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The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen
processing depicts a straightforward, linear pathway: internalized antigens are converted
into peptides that load in a chaperone dependent manner onto nascent MHCII in the late
endosome, the complexes subsequently trafficking to the cell surface for recognition by
CD4+ T cells (TCD4 ). Several variations on this theme, both moderate and radical, have+

come to light but these alternatives have remained peripheral, the conventional pathway
generally presumed to be the primary driver ofTCD4 responses. Here we continue to press+

for the conceptual repositioning of these alternatives toward the center while proposing
that MHCII processing be thought of less in terms of discrete pathways and more in terms
of a network whose major and minor conduits are variable depending upon many factors,
including the epitope, the nature of the antigen, the source of the antigen, and the identity
of the antigen-presenting cell.
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THE CLASSICAL PATHWAY TAKES SHAPE
In the early twentieth century delayed-type hypersensitivity
(DTH) established itself as the mainstay for cellular immunol-
ogists, providing the launching point for many of the antigen
systems that remain in use today (1) (Figure 1). A point of
emphasis is that many of these proteins (ovalbumin, lysozyme,
myoglobin, . . .) shared the properties of being plentiful and sturdy,
and therefore amenable to the early protein purification schemes,
which were relatively harsh and inefficient. These properties also
facilitated structure determination, reinforcing their popularity as
immunologists sought greater mechanistic insight into immune
recognition.

By the mid-1970s it was known that denatured proteins and
synthetic peptides could induce DTH (2, 3) and that DTH is
mediated by the “helper” T cell subset (4). This foundation pro-
vided the springboard for two key subsequent discoveries. First,
the Rosenthal laboratory demonstrated that in vitro T cell activa-
tion requires an MHCII-compatible“accessory cell,” later renamed
antigen-presenting cell (APC) (5–7). At the time, the accessory cell
was synonymous with the macrophage, whose longstanding rep-
utation for phagocytosis further reinforced focus on exogenously
provided antigens. Dendritic cells (DCs) and B cells would only
later be identified as “professional” APC (Figure 1). Subsequently
Unanue and co-workers pioneered the concept of “processing” in
which antigen is taken up by the APC and handled internally for
a defined period of time before emerging on the cell surface in a
form capable of activating TCD4+ (8). A fragmentation step was
implied by the observation that presentation is inhibitable by weak
bases that prevent activation of the endosomal proteases (9).

While Listeria monocytogenes was utilized in initial experiments
(8, 10), the nominal DTH antigens were far more suitable for
experiments that sought greater mechanistic insight, due in large

part to the challenge of epitope identification. At the time, the
standard approach entailed chemical and/or proteolytic fragmen-
tation of whole antigen, identification of the active fragment with
in vitro assays, and confirmation and fine mapping with synthetic
peptides. Thus, it was demonstrated with the ovalbumin system
that the same TCD4+ hybridoma could be activated by whole
antigen or proteolytic OVA fragments provided to the APC, or
synthetic peptide pulsed onto gluteraldehyde-fixed APCs (11). An
epitope within hen egg lysozyme (12) was used to demonstrate
that the immunogenic peptide binds directly to MHCII (13) and,
later, to map the residues of the peptide that contact MHCII and
those that contact the T cell receptor (14). Subsequent key insights
were made using the same or similar globular protein antigen sys-
tems, including the identification of specific endosomal proteases
that participate in antigen processing (15–19), the impact that
surface immunoglobulin has on the efficiency and specificity of
processing by B cells (20–22), the antigen processing abilities of
DCs (23, 24), and the critical role that the chaperone HLA-DM (in
humans, H2-M in mice, referred to collectively as “DM”) plays in
late endosomal (“classical”) peptide loading (25, 26).

Concurrent biochemical experiments served to reinforce the
classical pathway. Efforts by several groups, most notably the
Cresswell laboratory, elucidated the role of the transient MHCII
binding partner, invariant chain (Ii), in delivering MHCII to the
late endosome where Ii is removed by the combined actions of
proteases and DM, and high affinity peptides are loaded (27–34).
Germain and co-workers subsequently demonstrated that acqui-
sition of high affinity peptide correlates with a discernible change
in MHCII conformation, the so-called SDS-resistant “compact
dimer” (35, 36). Several groups exploited this property to demon-
strate via subcellular fractionation that compact dimer formation
occurs in the late endosome (37–40), and is generally dependent
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FIGURE 1 |Timelines of key developments with respect to
MHCII-classical processing, MHCI processing, and MHCII-alternative
processing. This is not intended to provide a comprehensive listing but more
a sense of the genesis and evolution of each area with respect to the others.
Citation key: (1) Koch (117), (2) Dienes and Schoenheit (118), (3) MHC
discovered by Gorer (119), (4) Gell and Hinde (120), (5) Gell and Benacerraf
(2), (6) Claman et al. (121), (7) Shevach and Rosenthal (5), Rosenthal and
Shevach (122), (8) Jones et al. (123), (9) Nussenzweig (124), Steinman and
Nussenzweig (125) after earlier identification by Steinman and Cohn (126) and
later demonstration of antigen processing by Sunshine et al. (23), Van Voorhis
et al. (24), (10) Ziegler and Unanue (8), (11) Chesnut and Grey (20), Chesnut
et al. (99, 100), Lanzavecchia (21), (12) Shimonkevitz et al. (11), Babbitt et al.
(13), (13) Germain (54), (14) Bakke and Dobberstein (27), Peterson and Miller
(29), Roche and Cresswell (30), Teyton et al. (31), Roche et al. (32), (15) Brown

et al. (127), (16) Germain and Hendrix (35), Sadegh-Nasseri and Germain (36),
Amigorena et al. (37), Qui et al. (38), Tulp et al. (39), West et al. (40), Riberdy
et al. (128), (17) Fling et al. (25), Morris et al. (26), (18) Denzin et al. (129), (19)
Pos et al. (130), Guce et al. (131), (20) Govaerts (132), (21) Lundstedt (133),
(22) Zinkernagel and Doherty (134), (23) Bevan (55), (24) Townsend et al.
(135), (25) Bjorkman et al. (136), (26) Moore et al. (47), Yewdell et al. (48), (27)
Falk et al. (137), Rötzschke et al. (138), Van Bleek and Nathenson (139), (28)
Powis et al. (49), (29) Kovacsovics-Bankowski et al. (140), (30) Rock et al. (52),
(31) Sadasivan et al. (141), (32) Reits et al. (142), Schubert et al. (143), (33)
Brouwenstijn et al. (144), Serwold et al. (145), (34) Bikoff and Bershtein (75),
Eisenlohr and Hackett (77), Weiss and Bogen (78), (35) Jacobson et al. (81,
82), (36) Rudensky et al. (87), (37) Malnati et al. (83), (38) Pinet et al. (70), (39)
Brazil et al. (146), (40) Santambrogio et al. (62, 63), (41) Mukherjee et al. (92),
(42) Tewari et al. (94), (43) Zhou et al. (147).

upon DM (41, 42). Direct imaging studies tracing the fates of
MHCII and Ii generally provided corroboration (43–46).

MHC CLASS I PROCESSING: FADING CONTRAST
The processing of antigen for recognition by CD8+ T cells (TCD8+)
had long been viewed as fundamentally different. This is because
most MHC class I (MHCI) processing begins with delivery of anti-
gen to the cytosol (47, 48), usually via infection, which allows for
access to the proteasome and the transporter associated with anti-
gen processing (TAP), both being critical for the production and
delivery of most peptides to nascent MHCI in the ER (49–52).
The apparent dichotomy – MHCI for endogenous antigen and
MHCII from exogenous antigen – was reinforced by Morrison
et al. who reported that inactivation of influenza virus obviates
TCD8+ but not TCD4+ cell line activation while expression of
influenza protein by a recombinant vaccinia virus results in TCD8+

but not TCD4+ activation (53). Thus, MHCI and MHCII appeared
to be fundamentally different in terms of where the peptides come
from (54).

The distinction stood for many years until the concept of
cross-presentation, essentially MHCI-restricted presentation of
exogenous antigen, gained traction. First observed by Bevan as
the development of a host response to allogeneic cells (55), cross-
presentation was eventually demonstrated to apply to virus infec-
tion, and attributed in most cases to the ability of the DC to take
up material released from the antigen bearing cell and transfer it
to the cytosol for conventional processing via mechanisms that are
still under investigation (56).

ALTERNATIVE MHCII PROCESSING
Cross-presentation expands the potential for TCD8+ activation in
two ways. First, it ensures delivery of antigen to DCs, generally
considered essential for T cell priming (57), under circumstances
when the invading organism does not infect DCs. Second, it short
circuits many of the strategies that pathogens have developed
to thwart MHCI antigen processing (58). For the similar pur-
pose of expanding the potential for TCD4+ activation, one might
expect that additional mechanisms exist for the generation of
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MHCII-peptide complexes. Indeed, there is longstanding evidence
for alternative MHCII processing pathways, although they have yet
to take hold like cross-presentation. These pathways fall into three
general categories.

EXTRACELLULAR PROCESSING AND LOADING
Exceptions to the need for intracellular antigen processing were
provided by reports that location of the epitope within a dis-
ordered region of the antigen (59), denaturation of the anti-
gen (60), and catabolism of some antigens by serum proteases
(61), precludes the need for internalization. Subsequently it was
demonstrated that immature DCs secrete lysosomal proteases into
the extracellular space and express abundant amounts of empty
(peptide receptive) MHC, allowing for autonomous extracellular
processing (62, 63) and peptide loading at the cell surface inde-
pendent of DM (64–66). More recently, extracellular processing of
B cell receptor-captured antigen has been demonstrated to occur
within the synaptic space between B cell and TCD4+ (67). Despite
providing a potential explanation for the presentation of anti-
gens that preclude internalization (large parasites, for example),
extracellular processing has thus far been vastly understudied.

THE RECYCLING PATHWAY
Experiments demonstrating an active peptide exchange mecha-
nism in live APCs at relatively neutral pH (68) and the ability
of mature MHCII to be internalized (69) suggested that MHCII
could be recycled for a second round of peptide loading in an early
endosomal compartment. Functional operation of this pathway
was first demonstrated by the laboratory of Eric Long (70), and
subsequently demonstrated to operate independent of DM (71).
Influenza hemagglutinin, the antigen they focused upon, repre-
sents a group of proteins, including other viral glycoproteins and
many bacterial toxins, that may be particularly relevant to the recy-
cling pathway as they unfold in the early endosome as part of their
biological programs (72–74).

ENDOGENOUS PATHWAYS
Beginning in the mid-1980s, reports emerged that efficient, and
in some cases any detectable presentation of a specific MHCII
epitope depends upon synthesis of the antigen within the APC
(75–80). Because the first antigens were glycoproteins, the suspi-
cion remained, despite many controls, that the antigens trafficked
in some fashion to the endosomal compartment for conventional
processing. This concern was obviated by the Long lab, who
demonstrated efficient presentation of epitopes within cytosoli-
cally located measles virus matrix protein and signal sequence-
deleted influenza hemagglutinin (81–83). Further, expression of
matrix by a recombinant vaccinia virus, where the antigen is not
incorporated into the virion, also resulted in presentation (84).
Of note, presentation from cytosolic HA was independent of TAP
expression, but presentation from a cytosolic“minigene”construct
was TAP-dependent (83).

Numerous subsequent reports have provided additional evi-
dence of endogenous presentation (85, 86), including demonstra-
tions that a substantial portion of peptides eluted from MHCII
are derived from cytosolic and nuclear proteins (87, 88). Particu-
larly notable is the variety of underlying mechanisms compared

to the classical pathway. The Münz laboratory has focused upon
a role for macroautophagy, the process in which cytosolic con-
tents are enveloped in a bilayer membrane that subsequently fuses
with the lysosome (89). The Blum laboratory has demonstrated
that chaperone mediated autophagy, which involves translocation
of individual proteins bearing the KFERQ motif, is critical in the
presentation of some self-antigens (90). A third form of autophagy,
microautophagy, in which cytosolic proteins are delivered to the
late endosome during multivesicular body formation (91), is also
likely to contribute to MHCII processing although a direct connec-
tion remains to be made. We and others have shown roles for the
proteasome (92–95) and even TAP (94) in endogenous processing
of some proteins. Like cross-presentation, these observations blur
the line between the MHCI and MHCII systems.

AT A CROSSROADS?
Several key questions concerning MHCII processing remain.

(1) How common are the alternative pathways? As recounted else-
where (86), our laboratory has addressed this question with
influenza and ectromelia viruses, and results suggest that most
of the TCD4+ responses to both viruses is driven by alternative,
mainly endogenous processing. It will be of great interest to
determine the extent to which this holds for other viruses and
other types of pathogens.

(2) Where are MHCII molecules loaded in the cell? An intriguing
alternative to the endosomal compartment is the endoplasmic
reticulum, the site of Ii loading. There is no obvious reason
why incompletely folded proteins could not compete with Ii.
Indeed, there are longstanding reports of ER-resident MHCII
binding proteins other than Ii (96). The greater challenge
has been to connect this event with TCD4+ activation. This
is exacerbated by the extreme sensitivity of T cells, allowing
for the possibility that ER loading is a far greater contributor
to TCD4+ activation than is appreciable by biochemical assays.
Compared to the endocytic compartment there may be lim-
ited competition for MHCII in the ER, particularly during a
virus infection that shuts off host synthesis. Thus, the bulk of
MHCII may be directed to the endosomal compartment due
to less efficient acquisition of epitopes derived from exogenous
antigen.

(3) How many components of the antigen processing machin-
ery remain to be discovered? Probably many. Components
of any metabolic pathway are generally not appreciable until
they are disabled, often unintentionally. For example, the role
of DM in MHCII processing was revealed by a mutagenesis
screen intended to identify MHCII structural mutants (97).
A recent antibody-based genome-wide siRNA screen by the
Neefjes lab revealed 276 genes that contribute to peptide pre-
sentation, only 10% of which had been previously implicated
(98). The screen was performed on uninfected cells, and it
is possible that infection and the ensuing innate activation
enlists additional cellular components.

ADDITIONAL CONSIDERATIONS
The data in aggregate indicate that MHCII processing and pre-
sentation extends well beyond the classical pathway. Following are
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additional considerations leading up to our proposal for a different
way of thinking about MHCII processing:

(1) A cellular component can contribute to different processing
schemes. For example, H-2M can contribute to loading of
both proteasome-dependent and -independent epitopes (94).

(2) The same epitope can be produced via multiple pathways. We
were first made aware of this possibility by an epitope within
the influenza hemagglutinin that is presentable from exoge-
nous antigen via the recycling pathway and from endogenous
sources by a proteasome-dependent pathway (73, 94). Since
that time we have expanded the analysis, finding that most of
the influenza epitopes we have examined, are presentable from
both exogenous and endogenous sources of the parent anti-
gen, just much more efficiently in most cases via endogenous
sources (unpublished). We speculate that an important factor
is the proteolytic activity of various subcellular compartments
(the cytosol being relatively hospitable and the endosomal
compartment being relatively inhospitable) and the resistance
of particular linear sequences to attack by resident proteases.

(3) Different APC types have different antigen processing capa-
bilities. This has been apparent since the first comparisons of
DCs, macrophages and B cells (99–104) and has been attrib-
uted to a variety of factors including internalization capa-
bilities, protease profile, and activation state (105–112). We
recently compared the abilities of three distinct primary APC
types (bone marrow-derived DCs, splenic DCs, and peritoneal
macrophages) to present six different influenza epitopes from
exogenous and endogenous sources. We observed clear differ-
ences that were more or less accentuated depending upon the
epitope (unpublished observation). An important ramifica-
tion is that the presentation characteristics of APCs in vitro
will not necessarily reflect antigen presentation in vivo, which
in many cases may be an aggregate of several APC types.

(4) Different pathogens will likely demonstrate different process-
ing signatures, both in terms of the processing pathways that
are utilized and the extent to which each one is utilized. The
various categories of pathogen interact with APCs in pro-
foundly different ways. Large parasites, such as helminths, are
presumably processed exogenously, via either the classical or

FIGURE 2 | Proposed network model of MHCII antigen processing. The
network in the center represents a hypothetical processing scheme for
epitope #1 derived from live pathogen #1 following infection of APC #1.
Processing variations surround this central network, demonstrating altered
processing and presentation depending on different epitopes from the same

live pathogen (A), different APC for the same epitope (B), same epitope from
inactivated pathogen (C), or same epitope expressed via recombination by a
different live pathogen (D). Processing components can be either active or
inactive depending on APC type and/or APC activation state in response to
infection.
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extracellular pathways following some degree of extracellular
digestion. This may also be the case for extracellular bacte-
ria although, as noted above, membrane crossing bacterial
toxins may be an exception. Viral proteins will have access to
endogenous pathways but pathway usage may also be dramati-
cally different depending upon replication scheme, the extent
to which vesicular trafficking is disrupted, and the selective
activation of cellular processes (e.g., autophagy).

(5) MHCII processing diversity – facilitation and benefits. The
open-ended nature of the MHCII-peptide binding groove
ensures that many epitope-containing forms can be presented.
In contrast, closed-ended MHCI molecules generally require
peptides of specific lengths and, thus, more focused and coor-
dinated processing events. A driving force for the existence of
multiple pathways is likely the greater diversity of peptides dis-
played, thereby ensuring sufficient TCD4+ engagement, whose
importance in resolving infections is becoming increasingly
apparent (113–116). In addition, processing diversity reduces
the prospect that MHCII-restricted antigen presentation can
be thwarted by an infectious agent. This redundancy may be
one reason why there are many more reports of pathogens
that attack components of the class I vs. class II processing
machinery.

A NETWORK MODEL OF MHCII ANTIGEN PROCESSING
The physical properties of the DTH proteins considerably narrow
processing scenarios, resulting in the detailed mechanistic insights
that have been gained. In contrast, the robust diversity in alterna-
tive MHCll processing leads to superficially conflicting data and
a diffusion of effort, both of which impede validation by con-
certed mechanistic studies. A way forward might be facilitated
by reframing the problem. Therefore, based upon the points that
have been made, we propose a network model of MHCII antigen
processing (Figure 2), in which each epitope is produced via sev-
eral pathways, the composition and balance of which are unique
for each epitope, and strongly modulated by factors such as APC
type and nature of the infectious agent. In vitro experimentation
may validate the general tenets of the model, but its true scope
will only be appreciated in vivo, a far more complex landscape
that will be tackled only with the development of additional tools.
This framework could catalyze insight into host/pathogen inter-
play and, consequently, new strategies for rational vaccine design.
A critical first step will be increased numbers of investigators who
use infectious organisms to investigate MHCII antigen processing
and presentation. The systems are admittedly more cumbersome
but the territory that they open up more than compensate for the
extra effort.
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