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Hematological malignancies (HM) treatment improved over the last years resulting in
increased achievement of complete or partial remission, but unfortunately high relapse
rates are still observed, due to remaining minimal residual disease.Therefore, sustainment
of long-term remission is crucial, using either drug maintenance treatment or by boosting
or prolonging an immune response. Immune system has a key role in tumor surveillance.
Nonetheless, tumor-cells evade the specific T-lymphocyte mediated immune surveillance
using many mechanisms but especially by the down-regulation of the expression of HLA
class I antigens. In theory, these tumor-cells lacking normal expression of HLA class I
molecules should be destroyed by natural killer (NK) cells, according to the missing-self
hypothesis. NK cells, at the frontier of innate and adaptive immune system, have a central
role in tumor-cells surveillance as demonstrated in the setting of allogenic stem cell trans-
plantation. Nevertheless, tumors develop various mechanisms to escape from NK innate
immune pressure. Abnormal NK cytolytic functions have been described in many HM. We
present here various mechanisms involved in the escape of HM from NK-cell surveillance,
i.e., NK-cells quantitative and qualitative abnormalities.
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INTRODUCTION
The natural killer (NK) cells are central players in innate immunity
particularly regarding the surveillance against malignant tumors
(1, 2). NK role in tumor-cells clearance is proved by allogenic
stem cells transplantation, since a better engraftment and a low
relapse rate are observed when the graft NK inhibitory recep-
tors mismatch with recipient HLA molecules (3) (Figure 1). The
triggering event of NK-cells activation and killing of target cells
results from a balance between activating and inhibitory sig-
nals sent by membrane receptors that either enhance or block
the NK-mediated cytotoxicity (4). Inhibitory signals arise from
interaction between HLA-specific inhibitory receptors, as the
killer immunoglobulin-like receptors (KIR), NK group protein
2A (NKG2A), or Immunoglobulin-like transcript 2 (ILT-2) with
HLA class I molecules, whereas the absence or abnormal expres-
sion of the later molecules induces NK-cells cytotoxicity (5). The
down-regulation of HLA class I molecules is an immune escape
mechanism frequently used by tumor cells (6) that, accordingly,
should not be recognized by the T-lymphocyte receptor (TCR).
The absence of normal HLA class I molecule on tumor cells should
lead to NK-cells activation, more efficiently when co-stimulatory
molecules and ligands for NK activating receptor are present
at tumor cell surface. The natural cytotoxicity receptors (NCR)
NKp46/NCR1, NKp30/NCR3, and NKp44/NCR2 (7), NKG2D,
DNAM-1 and also co-receptors such as 2B4/CD244 and NTBA,
play a central role in NK activation. Once activated, NK lym-
phocytes kill tumor cells via FcgRIIIA (CD16) which can trigger

antibody-dependent cellular cytotoxicity (ADCC) on encounter-
ing target cells opsonized with IgG, via the Fas/Fas-L pathway and
via cytotoxic granules (perforin/granzyme) secretion (1, 8).

Defects in NK-cell cytotoxicity have been described in most
hematological malignancies (HM) (9–12) (Table 1). Interest-
ingly, tumor-cells develop various escape mechanisms to NK-
cell surveillance and contribute to the dysfunction of NK-cell
cytotoxicity (4).

NK-CELLS DYSFUNCTIONS IN HEMATOLOGICAL
MALIGNANCIES
QUANTITATIVE ABNORMALITIES
The first mechanism explaining tumor escape is the quantitative
abnormalities of NK cells. In myelodysplastic syndrome (MDS)
patients, decreased NK-cell cytolytic functions correlate with a
low number of circulating NK cells and a high level of sIL-2R (13,
14). In chronic myelogenous leukemia (CML), functional NK-cell
deficiency can be reversed in vitro by IL-2 (15), but this effect is
progressively lost while a progressive decrease in NK-cell number
is observed (16). In Philadelphia (Ph1)-negative myeloprolifera-
tive syndrome (MPS), NK cytotoxic activity is decreased, mostly
in idiopathic myelofibrosis (IMF) patients. The percentage of NK
cells is decreased in IMF and increased in polycythemia vera (PV)
(17). We have confirmed that the percentage and absolute num-
ber of NK cells are significantly increased in PV, but we failed to
detect any abnormalities in the expression of activating NK-cell
receptors or cytotoxic functions (personal data, C. Sanchez). An
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FIGURE 1 |The effect of KIR/HLA class I mismatch in patients
undergoing allogenic stem cells transplantation (HSTC).The main
challenge in HSTC is to keep the balance between conserving the graft
versus leukemia (GvL) effect on the one hand and preventing risk of relapse
on the other. (A) Killer cell immunoglobulin-like receptor (KIR) of donors NK
cells is engaged by corresponding HLA ligand, which inhibits NK-cell function.

Donor NK cells are non-alloreactive and do not kill recipient’s blasts, which
leads to the relapse of patient. (B) The concept and recognition of KIR-ligand
incompatibility (also known as KIR-ligand mismatch) has important
implications. KIR-mismatch is an independent predictor of survival in patients.
Graft versus tumor NK-cell alloreactivity reduces the risk of leukemia relapse,
and markedly improves event-free survival.

increase in the total number of NK cells in the peripheral blood
has also been described in chronic lymphocytic leukemia (CLL)
but still associated with defective cytolytic functions (18).

ALTERED ACTIVATING RECEPTORS PROFILES
In acute myeloid leukemia (AML) the down-regulation of acti-
vating receptors NKp30/NCR3 and NKp46/NCR1 correlates with
defective NK-cell cytotoxicity and poor leukemia prognosis (9, 19).
In patients attaining complete remission (CR) after chemother-
apy, NKp46/NCR1 expression returns to normal levels while
patients who do not achieve CR or who relapse maintain
abnormal NCR expression (9, 19). The defect in NCRs expres-
sion could be potentiated by the low expression of NCR and
NKG2D ligands by leukemic cells (20–22). Down-regulation of
the NK activating receptors/co-receptor DNAM-1, 2B4/CD244,
and CD94/NKG2C have also been reported in AML (23, 24).
Leukemic blasts that express DNAM-1 ligands induce DNAM-
1 down-regulation at the NK-cell surface (25), thus impending
NK-cell functions.

In acute lymphoblastic leukemia (ALL), expression of the
NKG2D activating receptor ligands MICA/B was only observed in
NK sensitive T-ALL cell line, while NK-resistant B-ALLs did not
express detectable amounts of MICA/B (26). Deficient engage-
ment of other activating receptors may also contribute to ALL
resistance to NK lysis, since B-ALL cells lose or express low lev-
els of several other NK activating ligands such as UL-16 binding
proteins (ULBPs), PVR (polio virus receptor, CD155), Nectin-2
(CD112), or CD48 (27).

In MDS, a pre-leukemic stage, Epling-Brunette et al. (13)
have shown that expression of NKp30/NCR3 and NKG2D was

decreased, in contrast with the data of Kiladjian et al. (28); this
discrepancy could be related to the heterogeneity of MDS patients.

In CML patients, Boissel et al. (29) reported high serum
sMICA levels and weak NKG2D expression on NK cells, that
correlate with low NK-cell cytotoxicity capacities. Imatinib mesy-
late, the first inhibitor of tyrosine kinase used in CML, increases
NKG2D expression and decreases MICA protein production and
release, thus contributing to normal NK cytotoxicity through the
restoration of a functional NKG2D signaling (29).

Monoclonal gammopathy of undetermined significance
(MGUS) is a common disorder of aging and a precursor lesion
to multiple myeloma (MM). In MGUS, tumor-cells express high
levels of MICA, whereas low levels of sMICA are detected in
peripheral blood (30). This explains the capacities of NK cells to
kill MGUS tumor cells by interaction between MICA and NKG2D.
Conversely, MM patients present high plasma level of sMICA
while tumor-cells express low level of MICA, thus impending NK
stimulation via NKG2D (31). This reveals that the alterations in
the NKG2D pathway signaling are associated with the progres-
sion from MGUS to MM (30, 32). In peripheral blood from
patients with MM a normal expression of the NCRs and NKG2D
is observed, while 2B4/CD244 and the low-affinity Ig- Fc recep-
tor CD16 display significantly weaker expression in comparison
with healthy donors (31). Nonetheless, when NK are studied at
the site of tumor location, i.e., bone marrow, (33) a drastic down-
regulation of three major activating NK receptors (NKp30/NCR3,
NKG2D, and 2B4/CD244) is observed in comparison with bone
marrow from healthy donors (34). This suggests that some NK
abnormalities may be underestimated if only peripheral blood is
studied.
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Table 1 | Mechanisms of immune escape and drugs used with their effects on NK cells in hematological malignancies.

Hematological

malignancies

Principal mechanisms of escape References Principal class of

drugs used

Effects of drugs

on NK activation

References

MDS NK-cell quantitative deficiency

Elevated TNF

(13, 14, 49) Demethylating agents

IMIDs

Up-regulation of KIR and

NKG2D ligands

(76, 81)

NKp46 upregulation

AML Upregulation of HLA-I

Decrease expression of NKp30, 2B4/CD244

Production of ROS

(9, 19, 39,

40, 54)

HDACIs

Histamine dihydrochloride

All-trans retinoic acid

Monoclonal antibody

(IPH2101)

Upregulation of MICA/B

expression

(65, 67, 72,

73, 84, 85)

Suppress ROS

production

Promote NK-cells

cytotoxicity

CLL Upregulation of HLA-I low level of MICA

or ULBP

(18, 37) Monoclonal antibody Mediate NK-cells

cytotoxicity

(88)

MM Production of sMICA/sMICB

Weak expression of CD16

(30, 31) IMIDs

Proteasome inhibitor

IPH2101

NKp46 upregulation

NKG2D ligand

upregulation

(79, 82–84,

86)

CML Production of sMICA and weak expression

of NKG2D

(29) Tyrosine kinase inhibitor sMICA down-regulation

and NKG2D upregulation

(29)

ALL Low production of MICA/B and ULBP (26, 27, 41)

Down regulation of HLA-A and HLA-Bw6

MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; MM, multiple myeloma; CML, chronic myelogenous leukemia;

ALL, acute lymphoblastic leukemia; s/MICA/B, soluble/stress-induced molecules human class I-like molecules A and B; ULBPs, UL-16 binding proteins; ROS, reactive

oxygen species; KIR, killer immunoglobulin-like receptors; PDGF, platelet-derived growth factor; HDC, histamine dihydrochloride; IMIDs, immune-modulatory drugs;

HDACIs, Histone deacetylase inhibitors.

In CLL, NK cells have weak cytotoxic functions which can be
restored by stimulation with recombinant IFN-γ or IL-2 (35). We
failed to detect a difference in NCR expression between patients
and age-matched healthy donors (36), but we found a correlation
with abnormal activating molecule expression and poor progno-
sis factors. In CLL decreased NK functions could be explained in
part by absent or low level of MICA or ULBP (18, 37) at CLL
lymphocyte cell surface, thus impeding NKG2D engagement.

ABNORMAL KIRs PHENOTYPE AND INHIBITORY MOLECULES
Killer immunoglobulin-like receptor-mismatch in allogenic stem
cells transplantation improves the disease-free survival in AML
(38). In fact, NK-cell cytotoxicity is down-regulated by the engage-
ment of HLA-specific inhibitory receptors, including KIRs and
CD94 and NKG2A/B heterodimers. The analysis of KIR phenotype
in AML patients shows that the frequency of particular inhibitory
KIRs in association with their putative HLA class I ligands is sig-
nificantly increased compared to healthy donors (10, 39, 40). This
supports the hypothesis that AML blasts escape from immune
surveillance according to the dominance of inhibitory over acti-
vating KIR signals. In ALL, the resistance of B-cell precursors to
cytotoxicity is explained by the interaction between HLA-G and
KIR2DL4 (26). Demanet et al. (41) have observed in ALL and CLL
a selective down-regulation of HLA-A and HLA-Bw6 associated
with HLA-Bw4 preservation, which provided an escape mecha-
nism from NK-cell immune surveillance. Maki et al. (18) reported

in CLL cells an increased expression of HLA-G1, a class I molecule
that engages NK-cell inhibitory molecules and which has for lig-
and p49/KIR2DL4/CD158d (expressed on NK cells and a fraction
of T cells), ILT-2 [expressed on NK, T, B cells, dendritic cells (DC),
and monocytes], and ILT-4 [expressed on antigen-presenting cells
(APC)] (42).

TUMOR ENVIRONMENT AND ROLE OF CYTOKINES
One of the strategies used by tumor cells having an effect on
NK-cell function is the production of inhibitory molecules, which
decrease NK-cells number and inhibit NK-cell activation. Increas-
ing evidence supports the role of the tumor microenvironment
in conferring drug resistance, a major cause of relapse and incur-
ability of cancers. Tumor microenvironment includes tumor-cells
contact and interaction, but also production of soluble factors,
which provide signals for tumor growth and survival or inhibition
of NK.

ROLE OF CYTOKINES AND CELLULAR LIGANDS
Several cytokines decrease NK-cell activation and cytotoxicity,
such as the Transforming Growth Factor beta (TGF-β). High circu-
lating TGF-β level correlates with poor prognosis in acute leukemia
(43) and is linked to reduced NK-cell activity with reduced expres-
sion of NKp30/NCR3 and NKG2D (44). TGF-β antagonizes IL-
15, a cytokine that induces NK-cell proliferation and activation.
Thus, TGF-β inhibits the expression of both NK-cell activation
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receptor molecules and components of the cytotoxic apparatus
(45, 46). Several studies have also underlined that low INF-γ
producing capacity of NK cells was correlated with loss of NK-cell
cytotoxicity (47, 48).

A physiologic concentration of platelet-derived growth factor
(PDGF) significantly inhibits human NK-cell cytotoxicity. Patients
suffering from IMF and essential thrombocythemia have signifi-
cantly elevated circulating levels of plasma PDGF. Pretreatment
of normal NK cells with concentrated PDGF-containing platelet-
poor plasma from patients with these diseases significantly inhibits
NK cytotoxicity. This inhibitory effect is reversed by neutralization
of plasma PDGF with anti-PDGF (17, 49). All these data suggest
that PDGF is probably a key factor of NK functional deficiency
in MPS.

Interaction between tumor cells and NK impairs NK-cell-
mediated cytotoxicity and thus induces tolerance to tumor inva-
sion. Up-regulation of the immunosuppressive cell surface gly-
coprotein CD200 and of soluble GITRL (glucocorticoid-induced
TNFR related protein ligand) on AML cells specifically com-
promises NK-cell anti-tumor responses (50, 51) and is a poor
prognosis factor. AML cells exert direct immunosuppressive effects
on NK cells mediated by immunosuppressive ligands or soluble
factors and induce regulatory T lymphocytes (Treg) that weaken
NK-cell responses (52). NK cells can also interact with DC lead-
ing to activation of Treg and inhibition of NK cells (53). Recently,
ligand of NKp44/NCR2 (NKp44L) was identified as an isoform
of mixed-lineage leukemia-5 (MLL5) (54). This ligand is not
detectable in the normal tissues but is present in hematopoietic,
non-hematopoietic tumor and transformed cells. The expression
of MLL5 is a good prognosis factor in AML (55). Thus we can
speculate that the prognostic value of MLL5 expression is linked
to its capacity to activate anti-leukemia NK cells.

REACTIVE OXYGEN SPECIES
Non-malignant phagocytic cells down-modulate lymphocyte
functions by producing and releasing NADPH oxidase-derived
reactive oxygen species (ROS) (56). Monocytic and myelo-
monocytic (French-American-British classification M4/M5 sub-
types) AML cells, but not cells from myeloblastic (FAB class M2) or
immature (FAB class M1) AML, produce ROS via the NADPH oxi-
dase component gp91phox, and trigger extensive apoptosis of NK
cells via a poly-[ADPribose] polymerase-1 dependent pathway,
together with a down-regulation of NKp46/NCR1. This suggests
a novel mechanism of immune evasion in myelo-monocytic and
monocytic AML (57).

MATERIAL TRANSFER DURING CELL–CELL CONTACT
Tumor membrane-derived microvesicles (tMV) are important
mediators of cell-to-cell communication. These circular mem-
brane fragments are enriched in various bioactive molecules and
directly stimulate cells as a kind of “signaling complex.” An
important mode of communication between carcinoma cells and
immune cells involves tMV, also known as exosomes, ectosomes, or
microparticles. These microvesicles carry lipids, proteins, mRNAs,
and microRNAs and travel short or long distances to deliver unde-
graded and undiluted material to other cells (58). Microvesicles

present in AML patients’ sera contain TGF-β that down-regulates
the expression of NKG2D and thus interfere with NK-cell acti-
vation. Nonetheless, IL-15 protects NK cells from adverse effects
of tMV and could thus contribute to maintain their anti-tumor
response (59). Baj-Krzyworzeka et al. (60) have observed that
tMV carry mRNA of tumor cells and transfer some of them to
monocytes and modify their activity. This type of mRNA transfer
could participate to NK inactivation and tumor escape to innate
immunity.

IMMUNOTHERAPY APPROACHES
Modulation of NK-cell function by down-regulation of recep-
tors and/or ligand corresponds to an immune escape mechanism
for tumors. Restoring the expression of activating receptors on
NK cells, or corresponding ligands on cancer cells, is an effective
approach to cancer immunotherapy in order to improve disease-
free survival after therapy. Currently, in most AML patients, the
induction treatment leads to CR, defined as microscopic disap-
pearance of leukemic disease along with the return of normal
hematopoiesis. However, many patients in CR relapse with poor
prospects of long-term survival. One of developing immunother-
apy that enhances NK-cell ability to kill tumor cells is the allogenic
transplantation after chemotherapy. In AML, a recipient of hap-
loidentical allogenic transplant with a NK HLA-specific receptor-
mismatch is associated with a favorable prognosis because this
increases the anti-leukemic graft reactivity (61, 62). Rapid recov-
ery of NK cells after hematopoietic stem cell transplantation
has been associated with a reduction in the rates of relapse and
acute graft-versus-host disease (GvHD) (63). The transfer of NK
cell from haploidentical origins into AML recipients is a potent
immunotherapy intervention that is, unfortunately, associated
with a significant transplant-related morbidity and mortality that
limit its use (64).

The use of cytokines is another therapeutic approach to
enhance NK-cell cytotoxicity. IL-2, IL-12, Il-15 (65), and IL-18
have been used in culture to increase cell cytotoxic prior to the
injection of NK cells in cancer patients (66). Another strategy
consists in restoring normal NCR expression since these mole-
cules are pivotal for the anti-leukemia response. A phase III study
in 320 AML patients has demonstrated that immunotherapy with
histamine dihydrochloride (HDC) and IL-2 decreases and delays
relapses in AML (67). HDC suppresses or inhibits ROS formation
in mononuclear and polymorphonuclear myeloid cells. This pre-
vents from oxygen radical-induced NK apoptosis, restores NK-cell
capacity to respond to IL-2, and improves NK proliferation and
production of immuno-stimulatory cytokines (56, 68–71). More-
over, in presence of HDC, cytotoxic functions of NK cells remain
intact due to the preserved expression of the activating receptors
NKG2D and NKp46/NCR1.

DNA methylation also has a key role in the control of gene activ-
ity in cancer cells. Two agents are currently used in MDS treatment:
5-azacytidine (Vidaza) and 5-aza-20-deoxycytidine (Decitabine)
(72). These two hypomethylating agents up-regulate NKG2D lig-
ands MICA/B leading to enhanced NK-cell cytotoxicity (73, 74).
Conversely we have observed the down-regulation of 2B4/CD244
in NK from AML patients treated with 5-azacytidine, that could
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have an opposite effect, i.e., cytotoxicity down-regulation (Leclerq
et al. personal data).

The immune-modulatory drugs (IMIDs) such as thalidomide
and lenalidomide are used in MM and MDS treatment and
have anti-angiogenic and anti-inflammatory properties. They also
act as IMIDs by cytokine release and activating effector cells
by enhancing ADCC and NK-cell cytotoxicity thanks to the
up-regulation of NKp46/NCR1 (75–77).

Bortezomib is a proteasome inhibitor used in MM treatment.
Physiologically, proteasome is involved in protein degradation. Its
inhibition by the drug interferes with tumor growth and with
innate immunity. Bortezomib is involved in the down-regulation
of HLA I molecules and in the up-regulation of NKG2D, TRAIL,
and DNAM ligands, thus leading to increased NK-cell cytotoxicity
against plasma cell (78, 79).

Another attractive therapeutic approach consists in blocking
the NK inhibitory receptors. A phase 1 trial has tested the IPH2101,
a fully humanized IgG4 anti-KIR monoclonal antibody, in patients
with relapsed/refractory AML (clinical trial registration num-
ber NCT01256073) and MM (clinical trial registration number
NCT00999830). IPH2101 promotes immune complex formation
and NK-cell cytotoxicity specifically against MM cell targets but
not normal cells. No evidence of autoimmunity was observed.
These findings suggest that IPH2101 is safe and tolerable and that
this approach warrants further development in MM and AML
(80–82) as we are waiting for clinical results.

Several studies revealed ADCC as one major mode of action
of antibody-based therapeutics and stimulated more interest in
how to mobilize, expand, and activate NK cells in humans (83).
In CLL, the ADCC pathway via the Fc receptor (FcgRIIIa) CD16
at surface of NK cells is pivotal in the clinical effect of mAbs such
as rituximab or ofatumumab which mediate ADCC by NK cells
(84). Second generation mAb are designed in order to maximize
both direct apoptosis and ADCC. The role of ADCC is underlined
by better clinical responses to rituximab when NK cells expressed
the high-affinity form of the FcgRIII (85, 86).

Bi-specific NK-cell engagers (BiKE) simultaneously bind
CD16α and c-Met (a receptor overexpressed in many tumors) and
thus may increase NK-cell ADCC (87).

Another type of therapeutic strategy consists in taking advan-
tage from anti-cancer drugs properties (Table 1). Chemotherapy
drugs can be separated by their ability to inhibit (such as vinblas-
tine, chlorambucil, docetaxel) or enhance (such as asparaginase,
bleomycin, doxorubicin) NK-cell-mediated killing of target cells
(88, 89). In cancer, epigenetic changes are also involved in dysreg-
ulating NK-cell ligand expression. Histone deacetylase inhibitors
(HDACIs) such as trichostatin, are epigenetic anti-cancer agents
that modulate innate immunity by the regulation of expression of
NKG2D or DNAM-1 ligands. Indeed, HDACIs increase expres-
sion of ligands of these two activating receptors, MICA/B or
PVR and Nectin-2 respectively, on acute leukemia cells (90, 91).
This suggests that epigenetic drugs make tumor cells more sen-
sitive to NK-cell-mediated lysis (92). However, it has also been
demonstrated that HDACIs suppress NK-cell cytotoxic activity by
down-regulation of NKp30/NCR3, NKp46/NCR1 (93). Thus, the
same drug can have contradictory effects on NK cells.

CONCLUDING REMARKS
The more precise and exhaustive analysis of NK dysfunction in
HM has opened the way to novel therapeutic strategies involv-
ing either specifically developed drugs/antibodies or innovative
use of “old” drugs such as IMIDs. Due to the complexity of the
immune response and the putative opposed effects of a drug on
the various partners of the immune network, data obtained by
in vitro experiments or in vivo in animal models have to be eval-
uated in clinically and biologically carefully monitored clinical
trials.
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