
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OPINION ARTICLE
published: 30 December 2013

doi: 10.3389/fimmu.2013.00500

Genomic architecture may influence recurrent
chromosomal translocation frequency in the Igh locus
Amy L. Kenter*, Robert Wuerffel , Satyendra Kumar and Fernando Grigera

Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
*Correspondence: star1@uic.edu

Edited by:
Ananda L. Roy, Tufts University School of Medicine, USA

Keywords: B cells, Igh locus, chromosomal translocations, AID, genomic structure

INTRODUCTION
B cell lymphomas represent 95% of all lym-
phomas diagnosed in the Western world
and the majority of these arise from ger-
minal center (GC) B cells (1). Recurrent
chromosomal translocations involving Ig
loci and proto-oncogenes are a hallmark
of many types of B cell lymphoma (2).
Three types of breakpoints can be identi-
fied in Ig loci. Translocation breakpoints
adjacent to the DH or JH gene segments
form secondary to V(D)J recombination, a
process that occurs in early B cell develop-
ment. Other translocations are located in
rearranged V(D)J exons that have acquired
mutations indicating that translocation
is a byproduct of somatic hypermutation
(SHM) which occurs in GC B cells. A third
type of translocation is characterized by
breakpoints in the Igh switch regions, a tar-
get for double strand DNA breaks (DSBs)
during class switch recombination (CSR)
that occurs in mature B cells, both inside
and outside the GC. Thus, in B lympho-
cytes, V(D)J joining, CSR, and SHM create
obligate single- or double-strand DNA
breaks as intermediates for chromosomal
translocations (3, 4).

Activation-induced deaminase (AID) is
the enzyme that initiates CSR and SHM
(5) by inducing the formation of DSBs
in switch (S) regions and mutations in V
gene exons (6–10). Studies indicate that
non-Ig genes are mistargeted by AID (11,
12) and thereby acquire single and dou-
ble strand DNA breaks at sites coinci-
dent with translocation breakpoints (1,
2). Mature B cells are particularly prone
to chromosomal translocations that juxta-
pose Ig genes and proto-oncogenes, includ-
ing c-myc [Burkitt’s lymphoma (BL)], Bcl-
2 (follicular lymphoma), Bcl-6 (diffuse
large cell lymphoma), and FGFR (multiple
myeloma) and which are characteristic of
human B cell malignancies (2). The mouse

plasmacytoma (PCT) T(12;15)(Igh-myc)
translocation, a direct counterpart of the
human BL t(8;14)(q24;q32) translocation,
occurs as a dynamic process in mature B
cells undergoing CSR and is dependent on
the expression of AID (13, 14). Hence, a
direct mechanistic link between AID and
chromosomal translocations focused to Ig
genes has been established.

One of the most puzzling aspects of
recurrent chromosomal translocations is
that DSBs on two different chromosomes
must come into close proximity frequently
enough to facilitate the crossover. How
do the broken ends located at distal
sites in cis or on trans chromosomes
come together? Consideration of onco-
genic selection, sources of translocation
prone DSBs associated with antigen recep-
tor rearrangements in B and T lympho-
cytes, and the role of DSB persistence in
translocations have been recently reviewed
[(15, 16) and references therein]. Here we
consider the proposition that the spatial
organization of mammalian genomes is
intrinsically linked to genome stability and
modulates the frequency of chromosomal
translocations.

A MODEL FOR RECURRENT
CHROMOSOMAL TRANSLOCATIONS
Two general models have been proposed to
explain the non-random nature of higher
order spatial genome organization and the
correlation with chromosomal transloca-
tions (17). The “contact-first” model posits
that translocations require pre-existing
physical proximity, whereas, the “breakage-
first” model postulates that distant DSBs
can be juxtaposed, perhaps through DNA
repair machinery. These two theories,
the dynamic “breakage-first” and the sta-
tic “contact-first,” differ fundamentally in
their requirement for the presence of DSBs
and the mobility of the broken ends.

In the contact-first model only lim-
ited local positional motion of DSBs is
expected. In the breakage-first model, sin-
gle DSBs are formed and must undergo
large scale movement within nuclei to
search for appropriate interaction partners.
Although evidence for mobility has been
found in yeast systems (18–20), the situ-
ation in mammalians cells appears differ-
ent. In mammalian cells, damaged DNA is
largely stationary over time (21–23). How-
ever, deprotected telomeres as well as join-
ing of broken DNA ends during V(D)J
recombination experience higher mobility
(24, 25). Accordingly, the VH subdomain
of the Igh locus has been described as
spatially unstructured (26) although addi-
tional studies are required to confirm this
conclusion. Nevertheless, the weight of evi-
dence in mammalian systems favors the
“contact-first” model in light of the limited
spatial mobility of DSBs (27). Comparison
of a genomic organization map with sites of
chromosomal translocation revealed that
the spatial proximity of two DSBs is a dom-
inant factor in determining the transloca-
tion landscape genome-wide (28). There-
fore, it is useful to examine the disposition
of loci within chromatin architecture and
how this influences the probability of two
DSBs finding each other in nuclear space.

THREE DIMENSIONAL ORGANIZATION
OF THE MAMMALIAN GENOME
Emerging evidence indicates that a fun-
damental property of the mammalian
nucleus is the non-random organization
of the genome in nuclear space (29). Cyto-
genetic studies reveal that the mammalian
nucleus is occupied by non-randomly
positioned genes and chromosomes (30).
Together these studies have shown that
gene activation or silencing is often asso-
ciated with repositioning of that locus
relative to nuclear compartments and
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other genomic loci. In this regard, it is
relevant that in normal B cells, the break-
age sites of several common translocations
are more frequently found in close spa-
tial proximity in the nucleus than would
be expected based on random position-
ing (31). A similar relationship between
translocation frequency and spatial prox-
imity is observed in BL where the myc
locus is on average closest to its most
frequent translocation partner, Igh (32).
The non-random aspect of genome spatial
organization in a sub-compartmentalized
nuclear space has emerged as a potential
contributor to the genesis of chromosomal
translocations (23).

The combination of new imaging
tools and the comprehensive mapping of
long range chromosomal interaction has
revealed structural features and biologi-
cal properties of the three dimensional
(3D) genomic organization (33–38). Four
features contributing to an ordered 3D
organization of eukaryotic genomes have
become evident. (1) Individual chromo-
somes occupy distinct chromosomal ter-
ritories (CT) with only a limited degree
of intermingling (39). (2) The eukaryotic
genome is partitioned into functionally
distinct euchromatin and heterochromatin
(40). (3) Individual genomic loci and ele-
ments display preferences for nuclear posi-
tioning which correlates well with genomic
functions including transcriptional activity
and replication timing (39, 41). (4) Distant
chromosomal elements associate to form
chromatin loops thereby providing a mech-
anism for long range enhancer function
(36, 38, 42). These variables predict that
unique and unanticipated spatial genomic
relationships may determine unique com-
binations of chromosomal translocations
that may differ in specific tissues and
during differentiation.

CHROMOSOMAL LOOPING INTERACTIONS
FACILITATE CSR
The best studied property of chromatin
looping is the spatial proximity of genes
and their regulatory elements to estab-
lish functional states. Of relevance here
is the recognition that chromatin looping
influences partner selection during V(D)J
recombination (43–45), CSR (46, 47), and
may drive specific chromosomal transloca-
tion events (28, 48, 49). It is of importance
to understand the spatial relationships

within the Igh locus and how they relate
to the preferential expression of Ig gene
expression and protect against genome
instability. We focus here on CSR because
the most prevalent B cell lymphomas arise
from GC B cells and are dependent on the
expression of AID (1, 13, 14).

Class switch recombination promotes
diversification of CH effector function
while retaining the original rearranged
V(D)J exons. The mouse Igh locus spans
2.9 Mb within which a centromeric 220 kb
genomic region contains eight CH genes
(encoding µ, δ, γ3, γ1, γ2b, γ2a, ε, and α

chains) each paired with repetitive S DNA
(with the exception of Cδ) (Figure 1A).
CSR is focused on S regions and involves an
intra-chromosomal deletional rearrange-
ment (Figure 1B). Germline transcript
(GLT) promoters, located upstream of I
exon-S-CH regions, focus CSR to specific
S regions by differential transcription acti-
vation (9, 50). The I-S-CH region genes are
embedded between the Eµ intronic and
3′Eα enhancers (51). Chromosome con-
formation capture (3C) studies reveal that
in mature resting B cells the transcriptional
enhancer elements, Eµ and 3′Eα, engage in
long range chromatin looping interactions
(46, 47) (Figure 1C). B cell activation leads
to induced recruitment of the GLT pro-
moters to the Eµ:3′Eα complex that in turn
facilitates GLT expression and supports S/S
synapsis (46).

The 3′Eα regulatory region plays a sig-
nificant role in mediating the spatial struc-
ture of the Igh locus during CSR as well as
promoting genome stability (52). Targeted
deletion of hs3b,4 within 3′Eα abolishes
GLT expression and GLT promoter:3′Eα

and Eµ:3′Eα looping interactions (46, 53,
54). AID initiates a series of events end-
ing in creation of S region specific DNA
DSBs at the donor Sµ and a down-
stream acceptor S region to create S/S
junctions and facilitate CSR (7). S regions
targeted by AID for DSB formation are
transcriptionally active. Chromatin loop-
ing across this region ensures proximity
between two S regions targeted for DSB
creation and recombination (Figure 1C).
Thus, CSR is dependent on 3D chromatin
architecture mediated by long range intra-
chromosomal interactions between dis-
tantly located transcriptional elements that
serves to tether broken chromosomal DNA
together during the CSR reaction.

Chromosome conformation capture
(3C, 4C, 5C, and Hi-C) based studies indi-
cate that the most probable chromatin
interactions are the most proximal ones
and the probability of contact decreases
with distance. Correspondingly, alignment
of genomic organization maps with sites
of chromosomal translocation generated
in Hi-C and 4C studies have shown that
translocations are enriched in cis along
single chromosomes containing the tar-
get DSB and in trans in a manner related
to pre-existing spatial proximity (28, 55).
The positional immobilization of DSBs in
the Igh locus, for example, should render
the probability of successful translocation
as the product of the frequency of each
DSB at the sites of crossover and the fre-
quency with which these sites are synapsed
in physical space (28). In B lymphocytes
c-myc/Igh translocations occur in trans
and may represent a failure of stringent
spatial sequestration of AID induced DSBs
to within the Igh locus (56, 57).

DYNAMIC CHROMATIN INTERACTIONS AND
THE GENESIS OF CHROMOSOMAL
TRANSLOCATIONS
Chromosomal translocation frequency as
reported by genome-wide translocation
sequencing is determined by the fre-
quency of AID induced DSB at translo-
cation targets, factors that contribute to
synapsis of broken loci, and circumven-
tion of DNA repair functions that facili-
tate intra-chromosomal DSB joining (55–
58). Are recurrent chromosomal translo-
cations simply the result of a stochastic
process related to the probability of con-
tact between AID induced DSBs? Tagging
single loci with Lac operon (LacO) arrays,
as well as photobleaching and photoacti-
vation experiments, have shown that inter-
phase chromatin is locally mobile but rarely
moves over long distances (59–61). How-
ever, lamina associated domains are large
genomic regions that are in intermittent
molecular contact with the nuclear lamina
indicating a dynamic spatial architecture
of chromosomes (62). Chromatin loop-
ing, clustering, and compartmentalization
are dynamic and responsive to develop-
mental and environmental cues. Function-
ally dynamic chromatin responses include
formation of transcription and replication
factories, and nuclear relocation of loci
during development (63–66). The looping
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FIGURE 1 | Long range chromatin looping interactions in the Igh locus
facilitate CSR in mature B cells. (A) A schematic map, drawn to scale of the
2.9 Mb Igh locus located on chromosome 12 (chr12: 114,341,024–117,349,
200 mm9). The CH, JH, DH, and proximal and distal VH gene segments are
indicated. The Igh enhancers, 3′Eα and intronic Eµ bracket the CH region gene
cluster (top). A schematic showing an expanded segment of the Igh locus
spanning 220 kb and containing the CH region genes (bottom). The orientation
of this map follows the chromosomal organization of the Igh locus.
(B,C) Diagrams of the Igh CH locus describing CSR are by convention shown
with the Eµ enhancer at the 5′ end. (B) CSR promotes diversification of CH

effector function while retaining the original V(D)J rearrangement. Within the
mouse Igh locus, a 220 kb genomic region contains eight CH genes (encoding
µ, δ, γ3, γ1, γ2b, γ2a, ε, and α chains) each paired with repetitive switch (S)
DNA (with the exception of Cδ). CSR is focused on S regions and involves an
intra-chromosomal deletional rearrangement. Germline transcript (GLT)

promoters, located upstream of I exon-S-CH regions, focus CSR to specific S
regions by differential transcription activation (50, 67). Prior to CSR and upon
GLT expression, S regions become accessible to AID attack. AID initiates a
series of events culminating in formation of S region specific double strand
breaks (DSBs) at the donor Sµ and a downstream acceptor S region (50).
DNA DSBs in transcribed S regions are essential for CSR. Here, Sµ and Sγ1
acquire AID induced DSBs and engage in CSR to form recombinant Sµ/Sγ1
regions. (C) In mature B cells Eµ:3′Eα interactions create a long range
chromatin loop encompassing the CH domain of the Igh locus (left). Upon B
cell activation with LPS + IL4, long range chromatin interactions directed by
the GLT promoters and Igh enhancers creates spatial proximity between Sµ

and the downstream Sγ1 region locus (46). This spatial proximity facilitates
recombination between the broken S regions and creates a matrix of
chromatin contacts, which stabilize the locus during the recombination
transaction.

interactions spanning the Igh locus dur-
ing CSR and in the presence of DSBs may
also be dynamic and to some degree tran-
sient. In a dynamic chromosomal setting,
DSBs present in an Igh locus that lacks
Eµ:3′Eα tethering, for example, would be
at high risk of re-joining to sites outside
the Igh locus along chromosome 12 and
at lower frequency to sites on other chro-
mosomes. The dynamism of chromosomal
transactions are not yet fully described and
represent the next forefront for investiga-
tion to appreciate constraints and variables
of genome stability and instability.
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