also be regulated through the interaction with chaperons (16,
17), competition for substrate with other glycosyltransferases (18),
the availability of sugar donors (19), the pH at the Golgi (20),
cleavage of their transmembrane domain (21), or even relocation
to different organelles (22). Also, the regulation of the expres-
sion of glycoproteins as well as their modification by glycosidases
(23) once on the cell membrane or the extracellular space con-
tribute to the regulation of glycosylation. These mechanisms may
operate in response to physiological (24–26) or pathological (27–
29) cues and often have a biological correlate that is dependent
on changes in the interaction with glycan-binding proteins (30).
Thus, glycosylation is a highly regulated process that is extremely
sensitive to both intracellular and extracellular stimuli. Moreover,
due to the nature of the glycosylation process, the resulting gly-
coproteins exist as a mix of the same peptide backbone with a
variety of different glycans. The diversity of these glycans depends
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FIGURE 1 | Dissecting the glycosylation machinery. Glycosylation is a
complex process that involves a large number of molecules and
organelles. The glycosylation machinery can be defined as the set of
enzymes, chaperones, transporters, sugar donors, and accessory
molecules necessary for the modification of proteins or lipids with

carbohydrates. Since many of these molecules are subjected to regulation,
glycosylation is a highly dynamic process and it is, therefore, interesting to
address not only the array of glycans present on the cell surface or the
secretome, but also the activity and the expression levels of the
molecules involved in glycan biosynthesis.

on the relative composition of the glycosyltransferases expressed
and the interplay of all the regulatory stimuli that operate at a
particular moment. This can affect both the number of glycans
attached per glycoprotein, a type of variation that is referred to as
macroheterogeneity, as well as the nature of these glycan chains
(known as microheterogeneity). Thus, glycoproteins usually exist
as complex mixtures of glycosylated variants or glycoforms. As an
example, the human erythrocyte molecule CD59 consists of more
than 120 different glycoforms, despite having a single N -linked
glycosylation site and a couple of potential O-linked glycosylation
sites (31).

Unfortunately, we still lack a systems biology approach to
allow the modeling of the glycosylation machinery. Such a model
would be extremely useful to predict how changes in the rel-
ative expression of different components of the glycosylation
machinery would lead to alterations in the glycan profile of cells
or secreted proteins. Accumulating evidence demonstrates, nev-
ertheless, that there is a good correlation between changes in
the transcript levels of glycosyltransferases and differences in
the glycosylation pattern, suggesting that the modeling of the
glycosylation machinery could be a possibility in the future.
Until then, a comprehensive analysis of cellular glycosylation
should incorporate different types of methodologies that pro-
vide information on the expression of the different components
of the glycosylation machinery, their activity, as well as the

characterization of the secreted or membrane-bound glycome
(Figure 1).

Considering the different regulatory checkpoints of the gly-
cosylation machinery, the most logical and accessible assays to
address the glycosylation of cells would be the gene/protein expres-
sion profile of key components of the glycosylation machinery,
their activity, and the glycosylation profile. We will now discuss
the different methodological approaches to each of these types of
assays, especially in the context of the study of the glycosylation of
immune cells.

GENE-EXPRESSION ANALYSIS
The majority of the human and mouse glycosyltransferases known
to date were cloned and characterized between the late 80s and the
early decade of this century. The development of gene-expression
technologies such as microarray technology and real-time PCR
coincided with the completion of the list of existing glycosyl-
transferases and it is, therefore, no surprise that efforts were
made to specifically develop gene-expression microarray-based
methods to adequately address the glycosylation-related tran-
scriptome. One of the most extensively used microarrays has
been the glycogene-chip developed by the Consortium for Func-
tional Glycomics. The last version of this microarray contained
probes for more than 1200 human and mouse glycosylation-
related genes, including glycosyltransferases (256), glycan-binding
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proteins (146), glycosidases (88), nucleotide-sugar synthesizing
enzymes and transporters (77), and conserved oligomeric Golgi
(COG) complex proteins. In addition, several immune-related
molecules such as interleukins, chemokines, and growth fac-
tors with their respective receptors were included, making this
microarray extremely interesting for the analysis of the transcrip-
tome of different immune subpopulations. In order to enhance
specificity, this microarray consisted of 25 probes per gene. Unfor-
tunately, due to the conclusion of the 10-year Glue Grant from
the National Institute of General Medical Sciences (NIGMS), pro-
duction of this microarray has been discontinued, although the
data remains publicly available at the website of the Consortium
for Functional Glycomics (http://www.functionalglycomics.org/
glycomics/publicdata/microarray.jsp). Alternatives to the use of
this microarray are genome-wide microarrays (Illumina microar-
rays also provide quantification based on 20–30 probes per
gene) and real-time PCR of selected genes. Some currently avail-
able microarray platforms, like Illumina, provide genome-wide
microarrays with also a high number of probes per gene. Analy-
sis of the expression of genes encoding for glycosylation-related
enzymes on data generated using this type of microarrays should
be able to provide information to predict what type of glycans are
to be expected on the cell of interest or what kind of glycosylation
changes may operate under the treatment of study. In addition,
since the whole genome is covered, these microarrays may be help-
ful in addressing the molecular mechanisms responsible for the
regulation of the glycosylation-related gene-expression changes.
Still, the use of low-density screening methods, such as real-time
PCR (32–34) can be quite informative depending on the research
question. The advent of next-generation sequencing technologies
(35) will surely provide additional possibilities for quantification
of glycosylation-related gene expression, with the advantage to
identify mutations/splice variants and epigenetic variation associ-
ated with the glycosylation-related genes, potentially leading to the
identification of susceptibility markers and inherited disease traits,
a concept that has previously been suggested for autoimmunity
(36, 37).

GLYCOSYLTRANSFERASE AND GLYCOSIDASE ACTIVITY
ASSAYS
As already mentioned, glycosyltransferases may be regulated at the
expression level, but also, since they are enzymes, in their catalytic
activity. Several factors may contribute to this, including pH, sub-
strate availability, interaction with co-factors or chaperons, and
post-translational modifications affecting activity. Thus, deter-
mining the activity of glycosyltransferases and glycosidases in vitro
provides a new layer of information to the study of their regula-
tion and also facilitates the identification of specific inhibitors.
However, glycosyltransferase assays (38, 39) are complicated by
the fact that all Leloir-type glycosyltransferases (sugar-nucleotide
dependent glycosyltransferases) that transfer the same sugar use
the same sugar-nucleotide donor, but can differ in their acceptor
specificity, and in the regio- and stereochemistry of the transfer
reaction. In addition, glycosyltransferases can be rather promis-
cuous in their acceptor specificity (40). In general, the activity
of glycosyltransferases can be monitored by following either the
depletion of the sugar donor and the substrate(s) or the formation

of the reaction products, whereas glycosidase activity is detected
by following the loss of substrate. In order to allow the monitoring
many assays make use of radiochemically- or fluorescently-tagged
donor or acceptor analogs. Then, chromatographic, radiochem-
ical, spectrophotometric, or immunological techniques are used
to separate and/or detect one or more of the reaction species.
Although glycosyltransferase activity assays have helped enor-
mously in the characterization of glycosyltransferases and the
identification of glycosyltransferase inhibitors, their contribution
to understanding the regulation of glycosylation is limited. This
limitation depends on the fact that many of the glycosyltransferase
assays are based in reagents that are not able to cross membranes
and, therefore, cannot be used in living cells or organisms. Alter-
natively, metabolic labeling approaches have been developed that
allow the tagging of newly synthesized glycoproteins with radio-
chemically labeled glycans. Most recently, the use of bioorthogonal
chemical reporters has allowed metabolic glycan labeling even
in vivo (41). Importantly, the reporter must be non-toxic and
small enough to not interfere with the transport of the mono-
saccharide into the cell, its incorporation into a sugar donor and
the glycosyltransferase reaction. This is the case of azido or alkynyl
monosaccharide derivatives, which have been used for the label-
ing of most glycan subtypes, except for glycosaminoglycans and
glycosylphosphatidylinositol anchors (41). Unfortunately, mon-
itoring of specific glycosyltransferases is not possible using this
technology, but it can still be very useful to address the effect
of multiple biological stimuli on specific glycan subtypes (e.g.,
sialylation, fucosylation, O-glycans, etc).

GLYCAN ANALYSIS
The complete characterization of the glycans from cell mem-
branes or purified glycoproteins is a process that involves ded-
icated Analytical Chemistry technology and requires the inte-
gration of different analytical approaches. However, it is not
always necessary to perform a comprehensive glycan sequencing
and, depending on the type of experimental set up and evi-
dence required, fast and simple approaches such as lectin binding
assays may be sufficient. The availability of a large set of plant
lectins with defined specificity has allowed the development of
simple assays for the high-throughput gross characterization of
the glycosylation of cells or purified glycoproteins (42). Small
scale screening using selected lectins can easily be set up as flow
cytometry or ELISA assays. On the other hand, lectin microarrays
are becoming increasingly popular, specially in the development
of disease-related biomarkers in cancer (43, 44). Unfortunately,
most lectins have basic preferences to a broad set of carbohy-
drate structures or epitopes and a certain level of cross-reactivity
is often observed. Therefore, lectins are not very practical when
a detailed glycan characterization is needed. In this case, gly-
cans can be sequenced by several different but complementary
approaches. The most extended methodology is based in the
purification of glycans after chemical or enzymatic released from
their aglycon. This is considerably easier for N -linked glycans,
which can be enzymatically released from mammalian glycopro-
teins using an amidase (PNGase F) (45). Unfortunately, only one
enzyme has been described so far to be able to cleave the core 1
O-glycan, endo-α-N -acetylgalactosaminidase (O-glycanase), but
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not its extended variants or any of the seven remaining O-
glycan core structures (46, 47). Alternatively, chemical methods
such as hydrazinolysis (48), deglycosylation by anhydrous tri-
fluoromethanesulphonic acid (49), or non-reductive alkaline β-
elimination (50) can be used instead, although these reactions
require careful optimization to prevent glycan degradation (51).
Regardless of the method used, released glycans can then be
purified and analyzed by chromatographic and/or mass spec-
trometric methods. Small glycans can directly be analyzed by
means of high performance anion-exchange chromatography with
pulsed amperometric detection in stand-alone mode (52) or
online-coupled to mass spectrometry through a desalter unit (53).
High-performance anion-exchange chromatography with pulsed
amperometric detection can also be used for monosaccharide
analysis of purified glycans (54), which can be useful as an aid
for further characterization, but requires high concentrations of
experimental sample. Most often, glycans purified after deglyco-
sylation are derivatized at their reducing end with a fluorochrome
(55) and then resolved by hydrophilic interaction chromatog-
raphy with a fluorescence detector. Further characterization is
achieved by sequential deglycosylation using exoglycosidases (56),
which specifically cleave glycosidic bonds of individual mono-
saccharide units from the terminal residue. Exoglycosidase diges-
tion results in a shift in the glucose-unit value allowing detailed
structural assignments with linkage information (56). Robotic
systems and ultra-performance liquid chromatography in com-
bination with sub 2 µm stationary phase capillary columns is
allowing the implementation of very promising high-throughput
glycan analysis projects that will certainly have an important
impact in biomarker discovery (57, 58). In addition, the incor-
poration of an online mass spectrometer after the fluorescence
detector facilitates glycan characterization without the need of
extensive exoglycosidase reactions (55, 59). Alternatively, glycans
can also be analyzed by porous graphitized carbon LC-MS/MS
(60–63).

Derivatization of glycans with 9-aminopyrene-1,3,6-trisulfonic
acid (APTS) or 8-aminonaphthalene-1,3,6-trisulfonic acid
(ANTS) provides glycans with electrophoretic mobility and flu-
orescence detection, allowing their separation by capillary elec-
trophoresis coupled to a laser-induced fluorescence detector (64).
The main advantages of this technology are its sensitivity (10−15

to 10−18 mol of oligosaccharide samples), short separation time
(<20 min), and high-throughput potential and, when combined
with mass spectrometry, this method provides simultaneous
glycan characterization (65).

Glycans can also be directly analyzed by mass spectrometry,
with the advantage of providing a link between mass and com-
position. In order to perform mass spectrometric analysis of
glycans it is necessary to derivatize them, since the ionization effi-
ciency of glycans (especially those carrying terminal sialic acids)
is generally low. Typical derivatization methods include perme-
thylation (66), methyl-esterification of sialic acids (67), or the
above-described fluorescent tagging of the reducing end. Often,
rapid profiling is achieved through matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry because it is fast,
simple, and requires only a small amount of sample. Ion frag-
mentation through electrospray ionization mass spectrometry,

collision-induced dissociation and MS/MS help in achieving struc-
tural characterization. More recently developed fragmenting tech-
nologies such as electron capture dissociation and electron transfer
dissociation have created huge expectative for the implementation
of top-down proteomics (68) and their application to glycomics
and glycoproteomics. Approaches based on this technology would
be ideal for the sequencing of N - and O-linked glycans together
with their peptide assignment. Intact N - and O-glycopeptides
from purified glycoproteins have already been successfully ana-
lyzed using this approach (61, 69–73), but methods for more
complex samples such as cell lysates remain to be implemented.
Importantly, the development of analysis software and glycan
databases for the direct assignment of glycan structures to spe-
cific masses in different platforms is pushing the field forward by
facilitating reporting and data mining (74–76).

CONCLUDING REMARKS
Although the glycome of several immune cell populations has
already been profiled (25, 26, 77) and accumulating evidence high-
lights the importance glycosylation regulation in multiple aspects
of immune biology (78–81) we still need a better understanding of
how glycosylation is regulated in different immune cell subpopu-
lations. A better integration of glycobiological methodology in the
immunological community is a pre-requisite, for which we hope
this primer will be a useful first step.
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