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INTRODUCTION

The intestinal epithelium is the largest barrier organ of the human
body and the colon harbors the majority of the individual’s micro-
biota (1). It is estimated that more than 1000 different bacterial
species colonize the human gut, outnumbering eukaryotic cells
at least by an order of magnitude (2). As many of the bacteria
represent facultative pathogens (pathobionts), the integrity of the
intestinal barrier must be highly secured. This is accomplished
by physical and immunological mechanisms formed by cellular
(i.e., epithelial- and mesoderm-derived immune cells) and non-
cellular components (e.g., antimicrobial peptides, cytokines, and
mucus). On the other hand, an extensive crosstalk between host
and microbiota contributes to the normal development and mat-
uration of the intestinal epithelium and immune system (3, 4).
The recognition of this complex bacterial community is medi-
ated by phylogenetically ancient innate immune receptors, e.g.,
Toll-like receptors (TLRs) and NOD-like receptors (NLRs). NLR
proteins have co-evolved with intestinal microbial communities
and are expressed by intestinal epithelial and immune cells. They
are characterized by a central nucleotide-binding and oligomer-
ization domain (NOD or NACHT) and C-terminal leucine-rich
repeats (LRRs) (5). Upon activation, NLRs initiate assembly of
the inflammasome or signaling cascades [e.g., NF-kB, reactive
oxygen species (ROS)] leading to a transient pro-inflammatory
environment and, ultimately, aim at resolution of inflammation.
Dysfunctional NLR signaling is linked to intestinal inflammation
and in fact, polymorphisms in NLR genes are associated with com-
plex chronic inflammatory barrier diseases, such as inflammatory
bowel disease (IBD) (6). The two major forms of IBD, Crohn’s
disease (CD) and ulcerative colitis (UC) are chronic relapsing-
remittent or progressive inflammatory conditions that affect the
gastrointestinal tract.

The host’s ability to discriminate friend and foe and to establish a precise homeostasis
with its associated microbiota is crucial for its survival and fitness. Among the mediators
of intestinal host-microbe interactions, NOD-like receptor (NLR) proteins take center stage.
They are present in the epithelial lining and innate immune cells that constantly monitor
microbial activities at the intestinal barrier. Dysfunctional NLRs predispose to intestinal
inflammation as well as sensitization to extra-intestinal immune-mediated diseases and
are linked to the alteration of microbial communities. Here, we review advances in our
understanding of their reciprocal relationship in the regulation of intestinal homeostasis
and implications for intestinal health.
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It has become clear that NLRs play a crucial role for the
maintenance of structural and functional composition of the
intestinal microbiota. Several lines of evidence have been pre-
sented that link dysfunctional NLR signaling to an impaired
host-microbiota homeostasis that may predispose to subse-
quent altered inflammatory responses in animal models. Here,
we summarize multiple levels of host-microbe crosstalk in the
intestine and review the recent findings and consequences of
NLRs in physiological and pathological intestinal host-microbe
interactions.

THE ROLE OF NLRs IN THE MULTIPLE LEVELS OF INTESTINAL
HOST-MICROBE CROSSTALK — THE NOD2 EXAMPLE

The importance of NOD?2 for intestinal homeostasis is empha-
sized by the finding that genetic variants in NOD2 contribute to
dysregulated intestinal inflammatory responses and to manifesta-
tion of CD in humans. The three most common single nucleotide
polymorphisms (SNPs) are located within the LRR of NOD2 caus-
ing either a frameshift mutation (L1007fsinsC), which leads to a
truncated LRR or amino acid changes (R702W and G908R) (7—
9). Cells that express these variants fail to activate NF-kB upon
stimulation with the NOD2 ligand muramyl-dipeptide (MDP)
(10, 11). In mouse models of intestinal inflammation, NOD2 has
been assigned a protective role, since lack of NOD2 conferred
increased susceptibility to DSS and TNBS-induced colitis (12).
It must be emphasized that the effects are modest and under
regular animal housing conditions no spontaneous inflamma-
tory phenotype has been observed. Although it is still unclear
how exactly a loss of NOD2 function predisposes to CD, several
mechanisms related to altered host-microbe interactions and con-
sequently increased susceptibility to intestinal inflammation, are
currently discussed.
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TOLERANCE, POLARITY, AND CONTROL OF PROTECTIVE CELLULAR
PROGRAMS IN IECs

An imprinting function of NOD2 on microbial composition
and/or active antibacterial responses against pathogens may be
explained by its ability to modulate cellular programs in IECs
(summarized in Figure 1). Furthermore, it was demonstrated that
the LRR domain of NOD2 already confers antibacterial properties
per se. The purified NOD2 LRR domain directly interacted with
bacteria leading to bacterial killing, whereas the LRR domains
bearing the CD-associated mutation L1007fsinsC lacked antibac-
terial activity (13). Moreover, NOD2 exhibits additional antibac-
terial effects by interacting with various proteins, which have been
implicated in bacterial clearance. Of these, ATG16L1, a protein
involved in antibacterial autophagy (“xenophagy”), was shown
to interact with NOD2 and to cooperatively mediate pathogen
defense in intestinal epithelial cells (14—16). This is of interest since
variants in ATG16L1 are associated with CD (17) and combination
of disease-associated alleles of ATG16L1 and NOD?2 are assumed
to synergistically increase susceptibility for CD (18, 19). More-
over, NOD2 was shown to interact with both components and
catalytic proteins of ROS-producing enzymes. ROS production is
an integral part of the innate host defense system, and inflamma-
tory responses at mucosal surfaces include moderate (activation
of signaling cascades) to excessive (bacterial killing due to oxida-
tive burst) formation of ROS. Intestinal epithelial cells express
members of the ROS-generating NADPH-oxidase complex (20)

and MDP induces ROS formation (21, 22). NOD2 was shown to
interact with the structural NADPH-oxidase component Racl (23,
24) and with the DUOX family member DUOX2 (22). Another
important facet in the regulation of NOD?2 signaling is the specific
localization within the intestinal epithelial cell. Despite its intra-
cellular localization, NOD2 can shuttle to the basolateral plasma
membrane upon activation (25-27). Moreover, NOD2-mediated
cytokine release and defensin production are specifically induced
from a membrane complex including Erbin and FRMPD2 from
the basolateral side (28).

A link between NOD?2 and intestinal mucus production has
been established with the discovery that NOD2 interacts with
GALNT2 (polypeptide N-acetylgalactosaminyltransferase 2), a
regulator of mucin biosynthesis. A defect in GALNT?2 function
due to impaired NOD2 interaction might therefore alter mucin
production and hence contribute to CD susceptibility (29).

NOD?2 signaling leads to activation of NF-kB and subsequent
induction of diverse antimicrobial peptides and proteins like
HNP-1 (30), B-defensin-2 (28, 31), and DMBT1 (32), a Scav-
enger Receptor Cysteine-Rich (SRCR) domain-containing protein,
which interacts with and agglutinates several Gram-negative and
Gram-positive bacteria [reviewed in Ref. (33)]. Since patients with
ileal CD exhibit reduced levels of Paneth cell derived a-defensins
HD-5 and -6 (34, 35) and NOD?2 is constitutively expressed by
Paneth cells (36), several studies investigated an underlying causal
role for NOD2. However, contradictory results exist. Whereas
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FIGURE 1 | Schematic representation of different functional
aspects of the NLR family member NOD2 at the epithelial barrier.
(1) Recognition of MDP leads to a complex protective gene expression
program including the induction of antimicrobial peptides and
cytokines. (2, 3) NOD2 has been shown to interact with the autophagic
pathway and may direct xenophagy in a direct manner. A direct
antibacterial effect of NOD2 itself has been postulated. (4) There is
interaction between NOD2 activation and ROS-generating enzyme
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complexes that may have an effect on intestinal bacteria. (5) A complex
machinery regulates the presence of NOD2 at the plasma membrane
(e.g., Erbin and FRMPD2) which may modulate the ability to recognize
and act against invasive bacteria. (6) A recent study has shown that
NOD?2 is involved in mucus generation via modulation of GALNT2. For
further details see main text. (7) All aforementioned factors may
causally contribute to the reported differences in microbiome
composition. For further details see text.
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patients carrying NOD2 polymorphism had greater reduction
of a-defensins (37, 38), no genotype-dependent correlation was
found in another study (39). Similarly, conflicting data exists
from transgenic mouse models. Nod2-deficient mice displayed
reduced mRNA expression of a-defensins compared to wild-type
mice (40). These results were challenged by the recent finding
that NOD2 knockout mice that were co-housed with their wild-
type littermate had equivalent a-defensin profiles and identical
antimicrobial activity against commensal and pathogenic bacter-
ial strains (41). Moreover, NOD2-deficient mice were not impaired
in Paneth cell numbers compared to wild-type animals (42). Thus,
further work needs to clarify the role of NOD2 in regulating mouse
a-defensin status (42).

EFFECTS ON MICROBIAL COMPOSITION

It has been shown that NOD2 is involved in recognition and
defense against various intestinal pathogens, including Helicobac-
ter pylori (43), Helicobacter hepaticus (44), Citrobacter (45),
Salmonella typhimurium (46), E. coli (47), and Listeria mono-
cytogenes (40, 48). In CD-affected humans, the link between
NOD?2 status and intestinal dysbiosis has been confirmed in dis-
ease patients homozygous for the NOD2 L1007fsinsC mutation.
Tissue-attached microbiota from ileal biopsies exhibited higher
loads of Bacteroidetes, Firmicutes, and Bacteroides compared to
healthy controls. In fecal samples, a similar pattern was observed,
however differences were not statistically significant (49). Another
study that incorporated CD patients mutated in one of the three
major risk alleles (R702W, G908R, and L1007fsinsC) confirmed

that genotype and disease phenotype are associated with shifts
in their intestinal microbial compositions (50). Nevertheless,
NOD2-deficient mice do not develop spontaneous colitis when
kept under specific pathogen free (SPF) conditions. With the
advent of next-generation sequencing, it has become possible to
take an in-depth snapshot of the intestinal bacterial ecosystem
and to delineate microbial community structures and composi-
tion at the species level. However, considerable differences between
published studies exist concerning animal housing and breeding
(e.g., hygiene status of animal facility, genetic background, caging
effects, use of F2 littermates, or separated WT/knockout strains)
study design (age, sex, intestinal sampling location) and sequenc-
ing methods (DNA extraction, sequencing, and data analysis).
Despite these differences, several independent groups reported
that NOD2 status is associated with alterations in the intestinal
microbial composition and density (summarized in Figure 2) (47,
49,51, 52). Increased abundance of members of the phylum Bac-
teroidetes was detected in weaning mice and persisted throughout
development (49). In line with this, RIPK2-deficient mice dis-
played increased levels of Bacteroides and Firmicutes arguing for a
RIK2-dependency (47). Greater fecal abundances within the Alis-
tipes and Bacteroides but an underrepresentation of Prevotellacea
along with a decreased diversity and richness in the microbiota was
found in NOD2~/~ compared to WT mice (51). Recently, another
aspect of the complex host genotype-microbe interaction was
highlighted. Wild-type mice that received disease-predisposing
bacterial communities from NOD2 or RIPK2-deficient mice
via co-housing or cross-fostering experiments suffered from
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increased susceptibility to DSS-induced colitis and colitis-
associated carcinogenesis. Reciprocal microbiota transplantation
from wild-type donors reduced disease risk in NOD2-deficient
mice (53). However, two recent studies reported only minimal
differences in gut microbial composition of co-housed, littermate
controlled NOD2-deficient, and wild-type mice (41, 54). The latter
one showed that shifts in bacterial communities were indepen-
dent of genotype and correlated with housing conditions (54).
In light of the findings from recent co-housing experiments with
NOD?2 and other NLRs [e.g., Ref. (53, 55)] this might be partly
explained by the restoration of disturbed microbiota due to animal
co-housing, however, more studies are needed to fully understand
the interference of NOD2 with host-microbe interactions.

NOD ALL NODs ARE CREATED EQUAL — LESSONS FROM
NOD1

NODI1 and 2 share similar structural composition, detection
of peptidoglycan moieties (iE-DAP/NOD1, MDP/NOD?2), and
downstream signaling pathways, including RIPK2 and NF-kB acti-
vation. In contrast to NOD2, the association between genetic
variants in the NODI gene and susceptibility to IBD is less evi-
dent. While some studies identified NOD] as a risk factor for IBD
in some studies (56, 57) this has not been widely replicated (58—60)
including a recent meta-analysis (61).

Nevertheless, there is evidence that NOD1-mediated innate
immune responses are critically involved in maintaining intesti-
nal homeostasis. Depletion of intestinal microbiota was associ-
ated with impaired neutrophil function, which was reversed by
administration of NOD1 ligand in the drinking water of mice
(62). Moreover, NOD1-deficiency leads to increased susceptibil-
ity to H. pylori infection (63), impaired clearance of Clostridium
difficile in the intestine, increased bacterial translocation (64),
and enhanced colitis-associated colon tumor formation (65). The
NOD1-mediated recognition of peptidoglycan was necessary to
induce genesis of isolated lymphoid follicles (ILFs) in the intes-
tine, which in turn influenced the composition of the intestinal
bacterial community. In NOD1-deficient mice, the total bacte-
rial population was expanded 100-fold, which was largely due
to the groups of Clostridiales, Bacteroides, and Enterobacteriaceae
(66). Furthermore, lack of NODI1 led to deficiencies in intestinal
barrier integrity reflected by lower expression levels of NOD2,
Muc2, a- and B-defensin, and keratinocyte-derived chemokine
(KC) as compared to their F2 littermates (54). In line with this,
the combined knockout of NOD1 and 2 led to increased para-
cellular permeability, decreased levels of E-cadherin, and lower
colonic antimicrobial ReglII-y expression in comparison to litter-
mate control mice (67). Nevertheless, both studies did not find
genotype-specific differences in the relative abundance of intesti-
nal bacteria (54, 67).Thus, as previously pointed out for NOD2,
the impact of breeding strategies and housing conditions may
strongly interfere with study results and yet it is still too early to
draw final conclusions about the role of NOD1 in physiological
and pathological host-microbe interactions in the intestine.

IL-18 — THE ROLE OF INFLAMMASOME-TYPE NLRs IN THE
INTESTINE

Several NLRs form multimeric complexes termed “inflamma-
somes” that serve as molecular platforms for caspase-1 activation

and processing of pro-IL-1-like cytokines into their active forms
(68). Until now, this group comprises the NLRPs (NLRs with
PYRIN domain) NLRP3, NLRP6, NLRP1, NLRP12, NLRP7, and
NLRC4 (69, 70). Although no variants in inflammasome form-
ing NLR genes are among the 163 IBD susceptibility loci (71),
their relevance for intestinal health has been shown by various
inflammasome-deficient mice in models of intestinal inflamma-
tion, as reviewed in Ref. (72). However, in comparison to mice
deficient for Nlrp3, Nlrp10, Nlrp12, and Nlrc4, Nlrp6 showed the
largest potential to alter microbiota and colitis susceptibility of co-
housed mice. In the following paragraph we will therefore focus
on the role of Nlrp6 in intestinal host-microbe interactions.

Components of the Nlrp6 inflammasome are expressed in
intestinal epithelial cells (73) and throughout the intestinal tract
(55), and several studies have demonstrated a protective role of
Nlrp6 against colitis and colitis-associated tumor formation (55,
73-75) [reviewed in Ref. (76)]. Importantly, Nirp6-deficiency was
demonstrated to significantly alter intestinal microbiota compo-
sition (55). On the genus level, Prevotellaceae (belonging to the
Bacteroidetes phylum) were strongly increased, whereas Lacto-
bacilli (Firmicutes phylum) were decreased. In addition, members
of the phylum of TM7, which were highly abundant in Nlrp6-
deficient mice, have been found to be overrepresented in CD
patients (77). Likewise, Prevotellaceae were more prominent in the
mucosa tissues of patients with UC compared to healthy individ-
uals (78). The distinct bacterial composition of Nilrp6-knockout
mice was transmissible to co-housed adult mice and cross-fostered
litters and resulted in colitis-prone phenotype of recipient wild-
type mice. Similarly, mice deficient in the inflammasome adaptor
Asc harbored a colitogenic gut microbiota that was transmissible
to co-housed WT mice (79). Wild-type mice exhibited increased
colonic I1-6 levels compared to single-housed wild-type mice when
they were co-housed with either NIrp6- or Asc-deficient mice.
Of note, the microbiota-mediated transmissible cell proliferation
and tumor formation were abrogated when either a neutralizing
anti-IL-6 receptor antibody was administered or intestinal IL-6
receptor was conditionally deleted in intestinal epithelial cells.
Recently, the role of Nlrp6 for colonic health was extended to the
small intestine (80). In a mouse model for small-bowel inflamma-
tion, stress-mediated release of corticotropin-releasing hormone
(CRH) inhibited intestinal Nirp6 (but not Nlrp3) expression and
altered the composition of the intestinal microbiota, which ulti-
mately led to intestinal inflammation (80). Together, these studies
point to a critical role for the NLR-forming inflammasomes, in
particular Nlrp6, in modulating intestinal homeostasis via an
influence on microbiota composition. It must be emphasized that
anti-IL-1 treatment, despite having an effect in DSS colitis, lacks
efficacy in IBD. With the above knowledge in mind, this field is
now at a point where the translation into the human situation is
desperately needed.

CONCLUSION

We are beginning to realize that maintaining the long-term sta-
bility of the co-evolved human gut microbe communities is an
important mechanism for maintaining human health. The ecol-
ogy of intestinal microbiota is not only necessary for digestion
of nutrients and the delivery of local metabolites (e.g., butyrate)
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to intestinal epithelial cells but also critically shapes immune
responses of the host. An important fact for future studies will
be to delineate how this interaction licenses migratory immune
cells for functions in other organ systems such as the brain. It
must be emphasized that most of our knowledge of the role of
NLRs for this symbiotic relationship originates from animal stud-
ies in rodents and that there are also conflicting results in terms of
the extent of the influence of single NLRs in this context. Beyond
the biology of NLRs, these results teach us two things: (i) we have
to reassess how we set up our immunological animal models in
the future. From findings that susceptibility to provocation mod-
els may be transmissible by genetically determined microbiota to
wild-type animals, it is clear that a regular F2 intercross with lit-
termate housing may not be an ideal scenario. On the other hand,
drift in microbiota in separated lines over generations may exert
bigger effects than the actual genotype. This is a dilemma we have
to solve. (ii) We have to be careful how we interpret the findings. In
the end only the transfer into the human situation will help us to
understand the factual influence of microbiota on traits in health
and disease.

Taken together, NLRs represent watchful guardians at the

intestinal barrier, which help to maintain immunological home-
ostasis in an organ system facing strong environmental influ-
ences. This environment has changed drastically over the past
100 years and some NLR family members are clearly involved
in chronic inflammatory diseases associated with this lifestyle.
Decoding the exact molecular signals of NLRs that contribute
to the resilience of microbial communities on mucosal surfaces
may provide approaches to prevent or ameliorate this range of
human diseases. More than 10 years into NLR research we are still
far away from understanding how these molecules actually exert
their function and how we can target them in therapy.
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