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Atypical response of B-1 cells to BCR ligation: a speculative
model
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B-1a cells are unable to induce NF«B or proliferate after BCR cross-linking due to increased
phosphatase abundance or activity. This phosphatase abundance and/or activity may be the
result of unique B-1a cell characteristics such as increased levels of HSP70 and/or consti-
tutive secretion of I=10. We speculate phosphatase activity cannot be overcome by BCR
ligation alone due to insufficient Vav protein expression, which does not allow for proper
production of reactive oxygen species, which inhibit phosphatases. Furthermore, constitu-
tively active Lyn also plays a negative regulatory role in B-1a. We expect that a new focus
on phosphatase activity and its suppression will be revealing for BCR signal transduction
in B-1 cells.
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B-1 CELL OVERVIEW

B-1 CELL CHARACTERISTICS

B-1a cells are set apart from conventional B2 cells based on phe-
notypic and functional differences. B-1a cells are phenotypically
characterized by the following cell surface markers: B220'°, CD5F,
immunoglobulin (Ig) (sIg) Mbi, sIngO, Mac-11, CD23~, and
CD43% (1,2). In mice the largest proportion of B-1a cells are found
in the peritoneal cavity with a small proportion but approximately
equal sized population residing in the spleen (3, 4). The B-1a
cell population originates during fetal life and persists through-
out adult life by their ability to self-renew, meaning new B-1a cells
are generated by mitosis of mature surface Ig-expressing B-1a cells.
This process is regulated in a feedback fashion (5, 6). B-1a cell self-
renewal is unlike development of B-2 cells, wherein mature cells
derive from surface Ig-negative progenitors. Recently early appear-
ing B-1a cells were shown to represent a separate lineage derived
from a unique progenitor found both in the fetal liver and bone
marrow that does not give rise to B-2 cells (7).

B-1a cells exhibit a number of functional characteristics differ-
ent from conventional B-2 cells. B-1a cells spontaneously secrete
IgM, which is often referred to as natural antibody and accu-
mulates as the bulk of resting or non-immune IgM. Ig secreted
by unstimulated B-1a cells varies less from germline than Ig
secreted by B-2 cells, which is because B-la immunoglobulin
undergoes minimal if any somatic hypermutation and possesses
little N-region addition (8-10). In addition, B-1a cells are reper-
toire skewed as evidenced by biased variable heavy chain (VH)
gene usage in favor of Vyll and Vy12 (9-13). This skewed,
germline-like repertoire contains both antimicrobial and autore-
active specificities. B-1a cell-derived natural IgM has been shown
to be essential for: (1) anti-microbial protection, through initial

serological control of bacterial and viral infections (14-16), and
(2) housekeeping homeostasis, by aiding in disposal of autoanti-
gens through removal of apoptotic cell debris (17-19). In addition,
housekeeping natural antibodies assist in elimination of toxic mol-
ecules such as oxidized low density lipoprotein (oxLDL), in partic-
ular by antibodies bearing the T15 idiotype, which helps control
the inflammatory process leading to atherosclerotic plaques (20).
These diverse functions may be facilitated by the characteristic
polyreactivity of B-1a cell Ig.

Beyond spontaneous secretion of natural IgM antibody, B-
la cells express other distinct functions not shared by resting
conventional B-2 cells. B-1a cells present antigen more potently
than conventional B-2 cells, a property that has been attrib-
uted to constitutive expression of the co-stimulatory molecules
B7.1 and B7.2 (21-23). Further, B-1a cells have been shown to
induce pro-inflammatory Th17 cell differentiation and to generate
immunosuppressive IL-10 (23, 24). Thus, in addition to antibody
production, B-1a cells can influence other elements of the immune
system in both positive and negative ways.

B-1a cells express unique signaling and proliferative character-
istics, which seem in some ways hyperresponsive in comparison
to B-2 cells but in other ways hyporesponsive. B-1a cells display
constitutive expression of activated signaling mediators includ-
ing ERK, NF-AT, and STAT3 (25, 26), which in B-2 cells require
stimulation for activated expression (27). B-1a cells have also been
shown to proliferate in response to treatment with phorbol ester
as a single agent, in contrast to B-2 cells, which only respond to
phorbol myristate acetate or phorbol dibutyrate in conjunction
with a calcium ionophore (28). PMA responsiveness in B-1a cells
is associated with rapid induction of cyclin D2 and activation of
RB-phosphorylating cyclin D3-cdk4 complexes, neither of which
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occur in PMA-treated B-2 cells (29, 30). However, despite acti-
vated signaling mediators at rest and despite hyperresponsiveness
to PMA, BCR signaling fails in B-1a cells — NF-kB is not induced
nor is proliferation stimulated.

BCR SIGNALING IN B-1a CELLS

Despite the failure of BCR engagement to induce NF-kB activa-
tion in B-1a cells (31, 32), stimulation with LPS or PMA succeeds
just as in B-2 cells (31), suggesting that key components involved
in the pathway proximal to induction of this transcription factor
are not lacking. Several previous studies have sought to determine
why B-1a cells have an attenuated response to BCR cross-linking
as compared to B-2 cells when the basic NF-kB machinery appears
intact. The negative regulatory receptor CD5 and the tyrosine
phosphatase SHP-1 were reported to play a role in the failure of
B-1a cells to respond to BCR ligation. It was demonstrated B-1a
cells from CD5 deficient mice could respond to BCR ligation, and
SHP-1 was shown to be constitutively associated with the BCR
in a CD5-dependent manner (33). The important regulatory role
SHP-1 plays in B-1a cell development was presented in a separate
study, which demonstrated an increase in B-1a cell number in the
absence of SHP-1 and the negative regulation it provides; however,
there was no change in the ability of SHP-1 deficient B-1a cells to
proliferate in response to BCR crosslinking (34). Despite the initial
clear results demonstrating CD5/SHP-1 negatively regulates BCR
signaling in B-1a cells, it was later shown both B-1a (CD5") and
B-1b (CD57) cells fail to respond to BCR ligation (35), raising
questions about the role of CD5 and associated molecules. These
results suggest some other element is responsible for the lack of
B-1a cell responsiveness to BCR engagement, whereas the extent
of CD5 involvement remains uncertain.

The src family kinase Lck, which characterizes T cells, was
reported to be unexpectedly expressed in B-1a cells and respon-
sible for defective NF-kB activation in response to BCR ligation
(36). Dal Porto et al. reported peritoneal B-1a cells express Lck and
are defective in BCR signaling whereas splenic B-1a cells do not
express Lck and are not defective in BCR signaling (36). However,
results published both before and after this study question the role
of Lckin B-1 cells. An early investigation of kinase family members
in peritoneal B-1a cells verified the presence of other src-kinases
such as Lyn, Blk, Hck, and Syk, but not Lck (32). Subsequently
Frances et al. re-examined Lck expression and found an absence
of Lck in B-1a cells purified by various methods. However, despite
the lack of Lck expression found in B-1a cells, defective BCR sig-
naling was still observed (37), suggesting Lck expression does not
correlate with B-1a cell hyporesponsiveness to BCR crosslinking.
A few years later, it was shown by a separate group that splenic B-
1a cells lacking Lck are, in fact, hyporesponsive to BCR signaling
(38), unlike the finding by Dal Porto et al., which suggested splenic
B-1a cells respond normally to BCR cross-linking (36). Together
these studies do not support a role for Lck in the lack of NF-kB
activation and proliferation by BCR-stimulated B-1 cells.

The inhibitory receptor Siglec-G has been shown to be highly
expressed and functional in B cells (39). Siglec G plays an impor-
tant role in B-1a cell signaling and over-expression inhibits Ca?*
signaling. As with SHP-1 deficiency, Siglec G deficiency enhances
B-1a cell development and leads to an increase in B-1a cell number;

these B-la cells manifest enhanced signaling (39). Therefore,
Siglec-G plays an important role in B-1 cell signaling and devel-
opment but no clear or distinct role has been shown for Siglec G
in inhibiting NF-kB activation and/or proliferation in response to
BCR crosslinking.

It is important to recall the B-cell receptor complex does not
function alone but is associated with additional signaling proteins,
which include CD19, CD21, and CD81. These associated proteins
are collectively termed the B-cell receptor co-complex, and greatly
enhance the signal received after antigen binding to the BCR com-
plex. When the BCR binds antigen coated with the complement
component C3d, the complement receptor CD21 binds C3d result-
ing in activation of CD19 along with the BCR (40). Activation of
the CD19/BCR co-complex enables B cells to respond to signifi-
cantly less (10100 fold less) antigen as compared to B cells lacking
CD19 (41, 42).

CD19 is phosphorylated and activated by Lyn, a src family
kinase; in turn CD19 amplifies Lyn activation and enhances acti-
vation of other src family kinase members. Subsequently Vav
proteins are phosphorylated (43, 44). Lyn also serves an essen-
tial regulatory role by phosphorylation of cell surface receptors
shown to negatively regulate the BCR response, such as CD22 (45).
CD19 phosphorylation leads to activation of phosphatidylinosi-
tol 3-kinase (PI-3K), which phosphorylates inositol phospholipids
leading to initiation of several signaling cascades via phospholipase
C (PLC) and/or Ca’* activation (46).

It is interesting to note B-1a cells express higher levels of CD19
than B-2 cells (47) and their development is greatly impaired in
the absence of CD19 (48, 49). It has been shown BCR-induced
CD19 signaling in B-1 cells is different from that of B-2 cells.
In particular, following BCR engagement, B-1 cells experience
shorter duration of CD19 phosphorylation and less PI-3K associ-
ated with phosphorylated CD19 (35). Both splenic and peritoneal
B-1 cells overexpress Lyn and manifest impaired CD19 signal-
ing; furthermore, Lyn inhibition allows B-1 cells to recover some
responsiveness to BCR ligation (38). In addition, in Lyn"P’"P mice
that express constitutively active Lyn, splenic B-2 cells fail to pro-
liferate in response to BCR ligation and thus acquire a signaling
deficiency that parallels unmanipulated B-1 cells (50). Together
these results suggest the unusual signaling characteristics of CD19
and Lyn may play an important role in the failure of B-1 cells to
respond to BCR ligation. This may be exacerbated by the decreased
levels of Vav1 and Vav2 in B-1 as compared to B-2 cells.

These studies over the past 20 years clearly demonstrate signal-
ing differences between B-1a and conventional B-2 cells and point
toward signaling in these two distinct subsets as being differentially
regulated. However, a clear conclusion as to why B-1a cells do not
activate NF-k B or proliferate in response to BCR cross-linking has
not emerged. Here we synthesize a unifying hypothesis for the
failure of B-1a cells to respond to BCR ligation. This hypothesis
is placed in the context of the unique characteristics B-1a cells
display.

B-1a CELL SIGNALING THROUGH THE BCR IS NOT DEFECTIVE
The loss of NF-kB activation and proliferation in response to BCR
ligation suggests B-1 cells have complete or partial loss of certain
signaling pathways (deletion model). However, signaling through
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the BCR of B-1a cells is not completely blocked. B-1a cells acti-
vate ERK, JNK, and NF-AT in response to BCR cross-linking (26).
Moreover, BCR-induced activation has also been observed in more
membrane proximal mediators. Recently we have shown intact
functioning of key signaling mediators by demonstrating: (1) nor-
mal phosphorylation/activation of Syk and PLCy2 (32) after BCR
ligation, and (2) a src kinase requirement for BCR-induced Syk and
PLCy?2 activation (51). Furthermore, we and others have observed
calcium mobilization after BCR ligation in B-1a cells, which is
comparable in degree to conventional B-2 cells [data not shown
and (34, 52)]. Together these results demonstrate signaling in B-1a
cells is functional and capable of activating membrane proximal
mediators after BCR ligation. Despite seemingly normal function-
ing of membrane proximal mediators after BCR ligation, the fact
remains that NF-kB is not activated in B-1a cells.

NE-kB activation occurs once NF-kB subunits are released from
association with IkB, which allows the subunits to translocate into
the nucleus (53). In previous reports the lack of NF-«B activation
in response to BCR cross-linking in B-1a cells was demonstrated
by an absence of nuclear expression of NF-kB components and
a lack of kB-binding activity in nuclear extracts (31). However,
the activation of mediators leading to NF-kB induction, such as
IKKa/B phosphorylation or IkBa degradation have not been eval-
uated in B-1a cells after BCR ligation. Since membrane proximal
signaling in B-1a cells has been shown to operate normally after
BCR ligation, these more distal signaling events specific for NF-kB
induction were assessed for activation status after BCR ligation. We
found a large amount of phosphorylated IKKa/f protein detected
at 30 min in conventional B-2 cells (Figure 1). Conversely, only a
small amount of phosphorylated IKKa/B protein was detected at
30 min in B-1a cells. A dramatic decrease in IkBa protein occurs
in B-2 cells after 90 min of anti-IgM stimulation (Figure 1). In
contrast, only a small amount of IkBa degradation is observed in
B-1a cells after 90 min of anti-IgM stimulation. These results show
both phosphorylation of IKKa/f and the degradation of IkBa
observed in B-1a cells is considerably less than that seen in B-2 cells
stimulated with anti-IgM. Insufficient phosphorylation of IKKa/f
and/or IkBa could prevent the translocation of NF-kB subunits
into the nucleus. These results suggest the lack of NF-kB activa-
tion in B-1a cells after BCR ligation may originate with abnormal
induction and/or regulation of phosphorylated IKKa/p and/or
IkBa. If B-1a cells are still able to signal yet not able to activate
NF-kB, it is possible NF-kB induction is being actively blocked,
perhaps because proper phosphorylation of IKKa/f and/or IxBa
is obstructed (inhibition model).

REGULATION OF BCR-INDUCED SIGNALING LEADING TO
NF-xB ACTIVATION IN B-1a CELLS

PHOSPHATASES

Our previous work emphasizes the role of phosphatases in reg-
ulating B-1a cell signaling. We examined the origin of consti-
tutively phosphorylated ERK in B-1a cells. Despite phosphory-
lation of ERK, upstream signaling mediators such as Syk and
PLCy2 are not phosphorylated. However, we found after addi-
tion of tyrosine phosphatase inhibitors B-1a cells accumulated
large amounts of phosphorylated Syk and PLCy2, which did not
occur with conventional B-2 cells. Moreover, this phosphorylation

was blocked when B-1 cells were pre-treated with a src kinase
inhibitor (51). These results suggest that signaling of upstream
mediators by src kinases is taking place constitutively in B-1a
cells, but rapid dephosphorylation prevents accumulation of phos-
phorylated intermediates. In other words, elevated phosphatase
activity interferes with some, but not all, signaling events and raises
the possibility that differential phosphatase expression and/or
increased phosphatase activity could be playing a role in blocking
anti-Ig-induced NF-kB induction in B-1a cells.

To test this we assessed IkBa degradation in anti-Ig-stimulated
B-la and B-2 cells pre-treated with the tyrosine phosphatase
inhibitor sodium orthovanadate. Results are presented in Figure 2.
These results show in the native state, as expected, IkBa is degraded
in B-2 cells after anti-Ig stimulation for 30 and 90 min, whereas
little to no IxBa degradation is seen in B-1a cells similarly stimu-
lated by anti-Ig. However, in the presence of tyrosine phosphatase
inhibition, IkBa is degraded in B-1a cells stimulated with anti-
Ig, just as it is in unmanipulated B-2 cells. These results strongly
suggest the failure of BCR-induced NF-kB activation in B-1a cells
is the result of increased tyrosine phosphatase expression and/or
activity, or is the result of insufficient phosphatase inactivation.

B2 Cells B1 Cells
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Actin[' T e e e e 0-]

FIGURE 1 | I-kappa-B-alpha degradation and IKKalpha/beta
phosphorylation analysis in response to anti-lgM in B-1a cells. Sorted
peritoneal B-1a and splenic B-2 cells were treated with anti-IgM (15 wg/ml)
for the times indicated at 37°C. Afterward, the cells were washed, pelleted,
lysed, and then used for western blot analysis. Results shown are
representative of three independent experiments.
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FIGURE 2 | IkBa degradation in B-1a and B2 cells in the presence or
absence of phosphatase inhibition. Sorted B-1a and B-2 cells were
pre-treated for 1 h with cycloheximide (560 wM). Afterward, cells were either
treated with or without anit-IlgM (15 g/ml) for 30 or 90 min, as indicated, or
cells were cultured with 2 mM sodium orthovanadate (Na;VO,) for 15 min
and then treated with anti-lgM for 30 or 90 min. Cells were collected,
supernatants discarded, and pellets frozen at —20°C until lysed in NP-40
lysis buffer and used for western blot analysis of IkBa. Results shown are
representative of two independent experiments.
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Previous reports have attributed inhibition of NF-kB activation
in other cell types to the activity of phosphatases, which is consis-
tent with the effect of tyrosine phosphatase inhibition discussed
above (Figure 2). It has been shown NF-kB activation can be
affected by oxidation and/or reduction events (54, 55). Normally
the cytosol is a reducing environment due to the presence of mol-
ecules such as glutathione (56), which is favorable for the activity
of protein-tyrosine phosphatases (PTP). Oxidizing agents inacti-
vate PTP by oxidizing the cysteine residue in the active site (57).
Oxidizing agents, including reactive oxygen species (ROS) such
as H202, have been shown to be produced inside lymphocytes
where they regulate signaling by inhibiting PTP (55). Regardless
of the stimulus, the cellular redox environment appears to play a
role in the regulation of tyrosine phosphorylation events leading
to activation of NF-kB (54).

The exact mechanism of how phosphatases regulate NF-kB
activation is still not fully understood. It could be hypothesized
that phosphatases regulate NF-kB activation by directly dephos-
phorylating IKKa/B thereby blocking phosphorylation of IkB
proteins. Alternatively, phosphatases could act on upstream medi-
ators specific to NF-kB activation such as NF-kB inducing kinase
(NIK), which phosphorylates IKKa. An example of this type of
regulation is provided in a study showing IL-1B-induced activa-
tion of NF-kB is dependent upon NIK activation, which requires
ROS mediated inhibition of phosphatases for activation (58). Such
studies demonstrate the role phosphatase activity and the redox
environment can play in controlling NF-kB activation in response
to various stimuli, which parallels the results shown here where
phosphatase inhibitors cleared the way for anti-Ig-induced acti-
vation of NF-«kB in B-1a cells (Figure 2). Further investigation
into phosphatase expression and activity is likely to help unravel
the mechanism which prevents NF-kB activation in B-1a cells in
response to BCR ligation.

HSP70

The HSP70 family of proteins plays a role in facilitating protein
folding and preventing aggregation in the ER (Grp78/Bip) and
cytosol (HSC70 and HSP70) (59). High levels of protein within
cells or stress may cause an increase in HSP expression as in the case
of the unfolded protein response (60, 61). B-1a cells are constantly
producing natural antibody and have nearly twice as much pro-
tein per cell than B-2 cells; in keeping with this, we found levels of
HSP70 gene expression are higher in B-1a cells as compared with
B-2 cells (Figure 3). Interestingly, HSPs have been shown to block
the NF-kB pathway through inhibition of IKK or by increasing
phosphatase activity leading to a decrease in IkBa phosphoryla-
tion (62). It is feasible there is enough overall decrease in IkBa
degradation produced by the increased level of HSP70 or related
proteins in B-1a cells to impair NF-k B translocation to the nucleus.
Other chaperones such as HSP27 and clusterin have also been
shown to inhibit NF-kB activation (59); however the expression
levels of these chaperones have not been examined in B-1a and B-2
cells. In addition, the expression levels of cytosolic or ER-resident
HSP70 family members have not been examined. Further analysis
is required to determine the site of elevated HSP70 expression in
B-1a cells, because only cytosolic HSP70 would result in inhibition

HSP70

0.0015+

0.00104

0.0005+

Relative Expression

0.0000-

B1 B2

FIGURE 3 | HSP70 expression analysis. Sorted naive peritoneal B-1a and
splenic B-2 cells were used for isolation of MRNA and subsequent cDNA
synthesis after DNAse | treatment. HSP70 mRNA expression was
assessed using semi-quantitative PCR. Results are representative of three
independent experiments.

of NF-kB. HSP70 remains an important candidate for modulation
of B-1a cell NF-kB induction.

IL-10

B-1 cells have long been associated with IL-10 expression and
secretion, and although B-1la and B-2 cells secrete IL-10 after
antigenic stimulation (27), only B-1 cells secrete IL-10 sponta-
neously (24). Interestingly, it has been shown that IL-10 inhibits
TNF-induced activation of NF-kB by preventing IKK activity and
DNA binding of the NF-kB subunits (63). Further, IL-10 as well
as IL-2 and IL-5 have been shown to regulate expression of cer-
tain phosphatases (64, 65). Therefore, it is possible that induced
and/or constitutively secreted IL-10 in B-1 cells contributes to dif-
ferences in phosphatase expression and/or activity in B-1a cells as
compared to B-2 cells.

DISCUSSION

BCR mediated signaling in B-1a cells functions normally in terms
of phosphorylation of membrane proximal mediators such as
PLCy2 (51), Syk (51), and Ca2+ mobilization (34). While these
findings illustrate functional membrane proximal BCR signaling,
IKKap phosphorylation and IkBa degradation in response to BCR
stimulation is impaired in B-1a cells (Figure 1). However, IkBa
degradation is rescued if B-1a cells are pre-treated with the tyrosine
phosphatase inhibitor, sodium orthovanadate (Figure 2). Collec-
tively, these results suggest signaling in B-1a cells is differentially
regulated by phosphatases, as compared to B-2 cells.

Phosphatase activity has been shown to play a role in reg-
ulating the activation of NF-kB (54, 58). Reduction/oxidation
events within the cell, particularly generation of ROS, can reg-
ulate phosphatase activity (55, 57). If high levels of phosphatases
are controlling BCR-induced signaling in B-1a cells and ROS play
a role in controlling phosphatases, two questions arise: (1) what
regulates expression of phosphatases in B-1a cells; and, (2) how
do signals derived from LPS and CD40L generate enough ROS,
or bypass the need for ROS, to allow NF-kB activation whereas
BCR ligation fails to do so? The unique characteristics of B-1a
cells (summarized in Figure 4) may relate to these issues.
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FIGURE 4 | Signaling in B-1a cells. B-1a cells constitutively secrete IgM
and IL-10 without prior stimulation. In addition, B-1a cells have constitutive
levels of activated ERK, STAT3, and NF-AT, yet are not able to activate NF«B
in response to BCR ligation. It has been shown constitutive ERK activation
in B-1 cells is the result of chronic signaling through the BCR (51). The
constitutive ERK activation was shown to be dependent upon src kinases,
PI-3K, Syk, and PLCy2, which are heavily outlined in the illustration.
Inhibition of PI-3K or Syk also blocked the constitutive levels of CD86 on
B-1a cells, which is known to play an essential role during allogeneic
stimulation of T cells (23, 51). All mediators outlined in a dashed gray line
may play a role in signal transduction leading to constitutive ERK activation
but have not been tested. Phosphatase activity, denoted as PTR, has been

shown to control phosphorylation of Syk and PLCy2 differentially in B-1a
cells as compared to B2 cells (51). In addition, inhibition of phosphatase
activity in B-1 cells was shown, Figure 2, to allow [kBa degradation in B-1a
cells after BCR ligation. Therefore, PTP activity in B-1a cells inhibits NF-xB
activation by an unknown mechanism. It is hypothesized that this
mechanism involves HSP70 and IL-10, which were both shown to be
expressed at a higher level in naive B-1a cells as compared to naive B2 cells,
Figure 3 and Ref. (24). Furthermore, it has been shown that inhibition of
constitutively active Lyn allowed for partial recovery of B-1a cells’
responsiveness to BCR ligation (38). In addition, suboptimal Vav levels in
B-1a cells (35) may not be sufficient for the production of ROS, which are
necessary to inhibit phosphatases to allow activation of NF«kB.

First, HSP70 and IL-10 can both play a role in influencing
the expression of phosphatases (62—67). Here we demonstrated
HSP70 is highly expressed in naive B-1a cells as compared to B-2
cells (Figure 3). HSP70 has been shown to inhibit NF-kB signal-
ing by inducing phosphatase activity and by directly interacting
with IKKy, thereby disrupting the IKKy protein from binding to
the IKKap complex, which renders it inactive (62, 66—68). It is
possible one or both of these mechanisms operates in B-1a cells
thereby blocking NF-kB activation after BCR ligation. However,
the over-expression of HSP70 may merely reflect an increased need
for chaperones in B-1a cells due to their continuous secretion of
IgM. Furthermore, IL-10 is expressed in naive B-1a cells but not in
naive B-2 cells (24). IL-10 has also been shown to inhibit NF-kB
activation by preventing IKK activity (63) and has been shown
to regulate the expression of certain phosphatases (64, 65). These
are just two examples of how phosphatases might be differentially
regulated in B-1a cells as compared to B-2 cells.

Secondly, the reason for lack of NF-kB activation in response to
BCR ligation yet normal activation in response to CD40L or LPS
may lie in the difference in signal strength delivered by these differ-
ent stimuli. Perhaps a stronger signal is required, which may come
from activation of receptors such as a toll-like receptor (TLR) or
CD40. This type of additional signal requirement for activation of
lymphocytes via inactivation of phosphatases has been previously
suggested for B-2 cells (55). Further, it has been demonstrated
B-1 cells proliferate in response to BCR ligation if the receptors
are hyper-crosslinked (35). It may be that B-1a cells are relatively
“exhausted” through tachyphylaxis as a result of chronic signaling
(51) and thus require an unusually strong signal when delivered
through the BCR as opposed to TLR or CD40. The high levels
of constitutively active Lyn in B-1la cells may also be responsi-
ble for the requirement of an unusually strong signal through the
BCR as the constitutively active Lyn might be activating inhibitory
receptors such as SHP-1 and SHIP-1 (38).
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We propose a certain level of phosphatase inactivation by ROS is
required for full B-1 cell activation to occur. BCR cross-linking can
cause an increase in ROS production, which can inactivate phos-
phatases thereby allowing signaling to propagate through the cell.
After BCR ligation in B-1a cells NF-kB is not activated. Therefore,
we hypothesize phosphatase activity must not be appropriately
inhibited after BCR ligation to allow for NF-kB activation. Nor-
mally, ROS are generated by NADPH oxidase, which is activated
by signal transduction via Rac or PKC (55, 69). Rac is a GTPase
activated in B cells via the guanine nucleotide exchange factor Vav
(70). Vav is recruited by CD19 and phosphorylated by Lyn (43).
A few years ago it was reported the lack of proliferation to BCR
cross-linking by B-1 cells is the result of defective CD19 signaling,
which is due to a reduced level of Vav proteins in B-1 cells (35).
The essential role of the Vav proteins is further demonstrated in
B-2 cells deficient in Vav, which show no activation of NF-kB in
response to BCR ligation (35). These results combined with the
results presented here and Reth’s model of lymphocyte activation
(55) suggest there is a lack of sufficient levels of Vav proteins in B-1
cells to activate Rac. Insufficient Rac activation would not allow for
necessary ROS production through NADPH oxidase to overcome
the phosphatase activity regulating NF-kB components. There-
fore, a second signal or stronger signal is necessary in B-1 cells for
phosphatase inactivation.

HYPOTHESIS

In synthesizing previous reports and new data presented here, we
suggest a new hypothesis for the lack of NF-kB activation and
proliferation in B-1a cells after BCR ligation. We summarize this
hypothesis in Figure 5.
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FIGURE 5 | Differences in Vav proteins, IL-10, and/or HSP70 expression
between B-1a and B2 cells lead to the inability of B-1a cells to activate
NF-kB and proliferate after BCR ligation. It is hypothesized that B-1a cells
have increased levels or differential expression of phosphatases as
compared to B2 cells, which could be at least partially the result of the
increased basal expression of 110 and/or HSP70 seen in B-1a cells but not
B2 cells. Furthermore, suboptimal Vav levels in B-1 cells (35) may not be
sufficient for the production of ROS, which are necessary to inhibit
phosphatases to allow activation of NF«B after BCR ligation.
Overexpression of the src kinase Lyn may also play a role in the
non-response of B-1a cells to BCR ligation, perhaps by phosphorylation of
inhibitory receptors. The mechanism through which Lyn contributes to B-1a
cell non-responsiveness to BCR ligation is not clear; however, it has been
demonstrated blocking Lyn activity can allow B-1a cells to respond to
respond to BCR crosslinking.

BCR

B-1a cells are unable to activate NF-kB or proliferate after BCR
cross-linking due to increased phosphatase abundance and/or
activity, which could be a result of basal expression of IL-10 and/or
HSP70. The increased phosphatase abundance and/or activity is
not able to be overcome by BCR ligation alone due to constitu-
tively active Lyn and/or a lack of Vav protein expression in B-1
cells, which does not allow for proper production of ROS needed
to inhibit the phosphatases present in B-1 cells.

FUTURE DIRECTIONS

A remaining question revolves around the nature of the phos-
phatase activity opposing BCR signaling in B-1a cells. Signaling
deficiencies in antigen-experienced B cells, including germinal
center B cells (71) and anergic B cells (72) have been attrib-
uted to SHP-1 and SHIP-1 respectively. Like anergic B cells
(which express low levels of CD5) B-1a cells are thought to be
antigen-experienced, so SHP-1 and SHIP-1 are candidates for
BCR regulation here as well, although other possibilities, such
as DUSP phosphatases, may be involved. Although elucidating
the source of B-1a cell phosphatase activity is important, similar
attention should focus on understanding the way in which phos-
phatase activity is normally overcome, a process that fails in B-1a
cells.
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