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Tumor necrosis factor superfamily ligands and receptors are responsible for development,
immunity, and homeostasis of metazoan organisms. Thus, it is not surprising that signals
emanating from these receptors are tightly regulated. Binding ofTNF-related weak inducer
of apoptosis (TWEAK) to its cognate receptor, FN14, triggers the assembly of receptor-
associated signaling complex, which allows the activation of canonical and non-canonical
nuclear factor kappa B (NF-κB) as well as mitogen-activated protein kinase signaling path-
ways. Ubiquitin ligases cellular inhibitor of apoptosis 1 and 2 (c-IAP1 and 2) and adaptor
proteins TNFR-associated factors 2 and 3 (TRAF2 and TRAF3) are crucial for the regula-
tion of TWEAK signaling as they facilitate the recruitment of distal signaling components
including IKK and linear ubiquitin chain assembly complex complexes. At the same time
c-IAP1/2, together with TRAF2 and TRAF3, promote constitutive ubiquitination and pro-
teasomal degradation of NF-κB inducing kinase (NIK) – a kinase with critical role in the
activation of non-canonical NF-κB signaling. While c-IAP1/2 mediated ubiquitination allows
the activation of TWEAK-stimulated canonical NF-κB signaling, these E3 ligases are nega-
tive regulators of non-canonical signaling. TWEAK stimulation prompts the recruitment of
c-IAP1/2 as well as TRAF2 and TRAF3 to the FN14 signaling complex leading to c-IAP1/2
autoubiquitination and degradation, which stabilizes NIK and allows subsequent phospho-
rylation of IKKα and partial proteasomal processing of p100 to activate gene expression.
Recent studies have revealed that the spatio-temporal pattern of TWEAK-stimulated ubiq-
uitination is a carefully orchestrated process involving several substrates that are modified
by different ubiquitin linkages. Understanding the significance of ubiquitination forTWEAK
signaling is important for the overall understanding of TWEAK biology and for the design
of therapeutics that can be used in the treatment of human pathologies that are driven by
TWEAK/FN14 expression and activity.
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UBIQUITINATION SYSTEM
The regulated posttranslational modification and degradation of
cellular proteins by the ubiquitin-proteasome system impacts a
wide range of crucial processes in normal and diseased cells
(1). Tumor necrosis factor (TNF) superfamily ligands, including
TNF-related weak inducer of apoptosis (TWEAK), rely exten-
sively on ubiquitination to promote activation of non-canonical
and canonical nuclear factor kappa B (NF-κB) signaling as well
as mitogen-activated protein kinase (MAPK) pathways. Ubiquiti-
nation requires the activity of ubiquitin activating enzyme (E1),
ubiquitin conjugating enzymes (E2s), and ubiquitin ligases (E3s)
(2). Coordinated activity of these components results in the cova-
lent ligation of ubiquitin to the acceptor lysine, or less frequently
amino-terminal, residues of the substrate protein (Figure 1).
Covalent attachment of a single ubiquitin molecule to the substrate
is referred to as monoubiquitination (3). However, the presence
of seven lysines and available amino-terminus within a ubiquitin
molecule enables the formation of a variety of ubiquitin–ubiquitin
linkages and polyubiquitin chains (3). The varied topologies of
different polyubiquitin chains provide means for communicat-
ing complex biological information that is vital for many cellular
functions (4). For example, K63-linked chains, amino-terminally

linked chains, and in some cases K11-linked chains, provide a
platform for the assembly of signaling complexes (5–7). On the
other hand, K48-linked chains mostly target substrate proteins for
proteasomal degradation (1).

Hundreds of E3 ligases that ensure substrate specificity and tens
of E2 enzymes that dictate the type of the ubiquitin chain assembly
present the ubiquitination processes with a remarkable combina-
torial potential (8). Numerous ubiquitin-binding domains that
recognize different ubiquitin chains and transmit encoded biolog-
ical information decipher the information embedded in diverse
ubiquitin modifications (9). Just like many complex biological
systems, ubiquitination is a reversible process. A separate class of
enzymes, called deubiquitinases (DUBs), carries out the removal
and depolymerization of ubiquitin chains (10). All together, E1–3
enzymes that promote ubiquitination, ubiquitin-binding domains
that recognize different ubiquitin moieties, and DUBs that elim-
inate ubiquitin modifications afford a powerful molecular set of
tools for fine-tuning intricate signaling messages.

SIGNALING PATHWAYS INDUCED BY TWEAK
Tumor necrosis factor superfamily ligands are homotrimeric type
2 transmembrane proteins that are either membrane-embedded or
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Vucic Ubiquitination in TWEAK-stimulated signaling

FIGURE 1 | Ubiquitination cascade inTWEAK signaling. In the
activation reaction ubiquitin is transferred to an E1 enzyme (Ube1) in an
ATP-dependent fashion, which leads to the transfer of activated ubiquitin
to an E2 enzyme (UbcH5) in the conjugation reaction. The E2 with ubiquitin
binds E3 ubiquitin ligase (c-IAP1), which can also bind a substrate – often
through a different protein interaction domain – and thus allows the

ubiquitin ligation to occur. When polyubiquitin chains are assembled this
process is repeated with a lysine (K) residue of the ubiquitin molecule
itself serving as a substrate. The assembly of K63- or K11-link polyubiquitin
chains on c-IAP1 promotes the formation of signaling complexes, while
K48-linked ubiquitination of NIK or c-IAP1 targets them for proteasomal
degradation.

cleaved to generate soluble proteins (11). These ligands bind one or
more members of TNF receptor (TNFR) superfamily, type 1 trans-
membrane proteins, by interacting with the cysteine-rich domain
in the extracellular region of TNFRs (11). Ligands and receptors of
TNF/TNFR superfamily are vital for the proper functioning and
organization of the immune system (12). Thus, it is no surprise
that these proteins are implicated in a variety of genetic or acquired
human diseases (12). Binding of TNF ligands to their cognate
receptors triggers the assembly of receptor-associated signaling
complexes and activates multiple signaling pathways, including
the NF-κB, MAPKs c-Jun N-terminal kinase (JNK) and p38, and
in some instances cell death (13–15). NF-κB transcription fac-
tor family members (NF-κB1 or p105/p50, NF-κB2 or p100/p52,
RelA or p65, RelB, and cRel) operate as homodimers or het-
erodimers and can be activated through the canonical (classical) or
non-canonical (alternative) pathways (16). In unstimulated cells
inhibitor of canonical NF-κB signaling (IκB) keeps p50/Rela dimer
in cytoplasm until IκB kinase β (IKKβ) phosphorylates it marking
it for ubiquitination by SCF-βTrCP and subsequent proteasomal
degradation (17). Without IκB around NF-κB dimers translocate
to the nucleus and stimulate transcription of a series of proinflam-
matory and anti-apoptotic proteins (17). In the non-canonical
pathway NF-κB inducing kinase (NIK) is the primary kinase that
phosphorylates IKKα leading to the phosphorylation of the C-
terminal domain of NF-κB precursor protein p100 (18). This
triggers SCF-βTrCP dependent ubiquitination and partial pro-
teasomal degradation of p100 to yield the mature p52 protein,
which together with RelB moves to the nucleus and stimulates the
gene expression with largely overlapping pattern with canonical
pathway (18).

TNF-related weak inducer of apoptosis (also known as
TNFSF12) is a TNF family cytokine that binds FN14 receptor
(also known as TNFRSF12A) to promote proliferation but also
apoptosis in a wide variety of epithelial and endothelial cells (19,
20). Association of TWEAK with FN14 leads to FN14 oligomer-
ization and the recruitment of signaling adaptor proteins TNFR-
associated factors 2 and 3 (TRAF2 and TRAF3) (19, 21–23). The

presence of TRAF2 in FN14 complex is instrumental for the
recruitment of ubiquitin ligases cellular inhibitor of apoptosis 1
and 2 (c-IAP1 and 2), and for the activation of canonical NF-κB
and MAPK signaling (24–26) (Figure 2). Adaptor protein TRAF2
exists in cells as a trimer that binds a single molecule of monomeric
c-IAP1 or c-IAP2 (27, 28). Engagement of TRAF2 to TWEAK-
stimulated signaling complex promotes receptor-mediated TRAF2
aggregation resulting in dimerization/oligomerization of c-IAP
proteins thereby upregulating their E3 ligase activity (28, 29). Con-
sequently, c-IAPs ubiquitinate themselves and TRAF2 to enable
the recruitment of the IKK complex as well as the linear ubiquitin
chain assembly complex (LUBAC) to FN14 (29, 30). The assem-
bly of the TWEAK-FN14-associated receptor complex leads to the
rapid activation of canonical NF-κB and MAPKs JNK and p38
signaling pathways within minutes of TWEAK treatment (26, 29)
(Figure 2).

Following this first wave of signaling, non-canonical NF-κB
signaling gets activated few hours after the formation of TWEAK-
FN14 complex (21). The reason for the extended length of
time needed for the activation of this pathway lies within the
mechanism of activation (18). In the canonical NF-κB all signaling
components are poised for action once inhibitory factor IκB
has been phosphorylated and degraded. However, in the non-
canonical NF-κB pathway, central regulator, kinase NIK, needs
to be newly synthesized for the signaling to occur. NIK is kept
at extremely low levels in cells by continuous ubiquitination
and consequent proteasomal degradation. The protein complex
responsible for keeping NIK suppressed consists of adaptor pro-
teins TRAF2 and TRAF3 and E3 ligases c-IAP1 and 2 (31–35).
Within this complex TRAF3 at the same time binds NIK and
TRAF2 with its constitutive partners c-IAP proteins. This way,
TRAF2 and TRAF3 juxtapose E3 ligases c-IAP1/2 and their sub-
strate NIK to enable efficient NIK ubiquitination and suppression
of signaling (31) (Figure 2). TWEAK binding to FN14 recruits
TRAF2, TRAF3, and with them c-IAP1/2 from the cytoplasm
to the membrane-associated receptor complex thereby liberating
NIK from degradative control (25, 29, 31). Within hours NIK
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Vucic Ubiquitination in TWEAK-stimulated signaling

FIGURE 2 |TWEAK-stimulated activation of canonical and non-canonical
NF-κB signaling pathways. Cellular IAP proteins are positive regulators of
canonical and negative regulators of non-canonical NF-κB signaling pathways.
c-IAPs, cellular IAPs; FN14, fibroblast growth factor-inducible 14; HOIL-1,
heme-oxidized IRP2 ubiquitin ligase-1; HOIP, HOIL-1L-interacting

protein/RNF31; Sharpin, SHANK-associated RH domain-interacting protein;
IKK, IκB kinase; NEMO, NF-κB essential modulator; NIK, NF-κB inducing
kinase; SCF-bTrCP, Skp1/Cul1/F-box β transducin repeat-containing protein;
TRAF, tumor necrosis factor (TNF) receptor-associated factor; TWEAK,
TNF-related weak inducer of apoptosis; Ub, ubiquitin.

accumulates and triggers phosphorylation of IKKα, p100, and sig-
naling ensues. However, transient recruitment of TRAF2, TRAF3,
and c-IAP proteins at the receptor complex would not permit
efficient induction of non-canonical NF-κB signaling. To prevent
them from re-entering the cytoplasmic complex with NIK, TRAF2,
TRAF3, and c-IAPs need to be sequestered and/or eliminated. For
this reason, following receptor engagement these adaptors and E3
ligases relocalize from the cytoplasm into membrane-associated
cellular fractions where they undergo ubiquitination in c-IAP E3
ligase dependent manner (25, 29, 36). Consequently, autoubiqui-
tinated c-IAP proteins, as well as ubiquitinated TRAF2 and TRAF3
undergo proteasomal, and in some cases also lysosomal degrada-
tion (25, 29). This relocation-ubiquitination-degradation process
ensures their efficacious depletion from the cytoplasmic cellular
compartment and allows the activation of non-canonical NF-κB
signaling.

Similar mechanism for the activation of non-canonical NF-
κB signaling is employed by vast majority of TNF family ligands
and receptors (for example LT-βR, CD40, CD30) (29). The only
exception is B cell-activating factor receptor 3 (BR3 or BAFFR),
a receptor for BAFF that exclusively mediates activation of the
non-canonical NF-κB pathway (37, 38). Just like the other TNFR

family members that activate this signaling pathway, BR3 binds
TRAF3 (39, 40). However, BR3 does not bind any other TRAF
molecules as other TNFRs do (39, 40). As a result, BR3 does not
recruit E3 ligases c-IAP1 and 2 or TRAF6. Being devoid of ubiqui-
tin ligases in its signaling complex, BR3 signaling does not utilize
ubiquitination but rather, it relies on the translocation of TRAF3
to the insoluble membrane compartment (29). This sequestration
of TRAF3 from the soluble cytoplasmic compartment eliminates
the physical link between c-IAPs and NIK and enables activation
of the non-canonical NF-κB signaling.

Thus, ubiquitination is instrumental for the proper regulation
of the non-canonical NF-κB pathway and TWEAK/FN14 and most
of the related TRAF3-binding TNFR family members depend on
ubiquitination for effective activation of signaling (29).

E3 LIGASES AND UBIQUITIN LINKAGES IN TWEAK
SIGNALING
Several ubiquitin ligases have been implicated in TWEAK signaling
but probably the most important ones are c-IAP1 and 2 as the elim-
ination or reduction of c-IAP levels severely diminishes canonical
NF-κB and MAPK signaling (29). Cellular IAP proteins regulate
the activation of canonical NF-κB and MAP kinases following
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Vucic Ubiquitination in TWEAK-stimulated signaling

initiation of TWEAK signaling by aggregation and dimerization
and induced autoubiquitination within FN14-associated complex
(29). Autoubiquitination of c-IAP proteins, and potentially also
ubiquitination of adaptor protein TRAF2, provides a platform for
the assembly of distal signaling complex that includes NEMO,
IKKβ, and HOIL-1L-interacting protein (HOIP) (29). Cellular
IAPs promote the assembly of a variety of polyubiquitin linkages
on themselves with Lys11-, Lys63-, and Lys48-linked chains being
the best studied (41) (Figures 1 and 2). Other polyubiquitin chain
linkages as well as branched polyubiquitin chains (involving a mix-
ture of several chain types) possibly also play important function
in TWEAK signaling but their role(s) have not been well estab-
lished yet. Binding of NEMO to these polyubiquitin chains allows
the recruitment of IKK complex where activated IKKβ phospho-
rylates IκBα to stimulate IκBα proteasomal degradation (5, 29).
At the same time, association of HOIP with autoubiquitinated c-
IAP proteins leads to the engagement of LUBAC complex (29, 42)
(Figure 2).

Linear ubiquitin chain assembly complex is an E3 ligase com-
plex that consists of HOIP/RNF31, Heme-oxidized IRP2 ubiq-
uitin ligase-1 (HOIL-1L), and/or SHANK-associated RH domain-
interacting protein (Sharpin) (6, 30). It is unique among E3 ligases
as it promotes the assembly of linear or Met-linked ubiquitination
on NEMO, RIP1, itself, and several other signaling molecules (6).
Given that RIP1 does not participate in TWEAK signaling, the
activity of LUBAC is likely restricted to NEMO and itself although
additional substrates potentially await discovery. Linear ubiqui-
tination stabilizes signaling complexes, and decrease in LUBAC
levels, and consequent absence of linear ubiquitination, negatively
impacts TWEAK-stimulated canonical NF-κB and MAPK activa-
tion (29). Another ubiquitin ligase that has been associated with
TWEAK signaling is TRAF6, although not through direct partici-
pation in TWEAK-stimulated pathways (43). Starvation of skeletal
muscles induces TRAF6 dependent expression of FN14, an event
that is critical for the regulation of skeletal muscle atrophy (43).

Non-canonical NF-κB signaling is also critically regulated by
ubiquitination and proteasomal degradation. Cytoplasmic com-
plexes consisting of ubiquitin ligases c-IAP1 and 2 and adaptor
proteins TRAF2 and TRAF3 promote constitutive ubiquitination
and proteasomal degradation of kinase NIK (31–33). Before the
enzymatic role of cellular IAP proteins has been demonstrated, it
was believed that TRAF2 and TRAF3 possess E3 ligase activity and
that TRAF3 is a ubiquitin ligase for NIK (44, 45). However, recent
cellular and biochemical studies have indicated that TRAF2 and
TRAF3 are not functional E3 ligases and that their RING domains
cannot interact with ubiquitin conjugating enzymes or promote
ubiquitination (46–48). On the other hand, discoveries that mul-
tiple myeloma patients with inactivating mutations in c-IAP1
and 2, as well as knockouts and knockdowns of c-IAP1/2, have
constitutive activation of non-canonical NF-κB pathway defini-
tively demonstrated the seminal role of c-IAP E3 ligase activity in
the suppression of NIK and non-canonical NF-κB signaling (49–
52). In addition, discovery of SMAC-mimicking IAP antagonist
compounds that target c-IAP protein for proteasomal degrada-
tion greatly aided the affirmation of c-IAPs as E3 ligases for NIK
(31, 32). IAP antagonist treatment triggers rapid conformational
change in c-IAP proteins that elevates their ubiquitin ligase activity

leading to proteasomal degradation (53, 54). Some cells treated
with these agents secrete a variety of NF-κB regulated inflamma-
tory cytokines over a prolonged period even in the absence of cell
death (55, 56). This cytokine production coincides with processing
of p100 to p52 and NIK stabilization thus linking IAP antagonist
treatment with the activation of non-canonical NF-κB signaling
(55, 56). Presently, several IAP antagonists are undergoing clin-
ical evaluations for anti-cancer treatments and all of them were
found to stimulate c-IAP degradation and associated activation of
non-canonical NF-κB signaling (57). The exact nature of ubiquitin
chains assembled on endogenous NIK has never been determined,
probably because of the extremely low levels of ubiquitinated
NIK in unstimulated cells. Nevertheless, given that c-IAP1 and
2 can efficiently promote Lys48-linked polyubiquitination that
is closely associated with proteasomal degradation, NIK is most
likely modified with this chain linkage.

Interestingly, the activation of the non-canonical NF-κB also
relies on the c-IAP ubiquitin ligase activity. Stimulation of cells
with TWEAK, as well as with the related TNF family ligands
that trigger recruitment of TRAF2 and TRAF3 – LIGHT, CD30L,
or CD40L leads to the aggregation of c-IAP proteins within the
receptor-associated membrane fraction (29). There, c-IAP pro-
teins mediate autoubiquitination of themselves as well as ubiq-
uitination of TRAF2 and TRAF3 causing their proteasomal and
lysosomal degradation (25, 29) (Figure 2). TWEAK treatment
promotes Lys11-, Lys48-, and Lys63-linked polyubiquitin chain
assembly on c-IAP1, and TRAF2 and TRAF3 are likely modi-
fied in a similar fashion (41). Sequestration and degradation of
c-IAP1/2, TRAF2, and TRAF3 ensures that NIK can accumu-
late to trigger phosphorylation-mediated activation of signaling.
Simultaneous elimination of all NIK regulating components is
probably excessive since depletion of any one of those components
can break this degradation-promoting circle as seen in multiple
myeloma patients that harbor mutations in individual compo-
nents, IAP antagonists that specifically target c-IAP1/2 proteins or
BR3 signaling that selectively recruits TRAF3 (29, 31, 32, 38, 49,
50). Nevertheless, concomitant removal of c-IAP1/2 and TRAF2/3
likely provides added guarantees that ensure the liberation of
NIK and activation of signaling. An additional consequence of
TWEAK mediated elimination of TRAF2 and c-IAP proteins is
the diminished activation of TNF or CD40L stimulated canoni-
cal NF-κB and MAPK signaling (36, 58). Since TNFR1 and CD40
rely on c-IAPs and TRAF2 for the assembly of signaling complex
and the activation of the canonical NF-κB and MAPK path-
ways, TWEAK can negatively impact the signaling downstream
of TNFR1 and CD40 by depleting critical E3 ligases and adaptors
(25, 36, 58).

Processing of p100 to p52 is one of the final steps in the activa-
tion of non-canonical NF-κB signaling, and it is also regulated by
ubiquitination. IKKα mediated phosphorylation of p100 recruits
SCF-βTrCP E3 ligase complex, which promotes p100 ubiquiti-
nation and partial proteasomal degradation to yield a p52 form
(59–61). In addition, Fbw7, another substrate-binding component
of SCF ubiquitin ligase complex, can also regulate proteasomal
processing of p100. However, in this case the kinase that provides
phosphorylation trigger for ubiquitination is not IKKα but GSK3
(62–65). Thus, multiple kinases and ubiquitin ligases control p100
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Vucic Ubiquitination in TWEAK-stimulated signaling

processing to ensure proper control of the non-canonical NF-κB
pathway activation.

DEUBIQUITINASES IN TWEAK SIGNALING
Given the importance of ubiquitination for TWEAK mediated
signaling it is no surprise that deubiquitination also plays a func-
tional role for TWEAK biology. DUBs are enzymes that remove
ubiquitin moieties from substrate proteins and allow reversal or
inhibition, but in some cases also activation of signaling that is
regulated by ubiquitination (7, 10). Recently, the Lys48-specific
DUB OTUB1 has been identified as c-IAP1 interacting DUB that
can regulate c-IAP1 protein stability following TWEAK stimula-
tion (41, 66). TWEAK stimulates Lys48-linked polyubiquitination
of c-IAP1 that ultimately leads to c-IAP1 degradation and the
activation of non-canonical NF-κB signaling (31, 41). However,
elimination of c-IAP1 also diminishes TWEAK-stimulated acti-
vation of canonical NF-κB and MAPK signaling (41). OTUB1 is
recruited to TWEAK induced FN14-associated signaling complex
where it regulates c-IAP1 Lys48-linked polyubiquitination (41)
(Figure 2). In the absence of OTUB1, treatment with TWEAK
promotes enhanced c-IAP1 degradation resulting in reduced acti-
vation of canonical NF-κB and MAPK pathways (41). However,
OTUB1 does not seem to have significant effect on the non-
canonical NF-κB pathway, most likely because even in the presence
of OTUB1 TWEAK induces c-IAP1 degradation ultimately lead-
ing to NIK de-suppression and activation of NF-κB signaling.
Another DUB from the ovarian tumor (OTU) domain family
of DUBs, A20, potentially regulates non-canonical NF-κB signal-
ing in non-enzymatic fashion by disrupting interaction between
c-IAP1 and TRAF2/TRAF3, thereby breaking the link between
E3 ligase c-IAP1 and its substrate NIK (67). In the absence of
A20, TWEAK-stimulated NIK accumulation and p100 process-
ing were diminished suggesting that A20 is a positive regulator of
non-canonical NF-κB signaling (67).

An additional DUB candidate for the regulation of TWEAK-
stimulated non-canonical NF-κB signaling is OTUD7B or
Cezanne (68). OTUD7B regulates TRAF3 ubiquitination and in
particular Lys48-linked polyubiquitination of TRAF3 following
stimulation with LT-β or CD40L (69). Through TRAF3 interac-
tion OTUD7B is recruited to CD40 and LT-βR where it regulates
TRAF3 ubiquitination and stability. In the absence of OTUD7B
TRAF3 is more heavily ubiquitinated with Lys48 linkages lead-
ing to its faster degradation (69). As TRAF3 is dispensable for
the activation of canonical NF-κB and MAPK signaling OTUD7B
does not affect these pathways. However, expedited removal of
TRAF3 in the OTUD7B knockouts allows faster activation of non-
canonical NF-κB and results in B cell hyper-responsiveness to
antigens (69). Although the role of OTUD7B in TWEAK signaling
has not been examined yet, striking similarities in the activa-
tion of non-canonical NF-κB pathway by TWEAK, LIGHT, and
CD40L suggest the OTUD7B might influence TWEAK-stimulated
non-canonical NF-κB signaling as well.

CONCLUSION
The controlled posttranslational modification of signaling adap-
tors and effectors has a great potential to regulate signaling out-
comes (6, 7, 9, 30). Ubiquitination is one such modification that

impacts diverse aspects of TWEAK signaling with direct conse-
quences for the production of inflammatory cytokines and cellular
survival and proliferation. TWEAK and FN14 employ signaling
principles that significantly rely on ubiquitination for the regu-
lation of signaling complexes and investigation of ubiquitination
processes has greatly aided our understanding of the fascinating
biology of TWEAK signaling (19). In recent years several agents
have been developed that specifically target therapeutically attrac-
tive proteins, such as IAP antagonists for E3 ligases c-IAP1/2 and
kinase inhibitors for their substrate NIK, in a number of cellular
pathways (7, 70). An improved understanding of ubiquitin net-
works and molecular and physiological mechanisms that control
them should reveal novel modalities for targeting TWEAK and
FN14 regulated pathways and pathologies.
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